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1 Lévy’s inequality

Let (2, 7, P) be a probability space. A random variable is a Borel measurable
function 2 — R. For a random variable X, we denote by X, P the pushforward
measure of P by X. X,P is a Borel probability measure on R, called the
distribution of X. A random variable X is called symmetric when the
distribution of X is equal to the distribution of —X. Because the collection
{(—o00,a] : a € R} generates the Borel o-algebra of R, the statement that
X, P = (—X).P is equivalent to the statement that for all a € R,

PlweQ: X(w) <a})=PlweQ: —X(w) <a}).
The following is Lévy’s inequality.!

Theorem 1 (Lévy’s inequality). Suppose that xr, k > 1, are independent
symmetric random variables, that U is a real or complex Banach space, and
that ug, € U, k > 1. Then for each a > 0 and for each n > 1,

P | max uill>al <2-P uqill > a
1<k<n Z Xgti|| = = Z Xiti| =
= <<k 1<j<n

Proof. Let Sy =0 and for 1 <k <n,
k
Sk(w) = ij(w)uj, w e Q.
j=1

For 1 < k < n, the function w — (x1(w),...,xx(w)) is Borel measurable
Q — R*2 The function (t1,...,t) 2521 t;u; is continuous R* — U. And

1Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 213,
Theorem 11.3.

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 152, Lemma 4.49.



the function u +— |Ju|| is continuous U — R. Therefore w — ||Sk(w)]|, the com-
position of these functions, is Borel measurable 2 — R. This then implies that
w — maxi<k<n ||Sk(w)|| is Borel measurable 2 — R. Let

A={weQ: max [Si(w)| >0}, B={we:|S.w)]>a)
for which B C A. For 1 < k <mn, let

Ay = m {weQ:|Sj(w)| <aand ||Sy(w)|| > a}.
0<j<k

It is apparent that that Ay, ..., A, are pairwise disjoint and that A = (J;_, Ax.
For 1 <k <n,let

n k n
T i(w) = Sk(w) — Z X (w)u; = ij (w)u; — Z X; (w)ug, weQ,
j=k+1 j=1 j=k+1

in other words, S;, + T, r = 25);. Let
U, = A, N B, Vii=ArN{w e Q:||T, x(w)| > a}.

If we Ag, then
1S (w) + Tk (W) = 2 [|Sk(w)]| = 2a,

which implies that at least one of the inequalities ||.S,, (w)|| > a or [|T), x(w)|| > a
is true. Therefore
A, =U, UV,

Because x1, ..., Xn are independent, the random vector X = (x1,...,Xn) :
Q) — R"™ has the pushforward measure

XueP = x1,P X X xn,P,

and for each 1 < k < n, the random vector Xx = (X1, -+, Xks —Xk+1s--+»—Xn) :
) — R”™ has the pushforward measure

Xk*P:XLkPX "'Xk*PX (_XkJrl)*Px (_Xn)*P’

and because each x; is symmetric, these pushforward measures are equal. Define
o, :RF = R by

k
orlty, . te) = | Y _tjugl|,  (t,... t) €RF,
j=1
define oy = 0, and set

He= | () {(ti, - tn) ER" 1 05(t1,....1;) < a}
0<j<k

N{(t1,...,tn) ER" i op(t1,...,tx) > a,0n(t1,...,tn) > a}.



Because each o; is continuous, Hy, is a Borel set in R”. Then we have

P(Uy) = P(A, N B)
= P(XY(Hy))
= (X.P)(Hy)
= (X, P)(Hg)
P(X; " (Hy))
P(Apyn{w € Q: ||Th k()] > a})
P(Vi);

among the above equalities, the two equalities that deserve chewing on are
P(AyNB) = P(X ' (H)) and P(Xk_l(Hk)) =P(Axn{w € Q|| T,, k(w)|| > a}).
Thus we have

Therefore
n
P(A) = P(A)
k=1
<> 2P(A,NB)
k=1
=2P(ANB)
=2P(B),
proving the claim. O

2 Rademacher sums

Suppose that €, : (2,4, P) — (R,%Br,A), n > 1, are independent random
variables each with the Rademacher distribution: for each n,

1 1
n*szd_ 753
€ 5 1+21

in other words, P(e, = 1) = § and P(e, = —1) = 3.
We now use Lévy’s inequality to prove the following for independent random

variables with the Rademacher distribution.?
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Theorem 2. Suppose that X is a real or complex Banach space, and that
xr € X, k> 1. Then for each a > 0 and for each n > 1,
2
Z a)) .

P ( iekxk > 2a> <4 <P ( iek:ﬂk
k=1

k=1
Proof. Let Sy =0 and for 1 < k < n, define

Si(w) = Z €;(w)x;, w € Q.

1<j<k

Let

A::{HMXISHV>Q}, B={[ISnl = a}, C={lISnll = 2a}.

1<k<n

Lévy’s inequality tells us that P(A4) < 2P(B).
For 1 <k <mn, let

Ae= ) {ISiI < a} N {lISkll > a}
0<j<k

and
Cr ={lISn — Sk-1 = a}-

Ifwe Ay NC, then
[Sn(w) = Sp—1(@)]| = [|Sn(@)]| = [|Sk-1(w)]| = 2a —a = a,

hence Ay N C C Ck. Then because C' C A and because A is the disjoint union
of A1,..., Ay,

P(C)=P(ANC)=P (U(Akm0)> => P(A4NC) <Y P(A:NCy).
k=1 =1 k=1
Let 1 <k <mn. P(e2 =1) =1, so for almost all w € Q,

n

D eilw)zs|| = [len(w) D eilw)zs|| = [loe + D erlw)e;(w)z;
j=k

J=Fk j=k+1
Thus, for
n
Dy = TE + Z €ELE;Ti|| = a o,
j=k+1
we have
P(CxADy) = 0.



Let (01,...,6,) € {+1,—1}". On the one hand, because 67 = 1 and using that
€1,...,€, are independent,

P(€1 = 51, ey € = 5k,€k€k+1 = 6k+17 N & S 5n)
=P(e1 =01,..., €k = Ok, €41 = OkOky1,s .-+, €n = Ok0n)
=P(ey = 01) - P(ex, = 0k)P(€x+1 = 0k0p+1) - - Pen = d105)
=2"".

On the other hand, for k 4+ 1 < j < n we have

P(ere; = 0;)

=P(erej = djlex = 1)P(ep, = 1) + P(ere; = djlep = —1)P(e, = —1)
1 1

:§P(EJ =0;) + §P(€] = —0;)

111

2.2 2 2

_1

=5

and hence

P(€1 = 51) cee P(ek = 5k)P(€k€k+1 = 6k+1) cee P(eken = 5n) =27".
Therefore, for each 1 < k < n and for each (d1,...,0,) € {+1,—1}",

P(Gl = (51, N 6k,6k€k+1 = 5k+1; N L 511)
ZP(El = 51) tee P(Ek = 6k)P(6k€k+1 = 5k+1) s P(eken = 5n)

But for almost all w € €2,
(e1(w), - (W), ex(W)ens1(W), ... ex(w)en(w)) € {+1, —1}",

so it follows that

€1y €k, ELEL+1, -+, €kEn
are independent random variables. We check that Ay € o(e1,...,€;) and Dy, €
0(0kOk+1,---,0k0y), and what we have just established means that these o-

algebras are independent, so
P(Ak N Dk) = P(Ak)P(Dk)

But
AN (CkADk) = (Ak N Ck)A(Ak N Dk),

so, because P(CyADy) =0,

P(Ak N Ck) = P(Ak N Dk) = P(Ak)P(Dk) = P(Ak)P(Ck)



We had already established that P(C) < >~7_, P(A; N Cy). Using this with
the above, and the fact that A is the disjoint union of A4, ..., A,, we obtain

P(C) < f: P(AxNCy)

max P(Cy)

1<k<n

A
N/
M:

sl

=
~

1<k<n

O Ak> max P(Ok)

= P(A) max P(Cy).

1<k<n

As we stated before, we have from Lévy’s inequality that P(A4) < 2P(B), with
which
P(C) <2P(B) max P(Cy).

- 1<k<n

To prove the claim it thus suffices to show that

max P(Cy) < 2P(B).

1<k<n

Let 1 <k <n. For § = (01,...,0k_1) € {+1,—-1}F"1 let let Hys be
those (t1,...,t,) € R™ such that (i) for each 1 < j < k —1, t; = 9, (ii)

HE?:k tyw]| > a, and (i)

n
Z tjxj > a,
j=1

and let Hy 5 be those (t1,...,t,) € R" satistying (i) and (ii) and

k—1 n
thl‘j — thl'j Z a.
j=1 j=k

Let
X =(e1,...,6n): Q> R"

and let
Xk = (€1, €h—1,—€ky...,—€n): 2 = R",



which have the same distribution because €1, ..., ¢, are independent and sym-
metric. Then

Set
Crst ={X €Hrs1}),  Crs— ={X € Hs_},

for which we thus have
P(Cs4) = P(Crs,-)-

We can write C, 5+ and Cj 5 as

Cror=| [) {& =0} | NCun{]|Snll > a}
0<j<k
and
Crs—=| () {& =0} NCrn{]|Sn — 2Sk_1]| > a}.
0<j<k

If w € Cy, then, because ||.S,(w) — Sg—1(w)| > a,

2a < 2||Sp(w) = Sk-1(w)]|
= [|Sn(w) + (Sn(w) = 251 (W)l
< [Sn(@)ll + [[Sn(w) = 2551 (W)l

so at least one of the inequalities ||S,(w)|| > a and [|Sy,(w) — 2Sk_1(w)|| > a is
true, and hence

Cr C{lISnll = a} U{lISn — 28k-1] > a}.
It follows that
Cen | () {& =06} | =Criot UCros—.
0<j<k
Therefore, using the fact that for almost all w € €,
(a1(w), ... ep_1(w)) € {+1,—1}F71,

and

Ck;’(s’Jr = ﬂ {Gj = 5j} NC,NB,

0<j<k



we get

P(C) =Y _P(Ckn [ {e=6;}
5

0<j<k

==§:f%C%@+LJCh&—)

5
=2 Z P(Crs.+)
s
<2> P|Bn () {g =0}
s 0<j<k
— 2P(B),
and thus
<
max P(Cy) < 2P(B),
which proves the claim. O

3 Kahane’s inequality

By E(X)" we mean (E(X))". The following is Kahane’s inequality.*

Theorem 3 (Kahane’s inequality). For 0 < p,q < oo, there is some Kp 4 > 0
such that if X is a real or complex Banach space and xy, € X, k > 1, then for

each n,
n q\ 1/q " p\ 1/p
FE ( Zekxk ) <K,, E ( Zekxk > .
k=1 k=1

Proof. Suppose that 0 < p < ¢ < co; when p > ¢ the claim is immediate with
>

K,,=1. Let
py\ 1/p
M=F ( ) ;
k=1

if M = 0 we check that the claim is 0 < K, ; -0, which is true for, say, K, ; = 1.
Otherwise, M > 0, and let ux = 35, 1 < k < n, for which

(gef) Bsl)

Using Chebyshev’s inequality,
n P 1 P 1
> <-F = —.
Z ELUL = 8) =3 < > 3
k=1

P[] 2 o) <o S o
k=1 k=1
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n

n

g ELUE

k=1

n

> e

k=1




Assume for induction that for some [ > 0 we have

d

the above shows that this is true for [ = 0. Applying Theorem 2 and then (2),

2
P( 22l+1~81/”> §4<P< 221'81/T’>> <

which shows that (2) is true for all [ > 0.
Generally, for 0 < ¢ < oo, if X :  — R is a random variable for which
P(X >0) =1, then

n

E €U

k=1

1 ,
> 2! ~81/P> <7 -2, (2)

n

E ELUEK

k=1

n

E €LUE

k=1

2I,+1

270,

»P\H

E(X?) :/ qsT ' P(X > s)ds;
0

the right-hand side is finite if and only if X € LI(P). Using this,

E ( q) = /OOO qsi'P ( ) ds. (3)

Let g = and for [ > 1 let oy = 2!~ - 8/? and define

Zs)7 s> 0.

n

E €LUL

k=1

n

§ LUK

k=1

n

E LUK

k=1

f(s) = qsq‘1P<

Using (3) and then (2),

E( ) q) :/oof(s)ds

S
O¢l+2
/ f(s ds+2 /
Qj41
§/ qs?™ 1ds+2/ qs? P
0 Qg1
<aof+ Z/ gs?™ 1 272 s

ol
=8ur 4 1 22 *(ofyn —aliy),
1=0

n

g E€pUL

k=1

> az+1> ds

and we define K, ; by taking K} , to be equal to the above. Thus

q\ 1/q

n

g €LUL

k=1




and therefore, by (1),

i

a\ 1/q py\ 1/p
> S Kp7q ' E ( > .
Finally, as up = &,

q\ 1/q p\ 1/p

which proves the claim. O

n

E €xUE

k=1

n

g ELUL

k=1

n

E [0 %

k=1

n

E €T

k=1

In the above proof of Kahane’s inequality, for p = 1 and ¢ = 2 we have

I, o
Kf, =8+ 122 “(afs —afyy)
1=0

=64+16) 272 (22142  92)
=0

=64+48> 27292,
=0

for which
K2 =14.006....

In fact, the inequality is true with K o = /2 = 1.414....°
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