Lévy's inequality, Rademacher sums, and Kahane's inequality

Jordan Bell

May 21, 2015

1 Lévy's inequality

Let (Ω, \mathscr{A}, P) be a probability space. A random variable is a Borel measurable function $\Omega \rightarrow \mathbb{R}$. For a random variable X, we denote by $X_{*} P$ the pushforward measure of P by $X . \quad X_{*} P$ is a Borel probability measure on \mathbb{R}, called the distribution of X. A random variable X is called symmetric when the distribution of X is equal to the distribution of $-X$. Because the collection $\{(-\infty, a]: a \in \mathbb{R}\}$ generates the Borel σ-algebra of \mathbb{R}, the statement that $X_{*} P=(-X)_{*} P$ is equivalent to the statement that for all $a \in \mathbb{R}$,

$$
P(\{\omega \in \Omega: X(\omega) \leq a\})=P(\omega \in \Omega:-X(\omega) \leq a\})
$$

The following is Lévy's inequality. ${ }^{1}$
Theorem 1 (Lévy's inequality). Suppose that $\chi_{k}, k \geq 1$, are independent symmetric random variables, that U is a real or complex Banach space, and that $u_{k} \in U, k \geq 1$. Then for each $a>0$ and for each $n \geq 1$,

$$
P\left(\max _{1 \leq k \leq n}\left\|\sum_{1 \leq j \leq k} \chi_{j} u_{j}\right\| \geq a\right) \leq 2 \cdot P\left(\left\|\sum_{1 \leq j \leq n} \chi_{j} u_{j}\right\| \geq a\right)
$$

Proof. Let $S_{0}=0$ and for $1 \leq k \leq n$,

$$
S_{k}(\omega)=\sum_{j=1}^{k} \chi_{j}(\omega) u_{j}, \quad \omega \in \Omega
$$

For $1 \leq k \leq n$, the function $\omega \mapsto\left(\chi_{1}(\omega), \ldots, \chi_{k}(\omega)\right)$ is Borel measurable $\Omega \rightarrow \mathbb{R}^{k} .^{2}$ The function $\left(t_{1}, \ldots, t_{k}\right) \mapsto \sum_{j=1}^{k} t_{j} u_{j}$ is continuous $\mathbb{R}^{k} \rightarrow U$. And

[^0]the function $u \mapsto\|u\|$ is continuous $U \rightarrow \mathbb{R}$. Therefore $\omega \mapsto\left\|S_{k}(\omega)\right\|$, the composition of these functions, is Borel measurable $\Omega \rightarrow \mathbb{R}$. This then implies that $\omega \mapsto \max _{1 \leq k \leq n}\left\|S_{k}(\omega)\right\|$ is Borel measurable $\Omega \rightarrow \mathbb{R}$. Let
$$
A=\left\{\omega \in \Omega: \max _{1 \leq k \leq n}\left\|S_{k}(\omega)\right\| \geq a\right\}, \quad B=\left\{\omega \in \Omega:\left\|S_{n}(\omega)\right\| \geq a\right\}
$$
for which $B \subset A$. For $1 \leq k \leq n$, let
$$
A_{k}=\bigcap_{0 \leq j<k}\left\{\omega \in \Omega:\left\|S_{j}(\omega)\right\|<a \text { and }\left\|S_{k}(\omega)\right\| \geq a\right\}
$$

It is apparent that that A_{1}, \ldots, A_{n} are pairwise disjoint and that $A=\bigcup_{k=1}^{n} A_{k}$.
For $1 \leq k \leq n$, let

$$
T_{n, k}(\omega)=S_{k}(\omega)-\sum_{j=k+1}^{n} \chi_{j}(\omega) u_{j}=\sum_{j=1}^{k} \chi_{j}(\omega) u_{j}-\sum_{j=k+1}^{n} \chi_{j}(\omega) u_{j}, \quad \omega \in \Omega
$$

in other words, $S_{n}+T_{n, k}=2 S_{k}$. Let

$$
U_{k}=A_{k} \cap B, \quad V_{k}=A_{k} \cap\left\{\omega \in \Omega:\left\|T_{n, k}(\omega)\right\| \geq a\right\}
$$

If $\omega \in A_{k}$, then

$$
\left\|S_{n}(\omega)+T_{n, k}(\omega)\right\|=2\left\|S_{k}(\omega)\right\| \geq 2 a,
$$

which implies that at least one of the inequalities $\left\|S_{n}(\omega)\right\| \geq a$ or $\left\|T_{n, k}(\omega)\right\| \geq a$ is true. Therefore

$$
A_{k}=U_{k} \cup V_{k} .
$$

Because $\chi_{1}, \ldots, \chi_{n}$ are independent, the random vector $X=\left(\chi_{1}, \ldots, \chi_{n}\right)$: $\Omega \rightarrow \mathbb{R}^{n}$ has the pushforward measure

$$
X_{*} P=\chi_{1_{*}} P \times \cdots \times \chi_{n_{*}} P
$$

and for each $1 \leq k \leq n$, the random vector $X_{k}=\left(\chi_{1}, \ldots, \chi_{k},-\chi_{k+1}, \ldots,-\chi_{n}\right)$: $\Omega \rightarrow \mathbb{R}^{n}$ has the pushforward measure

$$
X_{k *} P=\chi_{1_{*}} P \times \cdots \chi_{k_{*}} P \times\left(-\chi_{k+1}\right)_{*} P \times \cdots\left(-\chi_{n}\right)_{*} P,
$$

and because each χ_{j} is symmetric, these pushforward measures are equal. Define $\sigma_{k}: \mathbb{R}^{k} \rightarrow \mathbb{R}$ by

$$
\sigma_{k}\left(t_{1}, \ldots, t_{k}\right)=\left\|\sum_{j=1}^{k} t_{j} u_{j}\right\|, \quad\left(t_{1}, \ldots, t_{k}\right) \in \mathbb{R}^{k},
$$

define $\sigma_{0}=0$, and set

$$
\begin{aligned}
H_{k} & =\left(\bigcap_{0 \leq j<k}\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sigma_{j}\left(t_{1}, \ldots, t_{j}\right)<a\right\}\right) \\
& \cap\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \sigma_{k}\left(t_{1}, \ldots, t_{k}\right) \geq a, \sigma_{n}\left(t_{1}, \ldots, t_{n}\right) \geq a\right\} .
\end{aligned}
$$

Because each σ_{j} is continuous, H_{k} is a Borel set in \mathbb{R}^{n}. Then we have

$$
\begin{aligned}
P\left(U_{k}\right) & =P\left(A_{k} \cap B\right) \\
& =P\left(X^{-1}\left(H_{k}\right)\right) \\
& =\left(X_{*} P\right)\left(H_{k}\right) \\
& =\left(X_{k *} P\right)\left(H_{k}\right) \\
& =P\left(X_{k}^{-1}\left(H_{k}\right)\right) \\
& =P\left(A_{k} \cap\left\{\omega \in \Omega:\left\|T_{n, k}(\omega)\right\| \geq a\right\}\right) \\
& =P\left(V_{k}\right)
\end{aligned}
$$

among the above equalities, the two equalities that deserve chewing on are
$P\left(A_{k} \cap B\right)=P\left(X^{-1}\left(H_{k}\right)\right) \quad$ and $\quad P\left(X_{k}^{-1}\left(H_{k}\right)\right)=P\left(A_{k} \cap\left\{\omega \in \Omega:\left\|T_{n, k}(\omega)\right\| \geq a\right\}\right)$.
Thus we have

$$
P\left(A_{k}\right)=P\left(U_{k} \cup V_{k}\right) \leq P\left(U_{k}\right)+P\left(V_{k}\right)=2 P\left(U_{k}\right)=2 P\left(A_{k} \cap B\right) .
$$

Therefore

$$
\begin{aligned}
P(A) & =\sum_{k=1}^{n} P\left(A_{k}\right) \\
& \leq \sum_{k=1}^{n} 2 P\left(A_{k} \cap B\right) \\
& =2 P(A \cap B) \\
& =2 P(B),
\end{aligned}
$$

proving the claim.

2 Rademacher sums

Suppose that $\epsilon_{n}:(\Omega, \mathscr{A}, P) \rightarrow\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \lambda\right), n \geq 1$, are independent random variables each with the Rademacher distribution: for each n,

$$
\epsilon_{n *} P=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1},
$$

in other words, $P\left(\epsilon_{n}=1\right)=\frac{1}{2}$ and $P\left(\epsilon_{n}=-1\right)=\frac{1}{2}$.
We now use Lévy's inequality to prove the following for independent random variables with the Rademacher distribution. ${ }^{3}$

[^1]Theorem 2. Suppose that X is a real or complex Banach space, and that $x_{k} \in X, k \geq 1$. Then for each $a>0$ and for each $n \geq 1$,

$$
P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\| \geq 2 a\right) \leq 4\left(P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\| \geq a\right)\right)^{2}
$$

Proof. Let $S_{0}=0$ and for $1 \leq k \leq n$, define

$$
S_{k}(\omega)=\sum_{1 \leq j \leq k} \epsilon_{j}(\omega) x_{j}, \quad \omega \in \Omega
$$

Let

$$
A=\left\{\max _{1 \leq k \leq n}\left\|S_{k}\right\| \geq a\right\}, \quad B=\left\{\left\|S_{n}\right\| \geq a\right\}, \quad C=\left\{\left\|S_{n}\right\| \geq 2 a\right\}
$$

Lévy's inequality tells us that $P(A) \leq 2 P(B)$.
For $1 \leq k \leq n$, let

$$
A_{k}=\bigcap_{0 \leq j<k}\left\{\left\|S_{j}\right\|<a\right\} \cap\left\{\left\|S_{k}\right\| \geq a\right\}
$$

and

$$
C_{k}=\left\{\left\|S_{n}-S_{k-1}\right\| \geq a\right\}
$$

If $\omega \in A_{k} \cap C$, then

$$
\left\|S_{n}(\omega)-S_{k-1}(\omega)\right\| \geq\left\|S_{n}(\omega)\right\|-\left\|S_{k-1}(\omega)\right\| \geq 2 a-a=a
$$

hence $A_{k} \cap C \subset C_{k}$. Then because $C \subset A$ and because A is the disjoint union of A_{1}, \ldots, A_{n},

$$
P(C)=P(A \cap C)=P\left(\bigcup_{k=1}^{n}\left(A_{k} \cap C\right)\right)=\sum_{k=1}^{n} P\left(A_{k} \cap C\right) \leq \sum_{k=1}^{n} P\left(A_{k} \cap C_{k}\right)
$$

Let $1 \leq k \leq n . P\left(\epsilon_{k}^{2}=1\right)=1$, so for almost all $\omega \in \Omega$,

$$
\left\|\sum_{j=k}^{n} \epsilon_{j}(\omega) x_{j}\right\|=\left\|\epsilon_{k}(\omega) \sum_{j=k}^{n} \epsilon_{j}(\omega) x_{j}\right\|=\left\|x_{k}+\sum_{j=k+1}^{n} \epsilon_{k}(\omega) \epsilon_{j}(\omega) x_{j}\right\|
$$

Thus, for

$$
D_{k}=\left\{\left\|x_{k}+\sum_{j=k+1}^{n} \epsilon_{k} \epsilon_{j} x_{j}\right\| \geq a\right\}
$$

we have

$$
P\left(C_{k} \triangle D_{k}\right)=0 .
$$

Let $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{+1,-1\}^{n}$. On the one hand, because $\delta_{j}^{2}=1$ and using that $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent,

$$
\begin{aligned}
& P\left(\epsilon_{1}=\delta_{1}, \ldots, \epsilon_{k}=\delta_{k}, \epsilon_{k} \epsilon_{k+1}=\delta_{k+1}, \ldots, \epsilon_{k} \epsilon_{n}=\delta_{n}\right) \\
= & P\left(\epsilon_{1}=\delta_{1}, \ldots, \epsilon_{k}=\delta_{k}, \epsilon_{k+1}=\delta_{k} \delta_{k+1}, \ldots, \epsilon_{n}=\delta_{k} \delta_{n}\right) \\
= & P\left(\epsilon_{1}=\delta_{1}\right) \cdots P\left(\epsilon_{k}=\delta_{k}\right) P\left(\epsilon_{k+1}=\delta_{k} \delta_{k+1}\right) \cdots P\left(\epsilon_{n}=\delta_{k} \delta_{n}\right) \\
= & 2^{-n} .
\end{aligned}
$$

On the other hand, for $k+1 \leq j \leq n$ we have

$$
\begin{aligned}
& P\left(\epsilon_{k} \epsilon_{j}=\delta_{j}\right) \\
= & P\left(\epsilon_{k} \epsilon_{j}=\delta_{j} \mid \epsilon_{k}=1\right) P\left(\epsilon_{k}=1\right)+P\left(\epsilon_{k} \epsilon_{j}=\delta_{j} \mid \epsilon_{k}=-1\right) P\left(\epsilon_{k}=-1\right) \\
= & \frac{1}{2} P\left(\epsilon_{j}=\delta_{j}\right)+\frac{1}{2} P\left(\epsilon_{j}=-\delta_{j}\right) \\
= & \frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2} \\
= & \frac{1}{2}
\end{aligned}
$$

and hence

$$
P\left(\epsilon_{1}=\delta_{1}\right) \cdots P\left(\epsilon_{k}=\delta_{k}\right) P\left(\epsilon_{k} \epsilon_{k+1}=\delta_{k+1}\right) \cdots P\left(\epsilon_{k} \epsilon_{n}=\delta_{n}\right)=2^{-n}
$$

Therefore, for each $1 \leq k \leq n$ and for each $\left(\delta_{1}, \ldots, \delta_{n}\right) \in\{+1,-1\}^{n}$,

$$
\begin{aligned}
& P\left(\epsilon_{1}=\delta_{1}, \ldots, \epsilon_{k}=\delta_{k}, \epsilon_{k} \epsilon_{k+1}=\delta_{k+1}, \ldots, \epsilon_{k} \epsilon_{n}=\delta_{n}\right) \\
= & P\left(\epsilon_{1}=\delta_{1}\right) \cdots P\left(\epsilon_{k}=\delta_{k}\right) P\left(\epsilon_{k} \epsilon_{k+1}=\delta_{k+1}\right) \cdots P\left(\epsilon_{k} \epsilon_{n}=\delta_{n}\right) .
\end{aligned}
$$

But for almost all $\omega \in \Omega$,

$$
\left(\epsilon_{1}(\omega), \ldots, \epsilon_{k}(\omega), \epsilon_{k}(\omega) \epsilon_{k+1}(\omega), \ldots, \epsilon_{k}(\omega) \epsilon_{n}(\omega)\right) \in\{+1,-1\}^{n}
$$

so it follows that

$$
\epsilon_{1}, \ldots, \epsilon_{k}, \epsilon_{k} \epsilon_{k+1}, \ldots, \epsilon_{k} \epsilon_{n}
$$

are independent random variables. We check that $A_{k} \in \sigma\left(\epsilon_{1}, \ldots, \epsilon_{k}\right)$ and $D_{k} \in$ $\sigma\left(\sigma_{k} \sigma_{k+1}, \ldots, \sigma_{k} \sigma_{n}\right)$, and what we have just established means that these σ algebras are independent, so

$$
P\left(A_{k} \cap D_{k}\right)=P\left(A_{k}\right) P\left(D_{k}\right) .
$$

But

$$
A_{k} \cap\left(C_{k} \triangle D_{k}\right)=\left(A_{k} \cap C_{k}\right) \triangle\left(A_{k} \cap D_{k}\right),
$$

so, because $P\left(C_{k} \triangle D_{k}\right)=0$,

$$
P\left(A_{k} \cap C_{k}\right)=P\left(A_{k} \cap D_{k}\right)=P\left(A_{k}\right) P\left(D_{k}\right)=P\left(A_{k}\right) P\left(C_{k}\right)
$$

We had already established that $P(C) \leq \sum_{k=1}^{n} P\left(A_{k} \cap C_{k}\right)$. Using this with the above, and the fact that A is the disjoint union of A_{1}, \ldots, A_{n}, we obtain

$$
\begin{aligned}
P(C) & \leq \sum_{k=1}^{n} P\left(A_{k} \cap C_{k}\right) \\
& =\sum_{k=1}^{n} P\left(A_{k}\right) P\left(C_{k}\right) \\
& \leq\left(\sum_{k=1}^{n} P\left(A_{k}\right)\right) \max _{1 \leq k \leq n} P\left(C_{k}\right) \\
& =P\left(\bigcup_{k=1}^{n} A_{k}\right) \max _{1 \leq k \leq n} P\left(C_{k}\right) \\
& =P(A) \max _{1 \leq k \leq n} P\left(C_{k}\right) .
\end{aligned}
$$

As we stated before, we have from Lévy's inequality that $P(A) \leq 2 P(B)$, with which

$$
P(C) \leq 2 P(B) \max _{1 \leq k \leq n} P\left(C_{k}\right)
$$

To prove the claim it thus suffices to show that

$$
\max _{1 \leq k \leq n} P\left(C_{k}\right) \leq 2 P(B)
$$

Let $1 \leq k \leq n$. For $\delta=\left(\delta_{1}, \ldots, \delta_{k-1}\right) \in\{+1,-1\}^{k-1}$, let let $H_{k, \delta,+}$ be those $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ such that (i) for each $1 \leq j \leq k-1, t_{j}=\delta_{j}$, (ii) $\left\|\sum_{j=k}^{n} t_{j} x_{j}\right\| \geq a$, and (iii)

$$
\left\|\sum_{j=1}^{n} t_{j} x_{j}\right\| \geq a
$$

and let $H_{k, \delta,-}$ be those $\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}$ satisfying (i) and (ii) and

$$
\left\|\sum_{j=1}^{k-1} t_{j} x_{j}-\sum_{j=k}^{n} t_{j} x_{j}\right\| \geq a
$$

Let

$$
X=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right): \Omega \rightarrow \mathbb{R}^{n}
$$

and let

$$
X_{k}=\left(\epsilon_{1}, \ldots, \epsilon_{k-1},-\epsilon_{k}, \ldots,-\epsilon_{n}\right): \Omega \rightarrow \mathbb{R}^{n}
$$

which have the same distribution because $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent and symmetric. Then

$$
\begin{aligned}
P\left(X^{-1}\left(H_{k, \delta,+}\right)\right) & =\left(X_{*} P\right)\left(H_{k, \delta,+}\right) \\
& =\left(X_{k *} P\right)\left(H_{k, \delta,+}\right) \\
& =P\left(X_{k}^{-1}\left(H_{k, \delta,+}\right)\right) \\
& =P\left(X^{-1}\left(H_{k, \delta,-}\right)\right) .
\end{aligned}
$$

Set

$$
C_{k, \delta,+}=\left\{X \in H_{k, \delta,+}\right\}, \quad C_{k, \delta,-}=\left\{X \in H_{k, \delta,-}\right\}
$$

for which we thus have

$$
P\left(C_{k, \delta,+}\right)=P\left(C_{k, \delta,-}\right) .
$$

We can write $C_{k, \delta,+}$ and $C_{k, \delta,-}$ as

$$
C_{k, \delta,+}=\left(\bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right) \cap C_{k} \cap\left\{\left\|S_{n}\right\| \geq a\right\}
$$

and

$$
C_{k, \delta,-}=\left(\bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right) \cap C_{k} \cap\left\{\left\|S_{n}-2 S_{k-1}\right\| \geq a\right\}
$$

If $\omega \in C_{k}$ then, because $\left\|S_{n}(\omega)-S_{k-1}(\omega)\right\| \geq a$,

$$
\begin{aligned}
2 a & \leq 2\left\|S_{n}(\omega)-S_{k-1}(\omega)\right\| \\
& =\left\|S_{n}(\omega)+\left(S_{n}(\omega)-2 S_{k-1}(\omega)\right)\right\| \\
& \leq\left\|S_{n}(\omega)\right\|+\left\|S_{n}(\omega)-2 S_{k-1}(\omega)\right\|,
\end{aligned}
$$

so at least one of the inequalities $\left\|S_{n}(\omega)\right\| \geq a$ and $\left\|S_{n}(\omega)-2 S_{k-1}(\omega)\right\| \geq a$ is true, and hence

$$
C_{k} \subset\left\{\left\|S_{n}\right\| \geq a\right\} \cup\left\{\left\|S_{n}-2 S_{k-1}\right\| \geq a\right\} .
$$

It follows that

$$
C_{k} \cap\left(\bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right)=C_{k, \delta,+} \cup C_{k, \delta,-} .
$$

Therefore, using the fact that for almost all $\omega \in \Omega$,

$$
\left(\epsilon_{1}(\omega), \ldots, \epsilon_{k-1}(\omega)\right) \in\{+1,-1\}^{k-1}
$$

and

$$
C_{k, \delta,+}=\left(\bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right) \cap C_{k} \cap B
$$

we get

$$
\begin{aligned}
P\left(C_{k}\right) & =\sum_{\delta} P\left(C_{k} \cap \bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right) \\
& =\sum_{\delta} P\left(C_{k, \delta,+} \cup C_{k, \delta,-}\right) \\
& =2 \sum_{\delta} P\left(C_{k, \delta,+}\right) \\
& \leq 2 \sum_{\delta} P\left(B \cap \bigcap_{0 \leq j<k}\left\{\epsilon_{j}=\delta_{j}\right\}\right) \\
& =2 P(B),
\end{aligned}
$$

and thus

$$
\max _{1 \leq k \leq n} P\left(C_{k}\right) \leq 2 P(B),
$$

which proves the claim.

3 Kahane's inequality

By $E(X)^{r}$ we mean $(E(X))^{r}$. The following is Kahane's inequality. ${ }^{4}$
Theorem 3 (Kahane's inequality). For $0<p, q<\infty$, there is some $K_{p, q}>0$ such that if X is a real or complex Banach space and $x_{k} \in X, k \geq 1$, then for each n,

$$
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{q}\right)^{1 / q} \leq K_{p, q} \cdot E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{p}\right)^{1 / p} .
$$

Proof. Suppose that $0<p<q<\infty$; when $p \geq q$ the claim is immediate with $K_{p, q}=1$. Let

$$
M=E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{p}\right)^{1 / p}
$$

if $M=0$ we check that the claim is $0 \leq K_{p, q} \cdot 0$, which is true for, say, $K_{p, q}=1$. Otherwise, $M>0$, and let $u_{k}=\frac{x_{k}}{M}, 1 \leq k \leq n$, for which

$$
\begin{equation*}
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{p}\right)=E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} \frac{x_{k}}{M}\right\|^{p}\right)=1 . \tag{1}
\end{equation*}
$$

Using Chebyshev's inequality,

$$
P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq 8^{1 / p}\right)=P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{p} \geq 8\right) \leq \frac{1}{8} E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{p}\right)=\frac{1}{8}
$$

[^2] Theorem 11.1.

Assume for induction that for some $l \geq 0$ we have

$$
\begin{equation*}
P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq 2^{l} \cdot 8^{1 / p}\right) \leq \frac{1}{4} \cdot 2^{-2^{l}} \tag{2}
\end{equation*}
$$

the above shows that this is true for $l=0$. Applying Theorem 2 and then (2),
$P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq 2^{l+1} \cdot 8^{1 / p}\right) \leq 4\left(P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq 2^{l} \cdot 8^{1 / p}\right)\right)^{2} \leq \frac{1}{4} \cdot 2^{-2^{l+1}}$,
which shows that (2) is true for all $l \geq 0$.
Generally, for $0<q<\infty$, if $X: \Omega \rightarrow \mathbb{R}$ is a random variable for which $P(X \geq 0)=1$, then

$$
E\left(X^{q}\right)=\int_{0}^{\infty} q s^{q-1} P(X \geq s) d s
$$

the right-hand side is finite if and only if $X \in L^{q}(P)$. Using this,

$$
\begin{equation*}
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{q}\right)=\int_{0}^{\infty} q s^{q-1} P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq s\right) d s \tag{3}
\end{equation*}
$$

Let $\alpha_{0}=$ and for $l \geq 1$ let $\alpha_{l}=2^{l-1} \cdot 8^{1 / p}$, and define

$$
f(s)=q s^{q-1} P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq s\right), \quad s \geq 0
$$

Using (3) and then (2),

$$
\begin{aligned}
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{q}\right) & =\int_{0}^{\infty} f(s) d s \\
& =\int_{0}^{\alpha_{1}} f(s) d s+\sum_{l=0}^{\infty} \int_{\alpha_{l+1}}^{\alpha_{l+2}} f(s) d s \\
& \leq \int_{0}^{\alpha_{1}} q s^{q-1} d s+\sum_{l=0}^{\infty} \int_{\alpha_{l+1}}^{\alpha_{l+2}} q s^{q-1} P\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\| \geq \alpha_{l+1}\right) d s \\
& \leq \alpha_{1}^{q}+\sum_{l=0}^{\infty} \int_{\alpha_{l+1}}^{\alpha_{l+2}} q s^{q-1} \frac{1}{4} \cdot 2^{-2^{l}} d s \\
& =8^{q / p}+\frac{1}{4} \sum_{l=0}^{\infty} 2^{-2^{l}}\left(\alpha_{l+2}^{q}-\alpha_{l+1}^{q}\right)
\end{aligned}
$$

and we define $K_{p, q}$ by taking $K_{p, q}^{q}$ to be equal to the above. Thus

$$
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{q}\right)^{1 / q} \leq K_{p, q},
$$

and therefore, by (1),

$$
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{q}\right)^{1 / q} \leq K_{p, q} \cdot E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} u_{k}\right\|^{p}\right)^{1 / p}
$$

Finally, as $u_{k}=\frac{x_{k}}{M}$,

$$
E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{q}\right)^{1 / q} \leq K_{p, q} \cdot E\left(\left\|\sum_{k=1}^{n} \epsilon_{k} x_{k}\right\|^{p}\right)^{1 / p}
$$

which proves the claim.
In the above proof of Kahane's inequality, for $p=1$ and $q=2$ we have

$$
\begin{aligned}
K_{1,2}^{2} & =8^{2}+\frac{1}{4} \sum_{l=0}^{\infty} 2^{-2^{l}}\left(\alpha_{l+2}^{2}-\alpha_{l+1}^{2}\right) \\
& =64+16 \sum_{l=0}^{\infty} 2^{-2^{l}}\left(2^{2 l+2}-2^{2 l}\right) \\
& =64+48 \sum_{l=0}^{\infty} 2^{-2^{l}} 2^{2 l},
\end{aligned}
$$

for which

$$
K_{1,2}=14.006 \ldots
$$

In fact, the inequality is true with $K_{1,2}=\sqrt{2}=1.414 \ldots{ }^{5}$

[^3]
[^0]: ${ }^{1}$ Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 213, Theorem 11.3.
 ${ }^{2}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 152, Lemma 4.49.

[^1]: ${ }^{3}$ Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 214, Lemma 11.4.

[^2]: ${ }^{4}$ Joe Diestel, Hans Jarchow, and Andrew Tonge, Absolutely Summing Operators, p. 211,

[^3]: ${ }^{5}$ R. Latała and K. Oleszkiewicz, On the best constant in the Khinchin-Kahane inequality, Studia Math. 109 (1994), no. 1, 101-104.

