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1 Watson’s lemma

Our proof of Watson’s lemma follows Miller.!

Theorem 1 (Watson’s lemma). Suppose that T > 0, that ¢ : R — C belongs to
LY([0,T7)), that o > —1, and that g(t) = t=7¢(t) is C> on some neighborhood
of 0. Then F : (0,00) — C defined by

T
F(\) = /O e Mp(t)dt

satisfies

A — 0.

> g(n)
g (O (c+n+1)
F(A) ~ Z:O nI o+n+1 ’

Proof. Take g to be C'°° on some interval with left endpoint < 0 and right
endpoint s, 0 < s < T. For p a nonnegative integer and A > 1, define

F,(\) = /0 e MotP L,

which satisfies, doing the change of variable 7 = At,

F,(\) = /0 e Mo tPar — / e MoTPdt

oo oo
= )\7(‘”7”“)/ 677—7'6+pd7'—/ e MNPy

0 s

= NP4 p+1) — / e MNPy,

IPeter D. Miller, Applied Asymptotic Analysis, p. 53, Proposition 2.1.



Using the Cauchy-Schwarz inequality,
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= e/ (20 +2p+ 1)V
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For any nonnegative integer m we have e~ *%/2 = o,,(A=(@+m+D)) as X — oo,
hence, dealing with T'(20 + 2p + 1) merely as a constant depending on p,

E,(\) = A" PO (6 4 p 4 1) + 0y p (AT OFMHD) (1)

as A — oo.
Write

s T
F()\):/ e**t¢(t)dt+/ e Mp(t)dt.
0 s
One the one hand,

/T e Mp(t)dt

S

T T
< [ e Mool <e [ sl < e ol

which shows that for any nonnegative integer n,

T
/ e M(t)dt = 0, (A7)

as A — 0o.
One the other hand, for each nonnegative integer N, Taylor’s theorem
tells us that the function ry : (r,s) — C defined by

N )
=90 -3 D e ),
n=0 .

satisfies | |N+1
t
(N+1) A B
(0] < suplg ™)

where the supremum is over those 7 strictly between 0 and ¢. Then for ¢ € (0, s),
tN+1

ry(t)] < su (N+1) .
@< s 9Ol



Using the definition of 7,

s s N g(n)(()) s
/ e Mo(t)dt = / MY MH/ e TNt
! 0
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and using the inequality for rx(t),

/e_’\tt”rN(t)dt’ < /e_’\tt"|rN(t)|dt
0 0
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Using this and (1),
/ e My (t)dt = O (AT (OHNF2),
0

Putting together what we have shown, for any nonnegative integer N, as
A — 00,

N om0
F(\) = Z 9 n'( )Fn()\)+ON()\—(U+N+2))+ON()\—(U+N+2))
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which proves the claim. O

2 Laplace’s method for an interval

Theorem 2. Suppose that a < b, that f € C?%([a,b],R), and that there is a
unique o € [a,b] at which f is equal to its supremum over [a,b]. Suppose also
that a < xg < b and that f"(z¢) < 0. Then

b
a - 0

as M — oo.



Proof. We remark first that f/'(z¢) = 0 because f is equal to its supremum over
[a,b] at this point, which is not a boundary point. The claim says that a ratio
has limit 1 as M — oco. We shall prove that the liminf and the limsup of this
ratio are both 1, which will prove the claim. Let € > 0. Because f” : [a,b] — R is
continuous, there is some § > 0 such that |z —x¢| < § implies [/ (z) > f"(z¢)—¢;
we take § small enough that (zg — 9,20 + 0) C [a,b]. Writing

f@) = f(zo) + f'(wo)(x — wo) + Ra(x) = f(zo) + Ra(z), @ € [a,b],

Taylor’s theorem tells us that for each x € [a, b] there is some &, strictly between
zo and = such that

Ri@) = T8 oy
Thus for |x — x¢| < & we have |§, — o] < J, so
£(0) 2 flao) + T = a2

Using this inequality, which applies for any = € (xg — J, ¢ + ), and because
the integrand in the following integral is positive,
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Changing variables, keeping in mind that f”(zq) < 0,
zo+6 v =L ) 5y M= £ (IOHE _f//( ) + —1/2
e M=t @mw0)® gy = v (LT e dy.
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Thus

/2 (2)

is lower bounded by

—f"(w0) + € U2y tEgee
SN R e

so we get that the liminf of (2) as M — oo is lower bounded by

() v

v dy,



But this is true for all ¢ > 0 and (2) and its liminf do not depend on ¢, so the
liminf of (2) as M — oo is lower bounded by /7. In other words,

[P eMIi@) gy
lim inf &

M—co oM f(0) (71\/[)2*;(%))*1/2 =

Let € > 0 with f”(zo) + € < 0; this is possible because f”(z() < 0. Because
f" :[a,b] = R is continuous there is some § > 0 such that |x — x| < § implies
that f"(z) < f"(xo) + €; we take (xg — d,x0 + ) C [a,b]. Taylor’s theorem tells
us that for any x € [a, b] there is some &, strictly between zy and = such that

7o) = flao) + L g2

Therefore, as |z — xo| < § implies that |§, — xo| < I,

f"(w0) + ¢

5 (x — x0)% (3)

f(@) < flxo) +

Furthermore, f : [a,b] — R is continuous, so it makes sense to define

C= sup f(z).
z€la,x9—08]U[zo+3,b]

Because xp is not in this union of intervals, by hypothesis we know that C' <
f(zo), and we define n = f(x9) — C > 0. This means that for all = € [a,xo —
O U [zo + 6,0], f(z) < f(xg) —n. Then

b 1'0—6 xg-'r(; b
/ eMI@) gy = / er(””)dx—i—/ er(I)d;L‘—f—/ M) qq
a a ro—9 zo+0

1'0—6 $0+(5 b
/ eMCdx—I—/ eM (@) g +/ eMC dy
a To—0 zo+9

IA

l()-’r(;
= (b—a—25)eMC—|—/ eMI@) g

J)o—5
;c0+6
< (b—a)eM + / M@ g,
I0—6
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Changing variables, and keeping in mind that f”(zg) + ¢ < 0,

—-1/2

o o0 M
/ MG (@ —w0)? g / eV’ (—2(f//(370)+€)) dy

_ - (ﬁ(f“@o) +e>)1/2.

Therefore
b —-1/2
M(a) MC | Mf(wo) (_ M pn
/ e dr < (b—a)e™" +e (_27r(f (xo)—i—e)) ,

which we rearrange as

[P eMI@) gy
MFen) (—3L(f"(x0) +€))

1/2
7 < G- (<) ) L

As M — oo the first term on the right-hand side tends to 0, because n > 0.
Therefore,

. [P eMIi@dy
lim sup @ —i73 <1
Moo eMI(@o) (—Z1(f"(20) +€))
This is true for all € > 0, so it holds that
_ f: eMF@) dg
lim sup —iz S 1,
M—=oo M f(x0) (#;(Io))
completing the proof. O



