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1 o-algebras and semirings

If X is a nonempty set, an algebra of sets on X is a collection & of subsets of X
such that if {A;} C &7 is finite then | J; A; € o/, and if A € &7 then X \ A € &/.
An algebra 7 is called a o-algebra if {A;} C & being countable implies that
U, 4i € #.

If X is a set and ¢ is a collection of subsets of X, we denote by o(¥)
the smallest o-algebra containing ¢, and we say that ¢(¥) is the o-algebra
generated by ¥.

Later we will also use the following notion. If X is a nonempty set, a
semiring of sets on X is a collection . of subsets of X such that (i) § € .7,
(ii) if A,B € . then AN B € ., and (iii) if A, B € .% then there are pairwise
disjoint S, ..., S, € . such that A\ B = J!_, S;; we do not demand that this
union itself belong to .. We remark that a semiring on X need not include X.

If . is a semiring of sets and pg : .7 — [0, 00|, we say that g is finitely ad-
ditive if {S;} C . being finite, pairwise disjoint, and satisfying | J; S; € . im-
plies that 10 (J; Si) = >, o(S;), and countably additive if {S;} C . being
countable, pairwise disjoint, and satisfying | J, S; € . implies that po (U, Si) =
> 10(Si). If ¢ is a collection of subsets of X, the algebra generated by ¥
is the smallest algebra containing ¢. We shall use the following lemma in the
proof of Lemma 10.

Lemma 1. If . is a semiring on a set X and X € .7, then the algebra
generated by & is equal to the collection of finite unions of members of ..

For a bounded countably additive function, the Carathéodory extension
theorem states the following.*

Theorem 2 (Carathéodory extension theorem). Suppose that X is a nonempty
set, that .7 is a semiring on X, and that pg : & — [0,1] is countably additive.
Then there is one and only one measure on o() whose restriction to ./ is
equal to pg.

1René L. Schilling, Measures, Integrals and Martingales, p. 37, Theorem 6.1. If we had
not specified that uo : . — [0, 1] but rather had talked about uo : . — [0, 00], then the
Carathéodory extension theorem shows that there is some extension of pg to o(.#), but this
extension need not be unique.



2 Product o-algebras

Suppose that X is a set, that {(Y;, #;) : ¢ € I} is a family of measurable spaces,
and that f; : X — Y; are functions. The smallest o-algebra on X such that
each f; is measurable is called the o-algebra generated by {f; :i € I}. This
is analogous to the initial topology induced by a family of functions on a set.
Calling this o-algebra .# and supposing that o(¥;) = #; for each ¢ € I, we
check then that

M=0c({f7(A):icl,Ac¥}). (1)

Suppose that {(X;, #;) : i € I} is a family of measurable spaces. Let

x =[x,

icl

the cartesian product of the sets X;, and let ; : X — X be the projection maps.
The product c-algebra on X is the o-algebra .# generated by {m; : i € I},

and is denoted
M= ® M.
iel
This is analogous to the product topology on a cartesian product of topological
spaces, which has the initial topology induced by the family of projection maps.
For H C I, we define
Xp =[] X

i€H
Thus, X; = X and Xy = {0}, and for G C H,

XHZXG XXH\G.

For H C I, let
My = Q) A,
icH
the product o-algebra on Xg. Thus, .#; = # and A4y = {0,{0}}, and for
G C H we have
My = Ma @ M-

For G C H, we define Py : Xy — X¢g to be the projection map: an
element of Xz is a function x on H such that x(i) € X; for all 4 € H, and
Py () is the restriction of z to G.

Lemma 3. For G C H, Py : (Xu, #u) — (Xg, #c) is measurable.

If Fis a finite subset of I and A € #F, we call A X Xpp € 4 an F-
cylinder set. Cylinder sets for the product o-algebra are analogous to the
usual basic open sets for the product topology.

Lemma 4. The collection of all cylinder sets is an algebra of sets on [];; X,
and this collection generates the product o-algebra @ ;¢ ;.



The product o-algebra can in fact be generated by a smaller collection of sets.
(The following collection of sets is not a minimal collection of sets that generates
the product o-algebra, but it is smaller than the collection of all cylinder sets
and it has the structure of a semiring, which will turn out to be useful.) An
intersection of finitely many sets of the form A x .#p\ (), A € A, is called a
product cylinder.

Lemma 5. The collection of all product cylinders is a semiring of sets on
[1;c; Xi, and this collection generates the product o-algebra @, A;.

3 Borel o-algebras

If (X, 7) is a topogical space, the Borel o-algebra on X is o(7), and is denoted
PBx. A member of By is called a Borel set.

Lemma 6. If X is a topological space and & is a countable subbasis for the
topology of X, then
Bx = O’(g)

A separable metrizable space is second-countable, so we can apply the fol-
lowing theorem to such spaces.

Theorem 7. Suppose that X;, i € N, are second-countable topological spaces

and let X = [],cn Xi, with the product topology. Then

Bx = Q) PBx,.

€N

Proof. For each i € N, let ¢; be a countable subbasis for the topology of Xj.
Because ¥; is a subbasis for the topology of X; for each i, we check that ¢ is a
subbasis for the product topology of X, where

G = {n Y (A) i eN,Ac ).

Because each ¥, is countable and N is countable, ¢ is countable. Hence by
Lemma 6,

Bx = O’(g)
On the other hand, for each ¢ € N we have by Lemma 6 that Bx, = 0(¥;), and
so by (1),
X 2x, = o(9).

ieN



4 Product measures

If {(X;, #;, p1;) : 1 < i < n} are o-finite measure spaces, let X =[], X; and
M = Q. M;. Tt is a fact that there is a unique measure p on .# such that

for Ai S -/fi,
p <H Ai) = [T raa0),
=1 =1

and p is a o-finite measure. We write p = []'_, ; and call p the product

measure.?

5 Compact classes

If X is a set and % is a collection of subsets of X, we say that % is a compact
class if every countable subset of ¥ with the finite intersection property has
nonempty intersection. We remind ourselves that a collection & of sets is said to
have the finite intersection property if for any finite subset .# of & we have
Nacsz A # 0. Usually one speaks about a collection of sets having the finite
intersection property in the following setting: A topological space Y is compact
if and only if every collection of closed sets that has the finite intersection
property has nonempty intersection.

We will employ the following lemma in the proof of the Kolmogorov extension
theorem.?

Lemma 8. Suppose that €° is a compact class of subsets of a set X and let €
be the collection of countable intersections of finite unions of members of €.
€ is the smallest collection of subsets of X containing €° that is closed under
finite unions and countable intersections, and € is itself a compact class.

We state the following result that gives conditions under which a finitely
additive functions on an algebra of sets is in fact countably additive,* and then
use it to prove an analogous result for semirings.

Lemma 9. Suppose that <7 is an algebra of sets on a set X, and that po : & —
[0,00) is finitely additive and po(X) < oo. If there is a compact class € C o
such that

to(A) = sup{po(C) : C € € and C C A}, Aed,
then po is countably additive.

The following lemma gives conditions under which a finitely additive function
on a semiring of sets is in fact countably additive.’

2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., pp. 6465, and p. 31, Theorem 1.14.

3V. I. Bogachev, Measure Theory, volume I, p. 50, Proposition 1.12.4.

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 378, Theorem 10.13.

5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 521, Lemma 15.25.



Lemma 10. Suppose that .7 is a semiring of sets on X with X € . and that
o : L — [0,00) is finitely additive and po(X) < co. If there is a compact class
€ C & such that

po(A) = sup{uo(C) : C € € and C C A}, Ae s,
then g is a countably additive.

Proof. Let %, be the collection of finite unions of members of ¥. %, is a subset
of the compact class produced in Lemma 8, hence is itself a compact class. Let
&/ be the collection of finite unions of members of ., which by Lemma 1 is the
algebra generated by .. Because ¢ C .¥ C & and « is closed under finite
unions, it follows that €, C <.

Because .7 is a semiring, it is a fact that if Ay,...,A,, A € &, then there
are pairwise disjoint Sy, ...,S, € . such that A\ U, 4; = U~ 5;.% Thus,
if Aj,..., A, € .7, defining E; = A; \ J'Z} 4;, with E; = A, \ § = Ay, the

=

sets F1,..., E, are pairwise disjoint, and for each ¢ there are pairwise disjoint
Sity--.ySia;, € such that E; = U;lzl Sij. Then the sets S, ;, 1 < i < n,

1 < j < a; are pairwise disjoint and their union is equal to |J!_; A;. This shows
that any element of o/ can be written as a union of pairwise disjoint elements
of .&.

Furthermore, because . is a semiring, if Ay,..., Ay € ¥, there are pairwise
disjoint S1,...,Sk € % such that for each 1 < i < k there is some 1 <n < N
such that S; € A,, and for each 1 < n < N, there is a subset F C {1,...,k}
such that A, = J;cp S;.7

Let F € o/ and suppose that F = ngl A,, where Ay,..., Ay € . are
pairwise disjoint, and that £ = U%Zl By, where By, ..., By € . are pairwise
disjoint. There are pairwise disjoint Sy, ..., S € . such that foreach 1 <i <k
there is some 1 < n < N or 1 < m < M such that, respectively, S; € A, or
S; € By, and for each 1 < n < N there is some subset F' C {1,...,k} such that
An = U;ep Si, and for each 1 < m < M there is some subset F' C {1,...,k}

such that B, = (J;cr Si. It follows that ' = Ule S;, and because g is finitely
additive,

N k M
> no(An) = po(Si) = p1o(Bum).-
n=1 =1 m=1

Therefore, for E € o/ it makes sense to define
p(E) =" po(4y),
n=1

where Aq, ..., A, are pairwise disjoint elements of . whose union is equal to
E. Also, p(X) = po(X) < o0.

6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 134, Lemma 4.7.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 134, Lemma 4.8.



We shall now show that the function u : &/ — [0,00) is finitely additive.
If E1,...,En € & are pairwise disjoint, for each n there are pairwise disjoint
Api,..., Ana, € such that E, = U?ll A, ;, and there are pairwise disjoint
S1,..., Sk € % such that for each 1 < i < k, there is some 1 < n < N and some
1 <j < ay such that S; € A, 5, and for each 1 <n < N and each 1 < j < a,
there is some subset F' C {1,...,k} such that A, ; = J,cp Si. It follows that

Ui:le E, = Uf:l S;, and

N k k N an N
W (U En> = U (U SZ-) = Zﬂo(Si) = ZZNO(An,j) = ZN(ETL)»
n=1 i=1 i=1 n=1

n=1j=1

showing that p is finitely additive.

For E = J;_, A; € & with pairwise disjoint A;,..., 4, € .7, let € > 0, and
for each 1 <i < nlet C; € € with puo(C;) > po(A;) + & and C; C A;. Then
C=U,C; €%, As Ay,..., A, are pairwise disjoint and C; C 4;, Cy,...,C,
are pairwise disjoint, so because p is finitely additive on 7,

p(C) = 3o u(C) =Y po(C) > Y (mo(Ad) + =) = p(B) + .

Lemma 9 tells us now that p: & — [0,00) is countably additive, and therefore
Lo, its restriction to the semiring .¥, is countably additive. O

6 Kolmogorov consistent families

Suppose that {(X;,.#;) : i € I} is a family of measurable spaces. The collection
D of all finite subsets of I, ordered by set inclusion, is a directed set. Suppose
that for each F' € D, pp is a probability measure on .#r; we defined the
notation .Zr in §2 and we use that here. We say that the family of measures
{pr : F € D} is Kolmogorov consistent if whenever F,G € D with F C G,
it happens that Pg r, g = pr, where f,u denotes the pushforward of u
by f, ie. fip = po f~1. It makes sense to talk about Pg r, e because
Por: (Xg, #s) — (Xp, #r) is measurable, as stated in Lemma 3.

We are now prepared to prove the Kolmogorov extension theorem.?

Theorem 11 (Kolmogorov extension theorem). Suppose that {(X;, #;) : i € I}
18 a family of measurable spaces and suppose that for each F € D, up is a
probability measure on My. If the family of probability measures {up : F € D}
is Kolmogorov consistent and if for each i € I there is a compact class €; C M;
satisfying

wi(A) = sup{u;(C) : C € € and C C A}, A e ;, (2)

then there is a unique probability measure on M1 such that for each F € D, the
pushforward of v by the projection map Pr r: X1 — XF is equal to up.

8Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 522, Theorem 15.26.



Proof. Define
¢V = {C X X[\{Z} e l,C e %}

We shall show that € is a compact class. Suppose
{Cn X X[\{in} n e N7Cn S ngn} C ch

has empty intersection. For each ¢ € I, let

Qi: m Cna

in=1

and if there are no such 4,, then Q); = X;. Then

ﬂ Cn X Xn\{in) = HQi-

neN iel

Because this intersection is equal to (), one of the factors in the product is equal
to (. (For some purposes one wants to keep track of where the axiom of choice
is used, so we mention that concluding that some factor of any empty cartesian
product is itself empty is equivalent to the axiom of choice). No X; is empty, so
this empty @); must be of the form ﬂiﬂ _,; Cp, for which at least one i,, is equal to
i. But if i,, = i then C, € €, and because %, is a compact class, ﬂin:i C,=0
implies that there are finitely many aq, ..., ay such that ﬂszl C,, = 0, and this
yields ﬂN Ca, X XN\ {iy,} = (). We have thus proved that if an intersection of

n=1

countably many members of € is empty then some intersection of finitely many
of these is empty, showing that € is a compact class. Let €' be the smallest
collection of subsets of X; containing % that is closed under finite unions and
countable intersections, and by Lemma 8 we know that ¢! is a compact class;
we use the notation @' because presently we will use a subset of €.

Let 2 be the collection of all cylinder sets of the product o-algebra ..
Explicitly,

JZ{:{AXX]\FZFGD,Ag.%F}.

Suppose F,G € D, F C G, A€ Mr,B € Mg, and that Ax Xp\p = Bx Xpg-
It follows that B = A x X¢\F, and then using Pg r,pic = pr we get

p6(B) = na(A x Xevr) = pa(Pg p(A)) = pr(A).
Therefore it makes sense to define yg : &7 — [0, 1] as follows: for Ax X\ p € &,
po(A x XI\F) = ur(A).

Let Fy,...,F, € D and Ay € Mr,,..., A, € MF,, and suppose that A; x
Xnpys-o An X Xp\p, € 9 are pairwise disjoint. With F = {Jj_, Fj € D,

n

U4 x Xne = (U4 x Xpw, | x Xne,

j=1 j=1



which is an F-cylinder set. Then,

Ko U A x Xpnr | = pr U Aj X Xp\F,

j=1 j=1

= > ur(A; x Xppy)

j=1

= ZMO(AJ' x X1\F;)s
j=1

showing that pg : &7 — [0,1] is finitely additive.
Let & be the collection of all product cylinder sets of the product o-algebra
M. Explicitly,

g:{mAi><XI\{Z-}:FED,andAie%foriEF}.
i€l

It is apparent that €0 C 4. Let € be the intersection of €' and 4. A subset
of a compact class is a compact class, so % is a compact class, and €° C €.
Suppose that E € ¢: there is some F' € D and A; € .#; for each i € F such

that
E = m Az X X]\{l} = (H A,) X XI\F~

i€l iEF
Take n = |F|, and let € > 0. Then, for each i € F, by (2) there is some C; € &;
such that C; C A; and p;(A;) < pi(Cy) + £, and we set

C = m Cz XXI\{'L} = (HCZ> ><‘XPI\Fv

i€l i€l

which is a finite intersection of members of ¢° and hence belongs to ¢!, and
which visibly belongs to ¢, and hence belongs to €. We have

E\NC = U(Ai\ci)x H Aj | xXnr

icF JEF\{i}

c (JMi\C) x Xy

i€l

Both E'\ C and the above union are cylinder sets so it makes sense to apply pg



to them, and because py is finitely additive,

po(E\C) < z;wuo((Ai\Ci)XXI\{i})
= iui(Ai\Cz’)
- g:,ui(Ai)_/-‘i(O’i)
7

Hence po(E) — p1o(C) = uo(E\ C) < ¢, ie. po(E) < puo(C) + e. Thus, we
have proved that for each ¢ > 0, there is some C € € such that C C E and
po(E) < po(C) + €, which means that

1o(E) = sup{uo(C): C € € and C C E}.

Using the restriction of g : &7 — [0, 1] to the semiring ¢ and the compact class
%, the conditions of Lemma 10 are satisfied, and therefore the restriction of pyg
to ¢ is countably additive.

By Lemma 5, #; = 0(¥). Because the restriction of o to the semiring ¥
is countably additive, we can apply the Carathéodory extension theorem, which
tells us that there is a unique measure p on o(¥) = .#; whose restriction to ¢
is equal to the restriction of pg to ¢¥. Check that the restriction of u to o is
equal to pg. For F € D and A € 4,

Prp u(A) = p(Pp p(A)) = p(A x Xp\p) = no(A x Xpr) = pr(4),

showing that P; p_p = pp. Certainly p(X7) = 1, namely, u is a probability
measure. If v is a probability measure on X; whose pushforward by P; r is equal
to pp for each F' € D, then check that the restriction of v to ¢ is equal to the
restriction of g to ¢4, and then by the assertion of uniqueness in Carathéodory’s
theorem, v = pu, completing the proof. O

If X is a Hausdorff space, we say that a Borel measure g on X is tight if
for every A € Bx,

w(A) = sup{p(K) : K is compact and K C A}.

A Polish space is a topological space that is homeomorphic to a complete
separable metric space, and it is a fact that a finite Borel measure on a Polish
space is tight.? In particular, any Borel probability measure on a Polish space
is tight. We use this in the proof of the following version of the Kolmogorov
extension theorem, which applies for instance to the case where X; = R for each
i € I, with I any index set.

9Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 438, Theorem 12.7.



Corollary 12. Suppose that {X; : i € I} is a family of Polish spaces and
suppose that for each F' € D, up is a Borel probability measure on Xg. If the
family of measures {ur : F € D} is Kolmogorov consistent, then there is a
unique probability measure on M1 = Q,;c; $x, such that for each F € D, the
pushforward of v by the projection map Pr g : X; — Xp is equal to pp.

Proof. For each i € I, let %; be the collection of all compact subsets of X;. In
any topological space, check that a collection of compact sets is a compact class.
The fact that u; is a Borel probability measure on a Polish space then implies
that it is tight, which we can write as

wi(A) =sup{p;(C) : K € 6, and K C A}, Ae ;.
Therefore the conditions of Theorem 11 are satisfied, so the claim follows. [J

If the index set I in the above corollary is countable, then by Theorem 7
the product o-algebra ), ; #x, is equal to the Borel o-algebra of the product
[1,cr X, so that the probability measure p on the product o-algebra is in this
case a Borel measure.

10



