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1 σ-algebras and semirings

If X is a nonempty set, an algebra of sets on X is a collection A of subsets of X
such that if {Ai} ⊂ A is finite then

⋃
i Ai ∈ A , and if A ∈ A then X \A ∈ A .

An algebra A is called a σ-algebra if {Ai} ⊂ A being countable implies that⋃
i Ai ∈ A .
If X is a set and G is a collection of subsets of X, we denote by σ(G )

the smallest σ-algebra containing G , and we say that σ(G ) is the σ-algebra
generated by G .

Later we will also use the following notion. If X is a nonempty set, a
semiring of sets on X is a collection S of subsets of X such that (i) ∅ ∈ S ,
(ii) if A,B ∈ S then A ∩B ∈ S , and (iii) if A,B ∈ S then there are pairwise
disjoint S1, . . . , Sn ∈ S such that A \B =

⋃n
i=1 Si; we do not demand that this

union itself belong to S . We remark that a semiring on X need not include X.
If S is a semiring of sets and µ0 : S → [0,∞], we say that µ0 is finitely ad-

ditive if {Si} ⊂ S being finite, pairwise disjoint, and satisfying
⋃

i Si ∈ S im-
plies that µ0 (

⋃
i Si) =

∑
i µ0(Si), and countably additive if {Si} ⊂ S being

countable, pairwise disjoint, and satisfying
⋃

i Si ∈ S implies that µ0 (
⋃

i Si) =∑
i µ0(Si). If G is a collection of subsets of X, the algebra generated by G

is the smallest algebra containing G . We shall use the following lemma in the
proof of Lemma 10.

Lemma 1. If S is a semiring on a set X and X ∈ S , then the algebra
generated by S is equal to the collection of finite unions of members of S .

For a bounded countably additive function, the Carathéodory extension
theorem states the following.1

Theorem 2 (Carathéodory extension theorem). Suppose that X is a nonempty
set, that S is a semiring on X, and that µ0 : S → [0, 1] is countably additive.
Then there is one and only one measure on σ(S ) whose restriction to S is
equal to µ0.

1René L. Schilling, Measures, Integrals and Martingales, p. 37, Theorem 6.1. If we had
not specified that µ0 : S → [0, 1] but rather had talked about µ0 : S → [0,∞], then the
Carathéodory extension theorem shows that there is some extension of µ0 to σ(S ), but this
extension need not be unique.
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2 Product σ-algebras

Suppose that X is a set, that {(Yi,Mi) : i ∈ I} is a family of measurable spaces,
and that fi : X → Yi are functions. The smallest σ-algebra on X such that
each fi is measurable is called the σ-algebra generated by {fi : i ∈ I}. This
is analogous to the initial topology induced by a family of functions on a set.
Calling this σ-algebra M and supposing that σ(Gi) = Mi for each i ∈ I, we
check then that

M = σ
(
{f−1

i (A) : i ∈ I, A ∈ Gi}
)
. (1)

Suppose that {(Xi,Mi) : i ∈ I} is a family of measurable spaces. Let

X =
∏
i∈I

Xi,

the cartesian product of the setsXi, and let πi : X → Xi be the projection maps.
The product σ-algebra on X is the σ-algebra M generated by {πi : i ∈ I},
and is denoted

M =
⊗
i∈I

Mi.

This is analogous to the product topology on a cartesian product of topological
spaces, which has the initial topology induced by the family of projection maps.

For H ⊂ I, we define

XH =
∏
i∈H

Xi.

Thus, XI = X and X∅ = {∅}, and for G ⊂ H,

XH = XG ×XH\G.

For H ⊂ I, let

MH =
⊗
i∈H

Mi,

the product σ-algebra on XH . Thus, MI = M and M∅ = {∅, {∅}}, and for
G ⊂ H we have

MH = MG ⊗ MH\G.

For G ⊂ H, we define PH,G : XH → XG to be the projection map: an
element of XH is a function x on H such that x(i) ∈ Xi for all i ∈ H, and
PH,G(x) is the restriction of x to G.

Lemma 3. For G ⊂ H, PH,G : (XH ,MH) → (XG,MG) is measurable.

If F is a finite subset of I and A ∈ MF , we call A × XI\F ∈ M an F -
cylinder set. Cylinder sets for the product σ-algebra are analogous to the
usual basic open sets for the product topology.

Lemma 4. The collection of all cylinder sets is an algebra of sets on
∏

i∈I Xi,
and this collection generates the product σ-algebra

⊗
I∈I Mi.
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The product σ-algebra can in fact be generated by a smaller collection of sets.
(The following collection of sets is not a minimal collection of sets that generates
the product σ-algebra, but it is smaller than the collection of all cylinder sets
and it has the structure of a semiring, which will turn out to be useful.) An
intersection of finitely many sets of the form A × MI\{t}, A ∈ Mt, is called a
product cylinder.

Lemma 5. The collection of all product cylinders is a semiring of sets on∏
i∈I Xi, and this collection generates the product σ-algebra

⊗
i∈I Mi.

3 Borel σ-algebras

If (X, τ) is a topogical space, the Borel σ-algebra on X is σ(τ), and is denoted
BX . A member of BX is called a Borel set.

Lemma 6. If X is a topological space and G is a countable subbasis for the
topology of X, then

BX = σ(G ).

A separable metrizable space is second-countable, so we can apply the fol-
lowing theorem to such spaces.

Theorem 7. Suppose that Xi, i ∈ N, are second-countable topological spaces
and let X =

∏
i∈N Xi, with the product topology. Then

BX =
⊗
i∈N

BXi .

Proof. For each i ∈ N, let Gi be a countable subbasis for the topology of Xi.
Because Gi is a subbasis for the topology of Xi for each i, we check that G is a
subbasis for the product topology of X, where

G = {π−1
i (A) : i ∈ N, A ∈ Gi}.

Because each Gi is countable and N is countable, G is countable. Hence by
Lemma 6,

BX = σ(G ).

On the other hand, for each i ∈ N we have by Lemma 6 that BXi
= σ(Gi), and

so by (1), ⊗
i∈N

BXi
= σ(G ).
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4 Product measures

If {(Xi,Mi, µi) : 1 ≤ i ≤ n} are σ-finite measure spaces, let X =
∏n

i=1 Xi and
M =

⊗n
i=1 Mi. It is a fact that there is a unique measure µ on M such that

for Ai ∈ Mi,

µ

(
n∏

i=1

Ai

)
=

n∏
i=1

µi(Ai),

and µ is a σ-finite measure. We write µ =
∏n

i=1 µi and call µ the product
measure.2

5 Compact classes

If X is a set and C is a collection of subsets of X, we say that C is a compact
class if every countable subset of C with the finite intersection property has
nonempty intersection. We remind ourselves that a collection E of sets is said to
have the finite intersection property if for any finite subset F of E we have⋂

A∈F A ̸= ∅. Usually one speaks about a collection of sets having the finite
intersection property in the following setting: A topological space Y is compact
if and only if every collection of closed sets that has the finite intersection
property has nonempty intersection.

We will employ the following lemma in the proof of the Kolmogorov extension
theorem.3

Lemma 8. Suppose that C 0 is a compact class of subsets of a set X and let C
be the collection of countable intersections of finite unions of members of C 0.
C is the smallest collection of subsets of X containing C 0 that is closed under
finite unions and countable intersections, and C is itself a compact class.

We state the following result that gives conditions under which a finitely
additive functions on an algebra of sets is in fact countably additive,4 and then
use it to prove an analogous result for semirings.

Lemma 9. Suppose that A is an algebra of sets on a set X, and that µ0 : A →
[0,∞) is finitely additive and µ0(X) < ∞. If there is a compact class C ⊂ A
such that

µ0(A) = sup{µ0(C) : C ∈ C and C ⊂ A}, A ∈ A ,

then µ0 is countably additive.

The following lemma gives conditions under which a finitely additive function
on a semiring of sets is in fact countably additive.5

2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., pp. 64–65, and p. 31, Theorem 1.14.

3V. I. Bogachev, Measure Theory, volume I, p. 50, Proposition 1.12.4.
4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 378, Theorem 10.13.
5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 521, Lemma 15.25.
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Lemma 10. Suppose that S is a semiring of sets on X with X ∈ S and that
µ0 : S → [0,∞) is finitely additive and µ0(X) < ∞. If there is a compact class
C ⊂ S such that

µ0(A) = sup{µ0(C) : C ∈ C and C ⊂ A}, A ∈ S ,

then µ0 is a countably additive.

Proof. Let Cu be the collection of finite unions of members of C . Cu is a subset
of the compact class produced in Lemma 8, hence is itself a compact class. Let
A be the collection of finite unions of members of S , which by Lemma 1 is the
algebra generated by S . Because C ⊂ S ⊂ A and A is closed under finite
unions, it follows that Cu ⊂ A .

Because S is a semiring, it is a fact that if A1, . . . , An, A ∈ S , then there
are pairwise disjoint S1, . . . , Sm ∈ S such that A \

⋃n
i=1 Ai =

⋃m
i=1 Si.

6 Thus,

if A1, . . . , An ∈ S , defining Ei = Ai \
⋃i−1

j=1 Aj , with E1 = A1 \ ∅ = A1, the
sets E1, . . . , En are pairwise disjoint, and for each i there are pairwise disjoint
Si,1, . . . , Si,ai

∈ S such that Ei =
⋃ai

j=1 Si,j . Then the sets Si,j , 1 ≤ i ≤ n,

1 ≤ j ≤ ai are pairwise disjoint and their union is equal to
⋃n

i=1 Ai. This shows
that any element of A can be written as a union of pairwise disjoint elements
of S .

Furthermore, because S is a semiring, if A1, . . . , AN ∈ S , there are pairwise
disjoint S1, . . . , Sk ∈ S such that for each 1 ≤ i ≤ k there is some 1 ≤ n ≤ N
such that Si ∈ An, and for each 1 ≤ n ≤ N , there is a subset F ⊂ {1, . . . , k}
such that An =

⋃
i∈F Si.

7

Let E ∈ A and suppose that E =
⋃N

n=1 An, where A1, . . . , AN ∈ S are

pairwise disjoint, and that E =
⋃M

m=1 Bm, where B1, . . . , BM ∈ S are pairwise
disjoint. There are pairwise disjoint S1, . . . , Sk ∈ S such that for each 1 ≤ i ≤ k
there is some 1 ≤ n ≤ N or 1 ≤ m ≤ M such that, respectively, Si ∈ An or
Si ∈ Bm, and for each 1 ≤ n ≤ N there is some subset F ⊂ {1, . . . , k} such that
An =

⋃
i∈F Si, and for each 1 ≤ m ≤ M there is some subset F ⊂ {1, . . . , k}

such that Bm =
⋃

i∈F Si. It follows that E =
⋃k

i=1 Si, and because µ0 is finitely
additive,

N∑
n=1

µ0(An) =

k∑
i=1

µ0(Si) =

M∑
m=1

µ0(Bm).

Therefore, for E ∈ A it makes sense to define

µ(E) =

n∑
n=1

µ0(Ai),

where A1, . . . , An are pairwise disjoint elements of S whose union is equal to
E. Also, µ(X) = µ0(X) < ∞.

6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 134, Lemma 4.7.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 134, Lemma 4.8.
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We shall now show that the function µ : A → [0,∞) is finitely additive.
If E1, . . . , EN ∈ A are pairwise disjoint, for each n there are pairwise disjoint
An,1, . . . , An,an

∈ S such that En =
⋃an

j=1 An,j , and there are pairwise disjoint
S1, . . . , Sk ∈ S such that for each 1 ≤ i ≤ k, there is some 1 ≤ n ≤ N and some
1 ≤ j ≤ an such that Si ∈ An,j , and for each 1 ≤ n ≤ N and each 1 ≤ j ≤ an
there is some subset F ⊂ {1, . . . , k} such that An,j =

⋃
i∈F Si. It follows that⋃N

n=1 En =
⋃k

i=1 Si, and

µ

(
N⋃

n=1

En

)
= µ

(
k⋃

i=1

Si

)
=

k∑
i=1

µ0(Si) =

N∑
n=1

an∑
j=1

µ0(An,j) =

N∑
n=1

µ(En),

showing that µ is finitely additive.
For E =

⋃n
i=1 Ai ∈ A with pairwise disjoint A1, . . . , An ∈ S , let ϵ > 0, and

for each 1 ≤ i ≤ n let Ci ∈ C with µ0(Ci) > µ0(Ai) +
ϵ
n and Ci ⊂ Ai. Then

C =
⋃n

i=1 Ci ∈ Cu. As A1, . . . , An are pairwise disjoint and Ci ⊂ Ai, C1, . . . , Cn

are pairwise disjoint, so because µ is finitely additive on A ,

µ(C) =

n∑
i=1

µ(Ci) =

n∑
i=1

µ0(Ci) >

n∑
i=1

(
µ0(Ai) +

ϵ

n

)
= µ(E) + ϵ.

Lemma 9 tells us now that µ : A → [0,∞) is countably additive, and therefore
µ0, its restriction to the semiring S , is countably additive.

6 Kolmogorov consistent families

Suppose that {(Xi,Mi) : i ∈ I} is a family of measurable spaces. The collection
D of all finite subsets of I, ordered by set inclusion, is a directed set. Suppose
that for each F ∈ D, µF is a probability measure on MF ; we defined the
notation MF in §2 and we use that here. We say that the family of measures
{µF : F ∈ D} is Kolmogorov consistent if whenever F,G ∈ D with F ⊂ G,
it happens that PG,F ∗µG = µF , where f∗µ denotes the pushforward of µ
by f , i.e. f∗µ = µ ◦ f−1. It makes sense to talk about PG,F ∗µG because
PG,F : (XG,MG) → (XF ,MF ) is measurable, as stated in Lemma 3.

We are now prepared to prove the Kolmogorov extension theorem.8

Theorem 11 (Kolmogorov extension theorem). Suppose that {(Xi,Mi) : i ∈ I}
is a family of measurable spaces and suppose that for each F ∈ D, µF is a
probability measure on MF . If the family of probability measures {µF : F ∈ D}
is Kolmogorov consistent and if for each i ∈ I there is a compact class Ci ⊂ Mi

satisfying

µi(A) = sup{µi(C) : C ∈ Ci and C ⊂ A}, A ∈ Mi, (2)

then there is a unique probability measure on MI such that for each F ∈ D, the
pushforward of µ by the projection map PI,F : XI → XF is equal to µF .

8Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 522, Theorem 15.26.
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Proof. Define
C 0 = {C ×XI\{i} : i ∈ I, C ∈ Ci}.

We shall show that C 0 is a compact class. Suppose

{Cn ×XI\{in} : n ∈ N, Cn ∈ Cin} ⊂ C 0

has empty intersection. For each i ∈ I, let

Qi =
⋂
in=i

Cn,

and if there are no such in, then Qi = Xi. Then⋂
n∈N

Cn ×XI\{in} =
∏
i∈I

Qi.

Because this intersection is equal to ∅, one of the factors in the product is equal
to ∅. (For some purposes one wants to keep track of where the axiom of choice
is used, so we mention that concluding that some factor of any empty cartesian
product is itself empty is equivalent to the axiom of choice). No Xi is empty, so
this empty Qi must be of the form

⋂
in=i Cn for which at least one in is equal to

i. But if in = i then Cn ∈ Ci, and because Ci is a compact class,
⋂

in=i Cn = ∅
implies that there are finitely many a1, . . . , aN such that

⋂N
n=1 Can

= ∅, and this

yields
⋂N

n=1 Can ×XI\{ian} = ∅. We have thus proved that if an intersection of
countably many members of C 0 is empty then some intersection of finitely many
of these is empty, showing that C 0 is a compact class. Let C 1 be the smallest
collection of subsets of XI containing C that is closed under finite unions and
countable intersections, and by Lemma 8 we know that C 1 is a compact class;
we use the notation C 1 because presently we will use a subset of C 1.

Let A be the collection of all cylinder sets of the product σ-algebra MI .
Explicitly,

A = {A×XI\F : F ∈ D,A ∈ MF }.

Suppose F,G ∈ D, F ⊂ G, A ∈ MF , B ∈ MG, and that A×XI\F = B×XI\G.
It follows that B = A×XG\F , and then using PG,F ∗µG = µF we get

µG(B) = µG(A×XG\F ) = µG(P
−1
G,F (A)) = µF (A).

Therefore it makes sense to define µ0 : A → [0, 1] as follows: for A×XI\F ∈ A ,

µ0(A×XI\F ) = µF (A).

Let F1, . . . , Fn ∈ D and A1 ∈ MF1
, . . . , An ∈ MFn

, and suppose that A1 ×
XI\F1

, . . . , An ×XI\Fn
∈ G are pairwise disjoint. With F =

⋃n
j=1 Fj ∈ D,

n⋃
j=1

Aj ×XI\Fj
=

 n⋃
j=1

Aj ×XF\Fj

×XI\F ,
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which is an F -cylinder set. Then,

µ0

 n⋃
j=1

Aj ×XI\Fj

 = µF

 n⋃
j=1

Aj ×XF\Fj


=

n∑
j=1

µF (Aj ×XF\Fj
)

=

n∑
j=1

µ0(Aj ×XI\Fj
),

showing that µ0 : A → [0, 1] is finitely additive.
Let G be the collection of all product cylinder sets of the product σ-algebra

MI . Explicitly,

G =

{⋂
i∈F

Ai ×XI\{i} : F ∈ D, and Ai ∈ Mi for i ∈ F

}
.

It is apparent that C 0 ⊂ G . Let C be the intersection of C 1 and G . A subset
of a compact class is a compact class, so C is a compact class, and C 0 ⊂ C .

Suppose that E ∈ G : there is some F ∈ D and Ai ∈ Mi for each i ∈ F such
that

E =
⋂
i∈F

Ai ×XI\{i} =

(∏
i∈F

Ai

)
×XI\F .

Take n = |F |, and let ϵ > 0. Then, for each i ∈ F , by (2) there is some Ci ∈ Ci

such that Ci ⊂ Ai and µi(Ai) < µi(Ci) +
ϵ
n , and we set

C =
⋂
i∈F

Ci ×XI\{i} =

(∏
i∈F

Ci

)
×XI\F ,

which is a finite intersection of members of C 0 and hence belongs to C 1, and
which visibly belongs to G , and hence belongs to C . We have

E \ C =

⋃
i∈F

(Ai \ Ci)×
∏

j∈F\{i}

Aj

×XI\F

⊂
⋃
i∈F

(Ai \ Ci)×XI\{i}.

Both E \C and the above union are cylinder sets so it makes sense to apply µ0
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to them, and because µ0 is finitely additive,

µ0(E \ C) ≤
∑
i∈F

µ0((Ai \ Ci)×XI\{i})

=
∑
i∈F

µi(Ai \ Ci)

=
∑
i∈F

µi(Ai)− µi(Ci)

<
∑
i∈F

ϵ

n

= ϵ.

Hence µ0(E) − µ0(C) = µ0(E \ C) < ϵ, i.e. µ0(E) < µ0(C) + ϵ. Thus, we
have proved that for each ϵ > 0, there is some C ∈ C such that C ⊂ E and
µ0(E) < µ0(C) + ϵ, which means that

µ0(E) = sup{µ0(C) : C ∈ C and C ⊂ E}.

Using the restriction of µ0 : A → [0, 1] to the semiring G and the compact class
C , the conditions of Lemma 10 are satisfied, and therefore the restriction of µ0

to G is countably additive.
By Lemma 5, MI = σ(G ). Because the restriction of µ0 to the semiring G

is countably additive, we can apply the Carathéodory extension theorem, which
tells us that there is a unique measure µ on σ(G ) = MI whose restriction to G
is equal to the restriction of µ0 to G . Check that the restriction of µ to A is
equal to µ0. For F ∈ D and A ∈ MF ,

PI,F ∗µ(A) = µ(P−1
I,F (A)) = µ(A×XI\F ) = µ0(A×XI\F ) = µF (A),

showing that PI,F ∗µ = µF . Certainly µ(XI) = 1, namely, µ is a probability
measure. If ν is a probability measure onXI whose pushforward by PI,F is equal
to µF for each F ∈ D, then check that the restriction of ν to G is equal to the
restriction of µ0 to G , and then by the assertion of uniqueness in Carathéodory’s
theorem, ν = µ, completing the proof.

If X is a Hausdorff space, we say that a Borel measure µ on X is tight if
for every A ∈ BX ,

µ(A) = sup{µ(K) : K is compact and K ⊂ A}.

A Polish space is a topological space that is homeomorphic to a complete
separable metric space, and it is a fact that a finite Borel measure on a Polish
space is tight.9 In particular, any Borel probability measure on a Polish space
is tight. We use this in the proof of the following version of the Kolmogorov
extension theorem, which applies for instance to the case where Xi = R for each
i ∈ I, with I any index set.

9Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 438, Theorem 12.7.
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Corollary 12. Suppose that {Xi : i ∈ I} is a family of Polish spaces and
suppose that for each F ∈ D, µF is a Borel probability measure on XF . If the
family of measures {µF : F ∈ D} is Kolmogorov consistent, then there is a
unique probability measure on MI =

⊗
i∈I BXi

such that for each F ∈ D, the
pushforward of µ by the projection map PI,F : XI → XF is equal to µF .

Proof. For each i ∈ I, let Ci be the collection of all compact subsets of Xi. In
any topological space, check that a collection of compact sets is a compact class.
The fact that µi is a Borel probability measure on a Polish space then implies
that it is tight, which we can write as

µi(A) = sup{µi(C) : K ∈ Ci and K ⊂ A}, A ∈ Mi.

Therefore the conditions of Theorem 11 are satisfied, so the claim follows.

If the index set I in the above corollary is countable, then by Theorem 7
the product σ-algebra

⊗
i∈I BXi

is equal to the Borel σ-algebra of the product∏
t∈T Xi, so that the probability measure µ on the product σ-algebra is in this

case a Borel measure.
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