The Kolmogorov continuity theorem, Holder
continuity, and the Kolmogorov-Chentsov
theorem

Jordan Bell
June 11, 2015

1 DModifications

Let (2, #, P) be a probability space, let I be a nonempty set, and let (E, &)
be a measurable space. A stochastic process with index set I and state
space E is a family (X;);es of random variables X; : (Q,.%) — (E,&). If X
and Y are stochastic processes, we say that X is a modification of Y if for
each t € I,

PlweQ: Xi(w) =Y (w)} =1.

Lemma 1. If X is a modification of Y, then X and Y have the same finite-
dimensional distributions.

Proof. For ty,...,t, € I,let A; € & for each 1 < i < n, and let

If w € A\ B then there is some ¢ for which w & Y;:I(Ai), and w € Xt_il(Ai) SO
X, (w) # Yy, (w). Therefore

AAB C O{w €N: Xy, (w) Y, (w)}

i=1

Because X is a modification of Y, the right-hand side is a union of finitely
many P-null sets, hence is itself a P-null set. A and B each belong to %, so
P(AAB) = 0.! Because P(AAB) =0, P(A) = P(B), i.e.

P(X:, € Ay,.... Xy € A,)=P(Y;, € 44,....1;, € Ap).

1We have not assumed that (92, #, P) is a complete measure space, so we must verify that
a set is measurable before speaking about its measure.



This implies that?
PuXy, @@ Xy,) = Pu(Yy, @2 @Y,

namely, X and Y have the same finite-dimensional distributions. O

2 Continuous modifications

Let E be a Polish space with Borel o-algebra &. A stochastic process (X;)ier.,
is called continuous if for each w € ), the path ¢t — X;(w) is continuous
RZO — F.

A dyadic rational is an element of

o0
D= U 277,
=0

The Kolmogorov continuity theorem gives conditions under which a
stochastic process whose state space is a Polish space has a continuous modifi-
cation.? This is like the Sobolev lemma,* which states that if f € H*(R?) and
s>k+ %7 then there is some ¢ € C*(R?) such that f = ¢ almost everywhere.
It does not make sense to say that an element of a Sobolev space is itself C*,
because elements of Sobolev spaces are equivalence classes of functions, but it
does make sense to say that there is a C* version of this element.

Theorem 2 (Kolmogorov continuity theorem). Suppose that (Q, .7, P, (X¢)ier,)
is a stochastic process with state space R®. If there are a, 3, ¢ > 0 such that

E(|Xe = Xs|%) <clt = s['*7, st € R, (1)
then the stochastic process has a continuous modification that itself satisfies (1).

Proof. Let 0 < v < § and let
d=p0—ay>0.
For m > 1, let S,,, be the set of all pairs (s,t) with
s, te{j27m:0< 5 < 2™},
and |s — t| = 27™. There are 2 - 2™ such pairs, i.e. |S,,| =2-2™. Let

An= |J {IX.-X|227" e 7.
(8,t)ESm

2http://individual .utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
3Heinz Bauer, Probability Theory, p. 335, Theorem 39.3. It was only after working through
the proof given by Bauer that I realized that the statement is true when the state space is a
Polish space rather than merely R, In the proof I do not use that |- | is a norm on R¢, and
only use that d(z,y) = |& — y| is a metric on R?, so it is straightforward to rewrite the proof.
4Walter Rudin, Functional Analysis, second ed., p. 202, Theorem 7.25.



For (s,t) € S, using Chebyshev’s inequality and (1) we get

P X — X,| 2 2777) < (27)"E(| X — X,|%)
< gaym C‘t _ S|1+5

_ C2a'ym2—m(1+,@)
< C2—m—57n.
Hence

P(An) < Y P{X.—X| =27 < Y 27T =2¢. 270,
(5,t)ESm (s,t)ESm

Because ), P(A,,) < oo, the Borel-Cantelli lemma tells us that
P (ﬂ U Am> = P(Np) =0,
n=1m=n

where for each w € Q\ Ny there is some mg(w) such that w ¢ A, when
m > mg(w). That is, for w € Q\ Ny there is some mg(w) such that

| Xt (w) — Xs(w)| < 277, m > mo(w), (s,t) € Sp. (2)
Now let w € Q\ Ny and let s,t¢ € [0, 1] be dyadic rationals satisfying
0<|s—t] <27mo)
Let m = m(s,t) be the greatest integer such that |s —t| < 27™:
27l < s —t| <27, (3)

which implies that m > mg(w). There are some i, jo € {0,1,2,3,...,2™} such
that

sp =12 M <s< (io + 1)2—m’ to = j02_m <t< (j() + 1)2—m.

As0<s—s9 <27 and 0 <t—ty <2, there are sequences o;,7; € {0, 1},
j > m, each of which have cofinitely many zero entries, such that

S:SQ+ZUj27j, t:t0+ZTj27j.

j>m ji>m
Because 0 < s—sg <27 and <t —tyg <27,
27" > (s = s0) = (t = to)| = [(s = 1) = (so — to)| = [s0 — to| — |5 — 2],
and with (3),

lso —to] <27 4 |s—t| <27 27 =27



Thus |ig — jo| < 2, so |igp — jo| € {0,1} and so either sg =ty or (sp,t) € Sy In
the first case, |X¢,(w) — Xs,(w)] = 0. In the second case, since m > mg(w), by
(2) we have

[ Xt (W) = X (w)] <277 (4)
Define by induction
Sp = Sp—1+ Um+n2_(m+n)7 n=>1,
ie. ,
Sn = So + Z O'j2_].
m<j<m+n

For eachn > 1, s, — s,_1 € {0,2*(’”*”)}, so either s,, = s,_1 or (sp—1,8,) €
Sm+n, and because m +mn > m + 1 > my(w), applying (2) yields

| X (@) = X,y (w)] < 27700,

Because the sequence o; is eventually equal to 0, the sequence s, is eventually
equal to s. Thus

(X, (W) = X, (W) = Xs(w) — Xy (W),
n=1
whence
© e 2—y(m+1)
[ Xs(w) = X (W)] < Z X, (W) = X,y (w)] < ZQﬂ(mM) =13
n=1 n=1

By the same reasoning we get

9—v(m+1)

[Xe(w) = X ()| < T

Using these and (4) yields

[Xi(w) = Xs(w)| < [Xi(w) = Xio (W) 4 [Xi (W) = Xig ()] + [Xs(w) = X (w)]

9—v(m+1) - 92—v(m+1)
< 1—2*7+ 4_1—2*“Y
=C- 2—7(m+1)’

for C =27 + —2~. By (3), 27"+ < |t — s, hence

[Xi(w) = Xs(w)] < CJt = 8], (5)

This is true for all dyadic rationals s,¢ € [0,1] with |s — ¢| < 27™0); when
|s —t| = 0 it is immediate.

For k > 1, let XF = Xy, which satisfies (1). By what we have worked
out, there is a P-null set N € .% such that for each w € Q0 \ N7 there is some



m) (w) such that m > m/(w) and (s,t) € S, imply that | X} (w) — X} (w)| <
277 Let Ny = Ny U Ny, which is P-null, and for w € Q\ Ny let m;(w) =
max{mg(w),m}(w)}. For s,t € DN[0,1] with |s —t| < 27™) what we have
worked out yields

[Xi(w) = Xs(@)| < Clt—s]", X} (w) = X ()| < Clt =8|

By induction, we get that for each k& > 1 there are P-null sets Ng C Ny C --- C
Nj, and for each w € Q\ Nj there is some my(w) such that for s,t € D N0, 1]
with |s — ¢ < 27mk@),

[Xi(w) = Xs(w)] < CJt — 87
X} () = Xs(w)| < Clt =]

X (@) - XEw)] < Ol — .

Let
N, = U Ng,
k>1

which is an increasing sequence of sets whose union is P-null. For w € Q\ N,
there is a nondecreasing sequence my(w) such that when 0 < j < k and s,t €
DN[j,j41] with [s—t| < 277+ it is the case that | X, (w) — X, (w)| < Clt—s]|7.
For s,t € DN [0,k + 1] with |s — t| < 27™#®) because |s — t| < 3, either there
is some 0 < j < k for which s,t € [4,j + 1] or there is some 1 < j < k for which,
say, s < j < t. In the first case, | X¢(w) — X (w)| < C|t — s|7. In the second
case, because |j — s| < |t —s| < 27™(@) and |t — j| < |t —s| < 27 we get,
because s,7 € DN[j—1,j] and j,t € DN[j, 5+ 1],

[Xi(w) = Xs (W) < X (w) = Xj(w)] + X (w) = Xs(w)]
SCOlt—=j["+Clj — s
<20t — .

Thus for
4

1—2-7’
we have established that for w € Q\ N, k > 1, and s,t € DN[0, k+ 1] satisfying
|t —s| <27 it is the case that

C,=20=20"" 4

[ Xi(w) = X (W) < Cylt = s (6)

This implies that for each w € @\ N, and for k£ > 1, the mapping t — X;(w) is
uniformly continuous on D N[0,k + 1]. For t € R> and w € Q\ N, define

i) = lim X.(w). ™

seD



For each k > 0, because ¢ — X;(w) is uniformly continuous DN [0,k + 1] — R<,
where D N[0,k + 1] is dense in [0, k + 1] and R? is a complete metric space, the
map t — Y;(w) is uniformly continuous [0,k + 1] — R%5 Then ¢t — Y;(w) is
continuous R>q — R?. For w € N, we define

th(W) =0, te Rzo.

Then for each w € €, t + Y;(w) is continuous R>g — RY. For t € Rxo,
w — Yi(w) is the pointwise limit of the sequence of mappings w — Xs(w) as
s = t, s € D. For each s € D, w +— X (w) is measurable .# — %Bga, which
implies that w + Y;(w) is itself measurable .F# — %ra.% Namely, (V;)icr., is a
continuous stochastic process. -

We must show that Y is a modification of X. For s € D, for all w € Q\ N,
we have Y;(w) = X (w). For t € R>g, there is a sequence s, € D tending to
t, and then for all w € Q\ N, by (7) we have X, (w) — Yi(w). P(N,) =0,
namely, X, converges to Y; almost surely. Because X converges to Y; almost
surely and P is a probability measure, X, converges in measure to ¥;.” On the
other hand, for n > 0, by Chebyshev’s inequality and (1),

P{|Xs, = Xo| 2 m} <07 B(IX, = Xe|*) <07 - clsn — "7,

and because this is true for each 7 > 0, this shows that X, converges in measure
to X;. Hence, the limits Y; and X; are equal as equivalence classes of measurable
functions @ — RZ® That is, P{Y; = X;} = 1. This is true for each t € Rx,
showing that Y is a modification of X, completing the proof. O

3 Holder continuity

Let (X,d) and (Y, p) be metric spaces, let 0 <y < 1, and let ¢ : X — Y be a
function. For zy € X, we say that ¢ is y-Holder continuous at z if there is
some 0 < €;, < 1 and some C, such that when d(z, o) < €z,

p(d(x), p(w0)) < Cayd(x,w0)"

We say that ¢ is locally y-H6lder continuous if for each zg € X there is some
0 < €z, < 1 and some C,, such that when d(z,zq) < €, and d(y, zo) < €z,

p(d(z), 9(y)) < Crpd(z,y)7.

We say that ¢ is uniformly ~-Ho6lder continuous if there is some C such
that for all z,y € X,

p(¢(z),d(y)) < Cd(z,y)".

5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 77, Lemma 3.11.

6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 142, Lemma 4.29.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.37.

8http://individual .utoronto.ca/jordanbell/notes/LO.pdf




We establish properties of Holder continuous functions in the following.”

Lemma 3. Let V be a nonempty subset of R>o, let 0 <y <1, andlet f:V —
R? be locally v-Hélder continuous.

1. If 0 <+ <~ then f is locally +'-Hoélder continuous.
2. If V is compact, then f is uniformly ~v-Holder continuous.

8. If V is an interval of length T > 0 and there is some € > 0 and some C
such that for all s,t € V with |t — s| < € we have

50) = F6)| < Cle o] ®)
then -
so-s@i=c [T - sev

Proof. For tyg € R>g, there is some 0 < €, < 1 and some Cy, such that when
|t — t0| < €tq5 /
|f(t) = f(to)] < Colt —to]™ < Cplt — Lo,

showing that f is locally «'-Holder continuous.
With the metric inherited from R>g, V is a compact metric space. For t € V
and € > 0, write
Be(t)={veV:|v—t|l <e},
which is an open subset of V. Because f is locally v-Ho6lder continuous, for each
t € V there is some 0 < ¢; < 1 and some C such that for all u,v € B, (t),

[f(u) = f(0)] < Cilu—o|™. (9)

Write Uy = Be,(t). Because t € Uy, {U; : t € V} is an open cover of V', and
because V is compact there are ti,...,t, € V such that 4 = {Uy,,..., U, } is
an open cover of V. Because V is a compact metric space, there is a Lebesgue
number § > 0 of the open cover 4(:'0 for each t € V, there is some 1 < i <n
such that Bs(t) C Uy,. Let

C =max{Ct,,...,C¢, 2| fll, 6},

For s,t € V with |t — s| < §, i.e. s € Bs(t), there is some 1 < i < n with
s,t € Uy,. By (9),

|f(s) = f(O)] < Cls —t]" < Cls —¢|".
On the other hand, for s,t € V with |t — s| > 4,

|s — ¢
)
9 Achim Klenke, Probability Theory: A Comprehensive Course, p. 448, Lemma 21.3.

10Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 85, Lemma 3.27.

Yy
|F(s) = F@OI <21l <211l ( ) =2|[fll, 07 7s = t]” < Cls — ¢




Thus, for all s,t € V,
[f(s) = f(O)] < Cls —t],

showing that f is uniformly v-Hélder continuous.
Let n = [%] For s,t € V, because V is an interval of length T, |s — t| <

T < en, and then applying (8), because @ <,

k k—1
kz_:lf<s+(t—s)n>—f<s+(t—s) - >|
s; f<s+(t—s)fl>—f(s—i—(t—s)k;l)‘

n Yy
t—s
< C
<Ycl=
k=1

=Cn' 7t —s|".

1f (&) = f(s)l =

O

The following theorem does not speak about a version of a stochastic process.
Rather, it shows what can be said about a stochastic process that satisfies (1)
when almost all of its sample paths are continuous.'!

Theorem 4. If a stochastic process (Xi)icr,, with state space R satisfies (1)
and for almost every w € Q the map t — X, (w) is continuous R>q — RY, then
for almost every w € Q, for every 0 < v < g, the map t — Xy(w) is locally

~v-Hélder continuous.

Proof. There is a P-null set N € . such that for w € Q\ N, the map ¢ — X;(w)
is continuous R>g — R9. For each 0 < v < g, we have established in (6) that
there is a P-null set N., € .# such that for k > 1 there is some my(w) such that
when s,t € DN[0,k+ 1] and |t — s] < 27"k ()

[ Xi(w) = Xs(w)| < Gyt — 8], (10)

where C, = 27+ + 4 Write 6(k,w) = 27™+) and let M, = N, UN. For
w € 2\ M,, the map ¢ — X;(w) is continuous R>q — R%. For k& > 1 and for
s,t € [0,k + 1] satisfying |s — t| < §(k,w), say with s < ¢, let m = 52 and let
s < s, <t be a sequence of dyadic rationals decreasing to s and let s < ¢, <t
be a sequence of dyadic rationals inceasing to t. Then s,,t, € DN[0,k+ 1] and

[$n —tn| < |s —t| < §(k,w), so by (10),

[ X, (W) = X, (@) < Cyftn — sl

1 Heinz Bauer, Probability Theory, p. 338, Theorem 39.4.



Because w € Q\ N, X; (w) = X;(w) and X, (w) = X;s(w), so

[ Xi(w) = Xs(@)] < [Xi(w) = X, (@) + [Xe, (@) = X, (@) + [ X (w) = X5, (@)
<X (W) = X, (@) + Cyltn = su|” + | Xs (W) = X, (W)
1 C”/lt - 8‘77

thus
[ Xi(w) — Xs(w)] < Cyft = s[7,

showing that for 0 < v < g and w € Q\ M,, the map ¢t — X;(w) is locally
v-Holder continuous.
Let 0 < v, < g be a sequence increasing to g and let

M= U M’an

n>1

which is a P-null set. Let 0 < 7 < g and let n be such that v, > ~. For
w € Q\ M, the map t — X;(w) is locally ~,-Holder continuous, and because
v < 7, this implies that the map is locally v-Ho6lder continuous, completing the
proof. O

Bauer attributes the following theorem to Kolgmorov and Chentsov.'? It
does not merely state that for any 0 < v < g there is a modification that
is locally v-Hoélder continuous, but that there is a modification that for all
0<y< g is locally y-Hélder continuous.'?

Theorem 5 (Kolmogorov-Chentsov theorem). If a stochastic process (Xi)iers,
with state space RY satisfies (1), then X has a modification Y such that for all
weNand < v < g, the path t — Yi(w) is locally v-Holder continuous.
Proof. Applying the Kolmogorov continuity theorem, there is a continuous mod-
ification Z of X that also satisfies (1). By Theorem 4, there is a P-null set M
such that forw € Q\ M and 0 < v < g, the map t — Z;(w) is locally ~-Holder
continuous. For ¢ € R>q, define

Y}(w)—{zt(w) weQ\M

0 w e M,

i.e. Y; = lg\nZ, which is measurable .# — %pa, and so (Y;)sers, is a stochas-

tic process. For every w € Q and 0 < v < £, the map t — Y;(w) is locally

~v-Hélder continuous. For ¢ € Rx, ¢
{(Xe # Y} ={Xs ZY:, Xo = ZJU{ Xy # Y0, Xo # Z} C{Y: # ZJU{ X, # Z4}.

Because P(Y; # Z;) = P(M) = 0 and P(X; # Z;) = 0, since Z is a modification
of X, we get P(X; #Y;) =0, namely, YV is a modification of X. O

12Nikolai Nikolaevich Chentsov, 1930-1993, obituary in Russian Math. Surveys 48 (1993),
no. 2, 161-166.
13Heinz Bauer, Probability Theory, p. 339, Corollary 39.5.



