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1 Modifications

Let (Ω,F , P ) be a probability space, let I be a nonempty set, and let (E,E )
be a measurable space. A stochastic process with index set I and state
space E is a family (Xt)t∈I of random variables Xt : (Ω,F ) → (E,E ). If X
and Y are stochastic processes, we say that X is a modification of Y if for
each t ∈ I,

P{ω ∈ Ω : Xt(ω) = Yt(ω)} = 1.

Lemma 1. If X is a modification of Y , then X and Y have the same finite-
dimensional distributions.

Proof. For t1, . . . , tn ∈ I, let Ai ∈ E for each 1 ≤ i ≤ n, and let

A =

n⋂
i=1

X−1
ti (Ai) ∈ F , B =

n⋂
i=1

Y −1
ti (Ai) ∈ F .

If ω ∈ A \ B then there is some i for which ω ̸∈ Y −1
ti (Ai), and ω ∈ X−1

ti (Ai) so
Xti(ω) ̸= Yti(ω). Therefore

A△B ⊂
n⋃

i=1

{ω ∈ Ω : Xti(ω) ̸= Yti(ω)}.

Because X is a modification of Y , the right-hand side is a union of finitely
many P -null sets, hence is itself a P -null set. A and B each belong to F , so
P (A△B) = 0.1 Because P (A△B) = 0, P (A) = P (B), i.e.

P (Xt1 ∈ A1, . . . , Xtn ∈ An) = P (Yt1 ∈ A1, . . . , Ytn ∈ An).

1We have not assumed that (Ω,F , P ) is a complete measure space, so we must verify that
a set is measurable before speaking about its measure.
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This implies that2

P∗(Xt1 ⊗ · · · ⊗Xtn) = P∗(Yt1 ⊗ · · · ⊗ Ytn),

namely, X and Y have the same finite-dimensional distributions.

2 Continuous modifications

Let E be a Polish space with Borel σ-algebra E . A stochastic process (Xt)t∈R≥0

is called continuous if for each ω ∈ Ω, the path t 7→ Xt(ω) is continuous
R≥0 → E.

A dyadic rational is an element of

D =

∞⋃
i=0

2−iZ.

The Kolmogorov continuity theorem gives conditions under which a
stochastic process whose state space is a Polish space has a continuous modifi-
cation.3 This is like the Sobolev lemma,4 which states that if f ∈ Hs(Rd) and
s > k + d

2 , then there is some ϕ ∈ Ck(Rd) such that f = ϕ almost everywhere.
It does not make sense to say that an element of a Sobolev space is itself Ck,
because elements of Sobolev spaces are equivalence classes of functions, but it
does make sense to say that there is a Ck version of this element.

Theorem 2 (Kolmogorov continuity theorem). Suppose that (Ω,F , P, (Xt)t∈R≥0
)

is a stochastic process with state space Rd. If there are α, β, c > 0 such that

E(|Xt −Xs|α) ≤ c|t− s|1+β , s, t ∈ R≥0, (1)

then the stochastic process has a continuous modification that itself satisfies (1).

Proof. Let 0 < γ < β
α and let

δ = β − αγ > 0.

For m ≥ 1, let Sm be the set of all pairs (s, t) with

s, t ∈ {j2−m : 0 ≤ j ≤ 2m},

and |s− t| = 2−m. There are 2 · 2m such pairs, i.e. |Sm| = 2 · 2m. Let

Am =
⋃

(s,t)∈Sm

{|Xs −Xt| ≥ 2−γm} ∈ F .

2http://individual.utoronto.ca/jordanbell/notes/finitedimdistributions.pdf
3Heinz Bauer, Probability Theory, p. 335, Theorem 39.3. It was only after working through

the proof given by Bauer that I realized that the statement is true when the state space is a
Polish space rather than merely Rd. In the proof I do not use that | · | is a norm on Rd, and
only use that d(x, y) = |x− y| is a metric on Rd, so it is straightforward to rewrite the proof.

4Walter Rudin, Functional Analysis, second ed., p. 202, Theorem 7.25.
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For (s, t) ∈ Sm, using Chebyshev’s inequality and (1) we get

P (|Xt −Xs| ≥ 2−γm) ≤ (2γm)αE(|Xt −Xs|α)
≤ 2αγm · c|t− s|1+β

= c2αγm2−m(1+β)

< c2−m−δm.

Hence

P (Am) ≤
∑

(s,t)∈Sm

P{|Xs −Xt| ≥ 2−γm} <
∑

(s,t)∈Sm

c2−m−δm = 2c · 2−δm.

Because
∑

m P (Am) < ∞, the Borel-Cantelli lemma tells us that

P

( ∞⋂
n=1

∞⋃
m=n

Am

)
= P (N0) = 0,

where for each ω ∈ Ω \ N0 there is some m0(ω) such that ω ̸∈ Am when
m ≥ m0(ω). That is, for ω ∈ Ω \N0 there is some m0(ω) such that

|Xt(ω)−Xs(ω)| < 2−γm, m ≥ m0(ω), (s, t) ∈ Sm. (2)

Now let ω ∈ Ω \N0 and let s, t ∈ [0, 1] be dyadic rationals satisfying

0 < |s− t| ≤ 2−m0(ω).

Let m = m(s, t) be the greatest integer such that |s− t| ≤ 2−m:

2−m−1 < |s− t| ≤ 2−m, (3)

which implies that m ≥ m0(ω). There are some i0, j0 ∈ {0, 1, 2, 3, . . . , 2m} such
that

s0 = i02
−m ≤ s < (i0 + 1)2−m, t0 = j02

−m ≤ t < (j0 + 1)2−m.

As 0 ≤ s− s0 < 2−m and 0 ≤ t− t0 < 2−m, there are sequences σj , τj ∈ {0, 1},
j > m, each of which have cofinitely many zero entries, such that

s = s0 +
∑
j>m

σj2
−j , t = t0 +

∑
j>m

τj2
−j .

Because 0 ≤ s− s0 < 2−m and ≤ t− t0 < 2−m,

2−m > |(s− s0)− (t− t0)| = |(s− t)− (s0 − t0)| ≥ |s0 − t0| − |s− t|,

and with (3),

|s0 − t0| < 2−m + |s− t| ≤ 2−m + 2−m = 2−m+1.
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Thus |i0 − j0| < 2, so |i0 − j0| ∈ {0, 1} and so either s0 = t0 or (s0, t0) ∈ Sm. In
the first case, |Xt0(ω)−Xs0(ω)| = 0. In the second case, since m ≥ m0(ω), by
(2) we have

|Xt0(ω)−Xs0(ω)| < 2−γm. (4)

Define by induction

sn = sn−1 + σm+n2
−(m+n), n ≥ 1,

i.e.
sn = s0 +

∑
m<j≤m+n

σj2
−j .

For each n ≥ 1, sn − sn−1 ∈ {0, 2−(m+n)}, so either sn = sn−1 or (sn−1, sn) ∈
Sm+n, and because m+ n ≥ m+ 1 > m0(ω), applying (2) yields

|Xsn(ω)−Xsn−1
(ω)| < 2−γ(m+n).

Because the sequence σj is eventually equal to 0, the sequence sn is eventually
equal to s. Thus

∞∑
n=1

(Xsn(ω)−Xsn−1
(ω)) = Xs(ω)−Xs0(ω),

whence

|Xs(ω)−Xs0(ω)| ≤
∞∑

n=1

|Xsn(ω)−Xsn−1
(ω)| <

∞∑
n=1

2−γ(m+n) =
2−γ(m+1)

1− 2−γ
.

By the same reasoning we get

|Xt(ω)−Xt0(ω)| <
2−γ(m+1)

1− 2−γ
.

Using these and (4) yields

|Xt(ω)−Xs(ω)| ≤ |Xt(ω)−Xt0(ω)|+ |Xt0(ω)−Xs0(ω)|+ |Xs(ω)−Xs0(ω)|

<
2−γ(m+1)

1− 2−γ
+ 2−γm +

2−γ(m+1)

1− 2−γ

= C · 2−γ(m+1),

for C = 2γ + 2
1−2−γ . By (3), 2−(m+1) < |t− s|, hence

|Xt(ω)−Xs(ω)| ≤ C|t− s|γ . (5)

This is true for all dyadic rationals s, t ∈ [0, 1] with |s − t| ≤ 2−m0(ω); when
|s− t| = 0 it is immediate.

For k ≥ 1, let Xk
t = Xk+t, which satisfies (1). By what we have worked

out, there is a P -null set N ′
1 ∈ F such that for each ω ∈ Ω \N ′

1 there is some

4



m′
1(ω) such that m ≥ m′

1(ω) and (s, t) ∈ Sm imply that |X1
t (ω) − X1

s (ω)| <
2−γm. Let N1 = N0 ∪ N ′

1, which is P -null, and for ω ∈ Ω \ N1 let m1(ω) =
max{m0(ω),m

′
1(ω)}. For s, t ∈ D ∩ [0, 1] with |s− t| ≤ 2−m1(ω), what we have

worked out yields

|Xt(ω)−Xs(ω)| ≤ C|t− s|γ , |X1
t (ω)−X1

s (ω)| ≤ C|t− s|γ .

By induction, we get that for each k ≥ 1 there are P -null sets N0 ⊂ N1 ⊂ · · · ⊂
Nk and for each ω ∈ Ω \Nk there is some mk(ω) such that for s, t ∈ D ∩ [0, 1]
with |s− t| ≤ 2−mk(ω),

|Xt(ω)−Xs(ω)| ≤ C|t− s|γ

|X1
t (ω)−X1

s (ω)| ≤ C|t− s|γ

. . .

|Xk
t (ω)−Xk

s (ω)| ≤ C|t− s|γ .

Let
Nγ =

⋃
k≥1

Nk,

which is an increasing sequence of sets whose union is P -null. For ω ∈ Ω \Nγ ,
there is a nondecreasing sequence mk(ω) such that when 0 ≤ j ≤ k and s, t ∈
D∩[j, j+1] with |s−t| ≤ 2−mk(ω), it is the case that |Xt(ω)−Xs(ω)| ≤ C|t−s|γ .
For s, t ∈ D ∩ [0, k + 1] with |s− t| ≤ 2−mk(ω), because |s− t| ≤ 1

2 , either there
is some 0 ≤ j ≤ k for which s, t ∈ [j, j+1] or there is some 1 ≤ j ≤ k for which,
say, s < j < t. In the first case, |Xt(ω) − Xs(ω)| ≤ C|t − s|γ . In the second
case, because |j − s| < |t− s| ≤ 2−mk(ω) and |t− j| < |t− s| ≤ 2−mk(ω), we get,
because s, j ∈ D ∩ [j − 1, j] and j, t ∈ D ∩ [j, j + 1],

|Xt(ω)−Xs(ω)| ≤ |Xt(ω)−Xj(ω)|+ |Xj(ω)−Xs(ω)|
≤ C|t− j|γ + C|j − s|γ

< 2C|t− s|γ .

Thus for

Cγ = 2C = 2γ+1 +
4

1− 2−γ
,

we have established that for ω ∈ Ω\Nγ , k ≥ 1, and s, t ∈ D∩ [0, k+1] satisfying
|t− s| ≤ 2−mk(ω), it is the case that

|Xt(ω)−Xs(ω)| ≤ Cγ |t− s|γ . (6)

This implies that for each ω ∈ Ω \Nγ and for k ≥ 1, the mapping t 7→ Xt(ω) is
uniformly continuous on D ∩ [0, k + 1]. For t ∈ R≥0 and ω ∈ Ω \Nγ , define

Yt(ω) = lim
s→t
s∈D

Xs(ω). (7)
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For each k ≥ 0, because t 7→ Xt(ω) is uniformly continuous D∩ [0, k+1] → Rd,
where D ∩ [0, k+1] is dense in [0, k+1] and Rd is a complete metric space, the
map t 7→ Yt(ω) is uniformly continuous [0, k + 1] → Rd.5 Then t 7→ Yt(ω) is
continuous R≥0 → Rd. For ω ∈ Nγ , we define

Yt(ω) = 0, t ∈ R≥0.

Then for each ω ∈ Ω, t 7→ Yt(ω) is continuous R≥0 → Rd. For t ∈ R≥0,
ω 7→ Yt(ω) is the pointwise limit of the sequence of mappings ω 7→ Xs(ω) as
s → t, s ∈ D. For each s ∈ D, ω 7→ Xs(ω) is measurable F → BRd , which
implies that ω 7→ Yt(ω) is itself measurable F → BRd .6 Namely, (Yt)t∈R≥0

is a
continuous stochastic process.

We must show that Y is a modification of X. For s ∈ D, for all ω ∈ Ω \Nγ

we have Ys(ω) = Xs(ω). For t ∈ R≥0, there is a sequence sn ∈ D tending to
t, and then for all ω ∈ Ω \ Nγ by (7) we have Xsn(ω) → Yt(ω). P (Nγ) = 0,
namely, Xsn converges to Yt almost surely. Because Xsn converges to Yt almost
surely and P is a probability measure, Xsn converges in measure to Yt.

7 On the
other hand, for η > 0, by Chebyshev’s inequality and (1),

P{|Xsn −Xt| ≥ η} ≤ η−αE(|Xsn −Xt|α) ≤ η−α · c|sn − t|1+β ,

and because this is true for each η > 0, this shows thatXsn converges in measure
toXt. Hence, the limits Yt andXt are equal as equivalence classes of measurable
functions Ω → Rd.8 That is, P{Yt = Xt} = 1. This is true for each t ∈ R≥0,
showing that Y is a modification of X, completing the proof.

3 Hölder continuity

Let (X, d) and (Y, ρ) be metric spaces, let 0 < γ < 1, and let ϕ : X → Y be a
function. For x0 ∈ X, we say that ϕ is γ-Hölder continuous at x0 if there is
some 0 < ϵx0 < 1 and some Cx0 such that when d(x, x0) < ϵx0 ,

ρ(ϕ(x), ϕ(x0)) ≤ Cx0d(x, x0)
γ .

We say that ϕ is locally γ-Hölder continuous if for each x0 ∈ X there is some
0 < ϵx0

< 1 and some Cx0
such that when d(x, x0) < ϵx0

and d(y, x0) < ϵx0
,

ρ(ϕ(x), ϕ(y)) ≤ Cx0
d(x, y)γ .

We say that ϕ is uniformly γ-Hölder continuous if there is some C such
that for all x, y ∈ X,

ρ(ϕ(x), ϕ(y)) ≤ Cd(x, y)γ .

5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 77, Lemma 3.11.

6Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 142, Lemma 4.29.

7Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.37.

8http://individual.utoronto.ca/jordanbell/notes/L0.pdf
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We establish properties of Hölder continuous functions in the following.9

Lemma 3. Let V be a nonempty subset of R≥0, let 0 < γ < 1, and let f : V →
Rd be locally γ-Hölder continuous.

1. If 0 < γ′ < γ then f is locally γ′-Hölder continuous.

2. If V is compact, then f is uniformly γ-Hölder continuous.

3. If V is an interval of length T > 0 and there is some ϵ > 0 and some C
such that for all s, t ∈ V with |t− s| ≤ ϵ we have

|f(t)− f(s)| ≤ C|t− s|γ , (8)

then

|f(t)− f(s)| ≤ C

⌈
T

ϵ

⌉1−γ

|t− s|γ , s, t ∈ V.

Proof. For t0 ∈ R≥0, there is some 0 < ϵt0 < 1 and some Ct0 such that when
|t− t0| < ϵt0 ,

|f(t)− f(t0)| ≤ Ct0 |t− t0|γ ≤ Ct0 |t− t0|γ
′
,

showing that f is locally γ′-Hölder continuous.
With the metric inherited from R≥0, V is a compact metric space. For t ∈ V

and ϵ > 0, write
Bϵ(t) = {v ∈ V : |v − t| < ϵ},

which is an open subset of V . Because f is locally γ-Hölder continuous, for each
t ∈ V there is some 0 < ϵt < 1 and some Ct such that for all u, v ∈ Bϵt(t),

|f(u)− f(v)| ≤ Ct|u− v|γ . (9)

Write Ut = Bϵt(t). Because t ∈ Ut, {Ut : t ∈ V } is an open cover of V , and
because V is compact there are t1, . . . , tn ∈ V such that U = {Ut1 , . . . , Utn} is
an open cover of V . Because V is a compact metric space, there is a Lebesgue
number δ > 0 of the open cover U:10 for each t ∈ V , there is some 1 ≤ i ≤ n
such that Bδ(t) ⊂ Uti . Let

C = max{Ct1 , . . . , Ctn , 2 ∥f∥u δ
−γ},

For s, t ∈ V with |t − s| < δ, i.e. s ∈ Bδ(t), there is some 1 ≤ i ≤ n with
s, t ∈ Uti . By (9),

|f(s)− f(t)| ≤ Cti |s− t|γ ≤ C|s− t|γ .

On the other hand, for s, t ∈ V with |t− s| ≥ δ,

|f(s)− f(t)| ≤ 2 ∥f∥u ≤ 2 ∥f∥u

(
|s− t|

δ

)γ

= 2 ∥f∥u δ
−γ |s− t|γ ≤ C|s− t|γ .

9Achim Klenke, Probability Theory: A Comprehensive Course, p. 448, Lemma 21.3.
10Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 85, Lemma 3.27.
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Thus, for all s, t ∈ V ,
|f(s)− f(t)| ≤ C|s− t|γ ,

showing that f is uniformly γ-Hölder continuous.
Let n =

⌈
T
ϵ

⌉
. For s, t ∈ V , because V is an interval of length T , |s − t| ≤

T ≤ ϵn, and then applying (8), because |t−s|
n ≤ ϵ,

|f(t)− f(s)| =

∣∣∣∣∣
n∑

k=1

f

(
s+ (t− s)

k

n

)
− f

(
s+ (t− s)

k − 1

n

)∣∣∣∣∣
≤

n∑
k=1

∣∣∣∣f (s+ (t− s)
k

n

)
− f

(
s+ (t− s)

k − 1

n

)∣∣∣∣
≤

n∑
k=1

C

∣∣∣∣ t− s

n

∣∣∣∣γ
= Cn1−γ |t− s|γ .

The following theorem does not speak about a version of a stochastic process.
Rather, it shows what can be said about a stochastic process that satisfies (1)
when almost all of its sample paths are continuous.11

Theorem 4. If a stochastic process (Xt)t∈R≥0
with state space Rd satisfies (1)

and for almost every ω ∈ Ω the map t 7→ Xt(ω) is continuous R≥0 → Rd, then

for almost every ω ∈ Ω, for every 0 < γ < β
α , the map t 7→ Xt(ω) is locally

γ-Hölder continuous.

Proof. There is a P -null set N ∈ F such that for ω ∈ Ω\N , the map t 7→ Xt(ω)
is continuous R≥0 → Rd. For each 0 < γ < β

α , we have established in (6) that
there is a P -null set Nγ ∈ F such that for k ≥ 1 there is some mk(ω) such that
when s, t ∈ D ∩ [0, k + 1] and |t− s| ≤ 2−mk(ω),

|Xt(ω)−Xs(ω)| ≤ Cγ |t− s|γ , (10)

where Cγ = 2γ+1+ 4
1−2−γ . Write δ(k, ω) = 2−mk(ω), and let Mγ = Nγ ∪N . For

ω ∈ Ω \Mγ , the map t 7→ Xt(ω) is continuous R≥0 → Rd. For k ≥ 1 and for
s, t ∈ [0, k + 1] satisfying |s − t| ≤ δ(k, ω), say with s ≤ t, let m = t−s

2 and let
s ≤ sn ≤ t be a sequence of dyadic rationals decreasing to s and let s ≤ tn ≤ t
be a sequence of dyadic rationals inceasing to t. Then sn, tn ∈ D∩ [0, k+1] and
|sn − tn| ≤ |s− t| ≤ δ(k, ω), so by (10),

|Xtn(ω)−Xsn(ω)| ≤ Cγ |tn − sn|γ .
11Heinz Bauer, Probability Theory, p. 338, Theorem 39.4.
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Because ω ∈ Ω \N , Xtn(ω) → Xt(ω) and Xsn(ω) → Xs(ω), so

|Xt(ω)−Xs(ω)| ≤ |Xt(ω)−Xtn(ω)|+ |Xtn(ω)−Xsn(ω)|+ |Xs(ω)−Xsn(ω)|
≤ |Xt(ω)−Xtn(ω)|+ Cγ |tn − sn|γ + |Xs(ω)−Xsn(ω)|
↓ Cγ |t− s|γ ,

thus
|Xt(ω)−Xs(ω)| ≤ Cγ |t− s|γ ,

showing that for 0 < γ < β
α and ω ∈ Ω \ Mγ , the map t 7→ Xt(ω) is locally

γ-Hölder continuous.
Let 0 < γn < β

α be a sequence increasing to β
α and let

M =
⋃
n≥1

Mγn
,

which is a P -null set. Let 0 < γ < β
α and let n be such that γn ≥ γ. For

ω ∈ Ω \ M , the map t 7→ Xt(ω) is locally γn-Hölder continuous, and because
γ ≤ γn this implies that the map is locally γ-Hölder continuous, completing the
proof.

Bauer attributes the following theorem to Kolgmorov and Chentsov.12 It
does not merely state that for any 0 < γ < β

α there is a modification that
is locally γ-Hölder continuous, but that there is a modification that for all
0 < γ < β

α is locally γ-Hölder continuous.13

Theorem 5 (Kolmogorov-Chentsov theorem). If a stochastic process (Xt)t∈R≥0

with state space Rd satisfies (1), then X has a modification Y such that for all
ω ∈ Ω and 0 < γ < β

α , the path t 7→ Yt(ω) is locally γ-Hölder continuous.

Proof. Applying the Kolmogorov continuity theorem, there is a continuous mod-
ification Z of X that also satisfies (1). By Theorem 4, there is a P -null set M
such that for ω ∈ Ω \M and 0 < γ < β

α , the map t 7→ Zt(ω) is locally γ-Hölder
continuous. For t ∈ R≥0, define

Yt(ω) =

{
Zt(ω) ω ∈ Ω \M
0 ω ∈ M,

i.e. Yt = 1Ω\MZt, which is measurable F → BRd , and so (Yt)t∈R≥0
is a stochas-

tic process. For every ω ∈ Ω and 0 < γ < β
α , the map t 7→ Yt(ω) is locally

γ-Hölder continuous. For t ∈ R≥0,

{Xt ̸= Yt} = {Xt ̸= Yt, Xt = Zt}∪{Xt ̸= Yt, Xt ̸= Zt} ⊂ {Yt ̸= Zt}∪{Xt ̸= Zt}.

Because P (Yt ̸= Zt) = P (M) = 0 and P (Xt ̸= Zt) = 0, since Z is a modification
of X, we get P (Xt ̸= Yt) = 0, namely, Y is a modification of X.

12Nikolai Nikolaevich Chentsov, 1930–1993, obituary in Russian Math. Surveys 48 (1993),
no. 2, 161–166.

13Heinz Bauer, Probability Theory, p. 339, Corollary 39.5.
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