The Kolmogorov continuity theorem, Hölder continuity, and the Kolmogorov-Chentsov theorem

Jordan Bell

June 11, 2015

1 Modifications

Let (Ω, \mathscr{F}, P) be a probability space, let I be a nonempty set, and let (E, \mathscr{E}) be a measurable space. A **stochastic process with index set** I **and state space** E is a family $(X_t)_{t \in I}$ of random variables $X_t : (\Omega, \mathscr{F}) \to (E, \mathscr{E})$. If Xand Y are stochastic processes, we say that X is a modification of Y if for each $t \in I$,

$$P\{\omega \in \Omega : X_t(\omega) = Y_t(\omega)\} = 1.$$

Lemma 1. If X is a modification of Y, then X and Y have the same finitedimensional distributions.

Proof. For $t_1, \ldots, t_n \in I$, let $A_i \in \mathscr{E}$ for each $1 \leq i \leq n$, and let

$$A = \bigcap_{i=1}^{n} X_{t_i}^{-1}(A_i) \in \mathscr{F}, \qquad B = \bigcap_{i=1}^{n} Y_{t_i}^{-1}(A_i) \in \mathscr{F}.$$

If $\omega \in A \setminus B$ then there is some *i* for which $\omega \notin Y_{t_i}^{-1}(A_i)$, and $\omega \in X_{t_i}^{-1}(A_i)$ so $X_{t_i}(\omega) \neq Y_{t_i}(\omega)$. Therefore

$$A \triangle B \subset \bigcup_{i=1}^{n} \{ \omega \in \Omega : X_{t_i}(\omega) \neq Y_{t_i}(\omega) \}.$$

Because X is a modification of Y, the right-hand side is a union of finitely many P-null sets, hence is itself a P-null set. A and B each belong to \mathscr{F} , so $P(A \triangle B) = 0$.¹ Because $P(A \triangle B) = 0$, P(A) = P(B), i.e.

$$P(X_{t_1} \in A_1, \dots, X_{t_n} \in A_n) = P(Y_{t_1} \in A_1, \dots, Y_{t_n} \in A_n).$$

¹We have not assumed that (Ω, \mathscr{F}, P) is a complete measure space, so we must verify that a set is measurable before speaking about its measure.

This implies that²

$$P_*(X_{t_1} \otimes \cdots \otimes X_{t_n}) = P_*(Y_{t_1} \otimes \cdots \otimes Y_{t_n}),$$

namely, X and Y have the same finite-dimensional distributions.

$\mathbf{2}$ **Continuous modifications**

Let E be a Polish space with Borel σ -algebra \mathscr{E} . A stochastic process $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ is called **continuous** if for each $\omega \in \Omega$, the **path** $t \mapsto X_t(\omega)$ is continuous $\mathbb{R}_{>0} \to E.$

A dyadic rational is an element of

$$D = \bigcup_{i=0}^{\infty} 2^{-i} \mathbb{Z}.$$

The Kolmogorov continuity theorem gives conditions under which a stochastic process whose state space is a Polish space has a continuous modification.³ This is like the **Sobolev lemma**,⁴ which states that if $f \in H^s(\mathbb{R}^d)$ and $s > k + \frac{d}{2}$, then there is some $\phi \in C^k(\mathbb{R}^d)$ such that $f = \phi$ almost everywhere. It does not make sense to say that an element of a Sobolev space is itself C^k , because elements of Sobolev spaces are equivalence classes of functions, but it does make sense to say that there is a C^k version of this element.

Theorem 2 (Kolmogorov continuity theorem). Suppose that $(\Omega, \mathscr{F}, P, (X_t)_{t \in \mathbb{R}_{>0}})$ is a stochastic process with state space \mathbb{R}^d . If there are $\alpha, \beta, c > 0$ such that

$$E(|X_t - X_s|^{\alpha}) \le c|t - s|^{1+\beta}, \qquad s, t \in \mathbb{R}_{\ge 0},\tag{1}$$

then the stochastic process has a continuous modification that itself satisfies (1). *Proof.* Let $0 < \gamma < \frac{\beta}{\alpha}$ and let

$$\delta = \beta - \alpha \gamma > 0.$$

For $m \ge 1$, let S_m be the set of all pairs (s, t) with

$$s, t \in \{j2^{-m} : 0 \le j \le 2^m\},\$$

and $|s-t| = 2^{-m}$. There are $2 \cdot 2^m$ such pairs, i.e. $|S_m| = 2 \cdot 2^m$. Let

$$A_m = \bigcup_{(s,t)\in S_m} \{ |X_s - X_t| \ge 2^{-\gamma m} \} \in \mathscr{F}.$$

²http://individual.utoronto.ca/jordanbell/notes/finitedimdistributions.pdf

³Heinz Bauer, *Probability Theory*, p. 335, Theorem 39.3. It was only after working through the proof given by Bauer that I realized that the statement is true when the state space is a Polish space rather than merely \mathbb{R}^d . In the proof I do not use that $|\cdot|$ is a norm on \mathbb{R}^d , and only use that d(x, y) = |x - y| is a metric on \mathbb{R}^d , so it is straightforward to rewrite the proof. ⁴Walter Rudin, *Functional Analysis*, second ed., p. 202, Theorem 7.25.

For $(s,t) \in S_m$, using Chebyshev's inequality and (1) we get

$$P(|X_t - X_s| \ge 2^{-\gamma m}) \le (2^{\gamma m})^{\alpha} E(|X_t - X_s|^{\alpha})$$
$$\le 2^{\alpha \gamma m} \cdot c|t - s|^{1+\beta}$$
$$= c2^{\alpha \gamma m} 2^{-m(1+\beta)}$$
$$< c2^{-m-\delta m}.$$

Hence

$$P(A_m) \leq \sum_{(s,t) \in S_m} P\{|X_s - X_t| \geq 2^{-\gamma m}\} < \sum_{(s,t) \in S_m} c 2^{-m-\delta m} = 2c \cdot 2^{-\delta m}.$$

Because $\sum_{m} P(A_m) < \infty$, the Borel-Cantelli lemma tells us that

$$P\left(\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}A_m\right) = P(N_0) = 0,$$

where for each $\omega \in \Omega \setminus N_0$ there is some $m_0(\omega)$ such that $\omega \notin A_m$ when $m \geq m_0(\omega)$. That is, for $\omega \in \Omega \setminus N_0$ there is some $m_0(\omega)$ such that

$$|X_t(\omega) - X_s(\omega)| < 2^{-\gamma m}, \qquad m \ge m_0(\omega), \quad (s,t) \in S_m.$$
⁽²⁾

Now let $\omega \in \Omega \setminus N_0$ and let $s, t \in [0, 1]$ be dyadic rationals satisfying

$$0 < |s - t| \le 2^{-m_0(\omega)}$$

Let m = m(s,t) be the greatest integer such that $|s-t| \leq 2^{-m}$:

$$2^{-m-1} < |s-t| \le 2^{-m},\tag{3}$$

which implies that $m \ge m_0(\omega)$. There are some $i_0, j_0 \in \{0, 1, 2, 3, \dots, 2^m\}$ such that

$$s_0 = i_0 2^{-m} \le s < (i_0 + 1) 2^{-m}, \qquad t_0 = j_0 2^{-m} \le t < (j_0 + 1) 2^{-m}$$

As $0 \leq s - s_0 < 2^{-m}$ and $0 \leq t - t_0 < 2^{-m}$, there are sequences $\sigma_j, \tau_j \in \{0, 1\}$, j > m, each of which have cofinitely many zero entries, such that

$$s = s_0 + \sum_{j>m} \sigma_j 2^{-j}, \qquad t = t_0 + \sum_{j>m} \tau_j 2^{-j}.$$

Because $0 \le s - s_0 < 2^{-m}$ and $\le t - t_0 < 2^{-m}$,

$$2^{-m} > |(s - s_0) - (t - t_0)| = |(s - t) - (s_0 - t_0)| \ge |s_0 - t_0| - |s - t|,$$

and with (3),

$$|s_0 - t_0| < 2^{-m} + |s - t| \le 2^{-m} + 2^{-m} = 2^{-m+1}.$$

Thus $|i_0 - j_0| < 2$, so $|i_0 - j_0| \in \{0, 1\}$ and so either $s_0 = t_0$ or $(s_0, t_0) \in S_m$. In the first case, $|X_{t_0}(\omega) - X_{s_0}(\omega)| = 0$. In the second case, since $m \ge m_0(\omega)$, by (2) we have

$$|X_{t_0}(\omega) - X_{s_0}(\omega)| < 2^{-\gamma m}.$$
(4)

Define by induction

$$s_n = s_{n-1} + \sigma_{m+n} 2^{-(m+n)}, \qquad n \ge 1,$$

i.e.

$$s_n = s_0 + \sum_{m < j \le m+n} \sigma_j 2^{-j}.$$

For each $n \ge 1$, $s_n - s_{n-1} \in \{0, 2^{-(m+n)}\}$, so either $s_n = s_{n-1}$ or $(s_{n-1}, s_n) \in S_{m+n}$, and because $m + n \ge m + 1 > m_0(\omega)$, applying (2) yields

$$|X_{s_n}(\omega) - X_{s_{n-1}}(\omega)| < 2^{-\gamma(m+n)}.$$

Because the sequence σ_j is eventually equal to 0, the sequence s_n is eventually equal to s. Thus

$$\sum_{n=1}^{\infty} (X_{s_n}(\omega) - X_{s_{n-1}}(\omega)) = X_s(\omega) - X_{s_0}(\omega),$$

whence

$$|X_s(\omega) - X_{s_0}(\omega)| \le \sum_{n=1}^{\infty} |X_{s_n}(\omega) - X_{s_{n-1}}(\omega)| < \sum_{n=1}^{\infty} 2^{-\gamma(m+n)} = \frac{2^{-\gamma(m+1)}}{1 - 2^{-\gamma}}.$$

By the same reasoning we get

$$|X_t(\omega) - X_{t_0}(\omega)| < \frac{2^{-\gamma(m+1)}}{1 - 2^{-\gamma}}.$$

Using these and (4) yields

$$\begin{aligned} |X_t(\omega) - X_s(\omega)| &\leq |X_t(\omega) - X_{t_0}(\omega)| + |X_{t_0}(\omega) - X_{s_0}(\omega)| + |X_s(\omega) - X_{s_0}(\omega)| \\ &< \frac{2^{-\gamma(m+1)}}{1 - 2^{-\gamma}} + 2^{-\gamma m} + \frac{2^{-\gamma(m+1)}}{1 - 2^{-\gamma}} \\ &= C \cdot 2^{-\gamma(m+1)}, \end{aligned}$$

for $C = 2^{\gamma} + \frac{2}{1-2^{-\gamma}}$. By (3), $2^{-(m+1)} < |t-s|$, hence

$$|X_t(\omega) - X_s(\omega)| \le C|t - s|^{\gamma}.$$
(5)

This is true for all dyadic rationals $s, t \in [0, 1]$ with $|s - t| \leq 2^{-m_0(\omega)}$; when |s - t| = 0 it is immediate.

For $k \geq 1$, let $X_t^k = X_{k+t}$, which satisfies (1). By what we have worked out, there is a *P*-null set $N'_1 \in \mathscr{F}$ such that for each $\omega \in \Omega \setminus N'_1$ there is some $m'_1(\omega)$ such that $m \ge m'_1(\omega)$ and $(s,t) \in S_m$ imply that $|X_t^1(\omega) - X_s^1(\omega)| < 2^{-\gamma m}$. Let $N_1 = N_0 \cup N'_1$, which is *P*-null, and for $\omega \in \Omega \setminus N_1$ let $m_1(\omega) = \max\{m_0(\omega), m'_1(\omega)\}$. For $s, t \in D \cap [0, 1]$ with $|s - t| \le 2^{-m_1(\omega)}$, what we have worked out yields

$$|X_t(\omega) - X_s(\omega)| \le C|t - s|^{\gamma}, \qquad |X_t^1(\omega) - X_s^1(\omega)| \le C|t - s|^{\gamma}.$$

By induction, we get that for each $k \geq 1$ there are *P*-null sets $N_0 \subset N_1 \subset \cdots \subset N_k$ and for each $\omega \in \Omega \setminus N_k$ there is some $m_k(\omega)$ such that for $s, t \in D \cap [0, 1]$ with $|s - t| \leq 2^{-m_k(\omega)}$,

$$\begin{split} |X_t(\omega) - X_s(\omega)| &\leq C |t-s|^{\gamma} \\ |X_t^1(\omega) - X_s^1(\omega)| &\leq C |t-s|^{\gamma} \\ & \dots \\ |X_t^k(\omega) - X_s^k(\omega)| &\leq C |t-s|^{\gamma}. \end{split}$$

Let

$$N_{\gamma} = \bigcup_{k \ge 1} N_k,$$

which is an increasing sequence of sets whose union is *P*-null. For $\omega \in \Omega \setminus N_{\gamma}$, there is a nondecreasing sequence $m_k(\omega)$ such that when $0 \leq j \leq k$ and $s, t \in D \cap [j, j+1]$ with $|s-t| \leq 2^{-m_k(\omega)}$, it is the case that $|X_t(\omega) - X_s(\omega)| \leq C|t-s|^{\gamma}$. For $s, t \in D \cap [0, k+1]$ with $|s-t| \leq 2^{-m_k(\omega)}$, because $|s-t| \leq \frac{1}{2}$, either there is some $0 \leq j \leq k$ for which $s, t \in [j, j+1]$ or there is some $1 \leq j \leq k$ for which, say, s < j < t. In the first case, $|X_t(\omega) - X_s(\omega)| \leq C|t-s|^{\gamma}$. In the second case, because $|j-s| < |t-s| \leq 2^{-m_k(\omega)}$ and $|t-j| < |t-s| \leq 2^{-m_k(\omega)}$, we get, because $s, j \in D \cap [j-1, j]$ and $j, t \in D \cap [j, j+1]$,

$$\begin{aligned} |X_t(\omega) - X_s(\omega)| &\leq |X_t(\omega) - X_j(\omega)| + |X_j(\omega) - X_s(\omega)| \\ &\leq C|t - j|^{\gamma} + C|j - s|^{\gamma} \\ &< 2C|t - s|^{\gamma}. \end{aligned}$$

Thus for

$$C_{\gamma} = 2C = 2^{\gamma+1} + \frac{4}{1 - 2^{-\gamma}},$$

we have established that for $\omega \in \Omega \setminus N_{\gamma}$, $k \ge 1$, and $s, t \in D \cap [0, k+1]$ satisfying $|t-s| \le 2^{-m_k(\omega)}$, it is the case that

$$|X_t(\omega) - X_s(\omega)| \le C_\gamma |t - s|^\gamma.$$
(6)

This implies that for each $\omega \in \Omega \setminus N_{\gamma}$ and for $k \ge 1$, the mapping $t \mapsto X_t(\omega)$ is uniformly continuous on $D \cap [0, k+1]$. For $t \in \mathbb{R}_{\ge 0}$ and $\omega \in \Omega \setminus N_{\gamma}$, define

$$Y_t(\omega) = \lim_{\substack{s \to t \\ s \in D}} X_s(\omega).$$
(7)

For each $k \geq 0$, because $t \mapsto X_t(\omega)$ is uniformly continuous $D \cap [0, k+1] \to \mathbb{R}^d$, where $D \cap [0, k+1]$ is dense in [0, k+1] and \mathbb{R}^d is a complete metric space, the map $t \mapsto Y_t(\omega)$ is uniformly continuous $[0, k+1] \to \mathbb{R}^d$.⁵ Then $t \mapsto Y_t(\omega)$ is continuous $\mathbb{R}_{>0} \to \mathbb{R}^d$. For $\omega \in N_{\gamma}$, we define

$$Y_t(\omega) = 0, \qquad t \in \mathbb{R}_{>0}.$$

Then for each $\omega \in \Omega$, $t \mapsto Y_t(\omega)$ is continuous $\mathbb{R}_{\geq 0} \to \mathbb{R}^d$. For $t \in \mathbb{R}_{\geq 0}$, $\omega \mapsto Y_t(\omega)$ is the pointwise limit of the sequence of mappings $\omega \mapsto X_s(\omega)$ as $s \to t, s \in D$. For each $s \in D, \omega \mapsto X_s(\omega)$ is measurable $\mathscr{F} \to \mathscr{B}_{\mathbb{R}^d}$, which implies that $\omega \mapsto Y_t(\omega)$ is itself measurable $\mathscr{F} \to \mathscr{B}_{\mathbb{R}^d}$.⁶ Namely, $(Y_t)_{t \in \mathbb{R}_{\geq 0}}$ is a continuous stochastic process.

We must show that Y is a modification of X. For $s \in D$, for all $\omega \in \Omega \setminus N_{\gamma}$ we have $Y_s(\omega) = X_s(\omega)$. For $t \in \mathbb{R}_{\geq 0}$, there is a sequence $s_n \in D$ tending to t, and then for all $\omega \in \Omega \setminus N_{\gamma}$ by (7) we have $X_{s_n}(\omega) \to Y_t(\omega)$. $P(N_{\gamma}) = 0$, namely, X_{s_n} converges to Y_t almost surely. Because X_{s_n} converges to Y_t almost surely and P is a probability measure, X_{s_n} converges in measure to Y_t .⁷ On the other hand, for $\eta > 0$, by Chebyshev's inequality and (1),

$$P\{|X_{s_n} - X_t| \ge \eta\} \le \eta^{-\alpha} E(|X_{s_n} - X_t|^{\alpha}) \le \eta^{-\alpha} \cdot c|s_n - t|^{1+\beta},$$

and because this is true for each $\eta > 0$, this shows that X_{s_n} converges in measure to X_t . Hence, the limits Y_t and X_t are equal as equivalence classes of measurable functions $\Omega \to \mathbb{R}^{d,8}$ That is, $P\{Y_t = X_t\} = 1$. This is true for each $t \in \mathbb{R}_{\geq 0}$, showing that Y is a modification of X, completing the proof. \Box

3 Hölder continuity

Let (X, d) and (Y, ρ) be metric spaces, let $0 < \gamma < 1$, and let $\phi : X \to Y$ be a function. For $x_0 \in X$, we say that ϕ is γ -Hölder continuous at x_0 if there is some $0 < \epsilon_{x_0} < 1$ and some C_{x_0} such that when $d(x, x_0) < \epsilon_{x_0}$,

$$\rho(\phi(x), \phi(x_0)) \le C_{x_0} d(x, x_0)^{\gamma}$$

We say that ϕ is **locally** γ -Hölder continuous if for each $x_0 \in X$ there is some $0 < \epsilon_{x_0} < 1$ and some C_{x_0} such that when $d(x, x_0) < \epsilon_{x_0}$ and $d(y, x_0) < \epsilon_{x_0}$,

$$\rho(\phi(x), \phi(y)) \le C_{x_0} d(x, y)^{\gamma}$$

We say that ϕ is **uniformly** γ -Hölder continuous if there is some C such that for all $x, y \in X$,

$$\rho(\phi(x),\phi(y)) \le Cd(x,y)^{\gamma}$$

⁵Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 77, Lemma 3.11.

⁶Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitch-hiker's Guide*, third ed., p. 142, Lemma 4.29.

⁷Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 479, Theorem 13.37.

⁸http://individual.utoronto.ca/jordanbell/notes/L0.pdf

We establish properties of Hölder continuous functions in the following.⁹

Lemma 3. Let V be a nonempty subset of $\mathbb{R}_{\geq 0}$, let $0 < \gamma < 1$, and let $f : V \to \mathbb{R}^d$ be locally γ -Hölder continuous.

- 1. If $0 < \gamma' < \gamma$ then f is locally γ' -Hölder continuous.
- 2. If V is compact, then f is uniformly γ -Hölder continuous.
- 3. If V is an interval of length T > 0 and there is some $\epsilon > 0$ and some C such that for all $s, t \in V$ with $|t s| \le \epsilon$ we have

$$|f(t) - f(s)| \le C|t - s|^{\gamma},\tag{8}$$

then

$$|f(t) - f(s)| \le C \left\lceil \frac{T}{\epsilon} \right\rceil^{1-\gamma} |t-s|^{\gamma}, \qquad s, t \in V.$$

Proof. For $t_0 \in \mathbb{R}_{\geq 0}$, there is some $0 < \epsilon_{t_0} < 1$ and some C_{t_0} such that when $|t - t_0| < \epsilon_{t_0}$,

$$|f(t) - f(t_0)| \le C_{t_0} |t - t_0|^{\gamma} \le C_{t_0} |t - t_0|^{\gamma'}$$

showing that f is locally γ' -Hölder continuous.

With the metric inherited from $\mathbb{R}_{\geq 0}$, V is a compact metric space. For $t \in V$ and $\epsilon > 0$, write

$$B_{\epsilon}(t) = \{ v \in V : |v - t| < \epsilon \},\$$

which is an open subset of V. Because f is locally γ -Hölder continuous, for each $t \in V$ there is some $0 < \epsilon_t < 1$ and some C_t such that for all $u, v \in B_{\epsilon_t}(t)$,

$$|f(u) - f(v)| \le C_t |u - v|^{\gamma}.$$
(9)

Write $U_t = B_{\epsilon_t}(t)$. Because $t \in U_t$, $\{U_t : t \in V\}$ is an open cover of V, and because V is compact there are $t_1, \ldots, t_n \in V$ such that $\mathfrak{U} = \{U_{t_1}, \ldots, U_{t_n}\}$ is an open cover of V. Because V is a compact metric space, there is a **Lebesgue number** $\delta > 0$ of the open cover \mathfrak{U} :¹⁰ for each $t \in V$, there is some $1 \leq i \leq n$ such that $B_{\delta}(t) \subset U_{t_i}$. Let

$$C = \max\{C_{t_1}, \dots, C_{t_n}, 2 \|f\|_u \, \delta^{-\gamma}\}$$

For $s, t \in V$ with $|t - s| < \delta$, i.e. $s \in B_{\delta}(t)$, there is some $1 \leq i \leq n$ with $s, t \in U_{t_i}$. By (9),

$$|f(s) - f(t)| \le C_{t_i}|s - t|^{\gamma} \le C|s - t|^{\gamma}.$$

On the other hand, for $s, t \in V$ with $|t - s| \ge \delta$,

$$|f(s) - f(t)| \le 2 \, \|f\|_u \le 2 \, \|f\|_u \left(\frac{|s-t|}{\delta}\right)^{\gamma} = 2 \, \|f\|_u \, \delta^{-\gamma} |s-t|^{\gamma} \le C |s-t|^{\gamma}.$$

⁹Achim Klenke, Probability Theory: A Comprehensive Course, p. 448, Lemma 21.3.

¹⁰Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 85, Lemma 3.27.

Thus, for all $s, t \in V$,

$$|f(s) - f(t)| \le C|s - t|^{\gamma},$$

showing that f is uniformly γ -Hölder continuous.

Let $n = \lceil \frac{T}{\epsilon} \rceil$. For $s, t \in V$, because V is an interval of length $T, |s - t| \leq T \leq \epsilon n$, and then applying (8), because $\frac{|t-s|}{n} \leq \epsilon$,

$$\begin{aligned} |f(t) - f(s)| &= \left| \sum_{k=1}^{n} f\left(s + (t-s)\frac{k}{n}\right) - f\left(s + (t-s)\frac{k-1}{n}\right) \right| \\ &\leq \sum_{k=1}^{n} \left| f\left(s + (t-s)\frac{k}{n}\right) - f\left(s + (t-s)\frac{k-1}{n}\right) \right| \\ &\leq \sum_{k=1}^{n} C \left| \frac{t-s}{n} \right|^{\gamma} \\ &= Cn^{1-\gamma} |t-s|^{\gamma}. \end{aligned}$$

The following theorem does not speak about a version of a stochastic process. Rather, it shows what can be said about a stochastic process that satisfies (1) when almost all of its sample paths are continuous.¹¹

Theorem 4. If a stochastic process $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ with state space \mathbb{R}^d satisfies (1) and for almost every $\omega \in \Omega$ the map $t \mapsto X_t(\omega)$ is continuous $\mathbb{R}_{\geq 0} \to \mathbb{R}^d$, then for almost every $\omega \in \Omega$, for every $0 < \gamma < \frac{\beta}{\alpha}$, the map $t \mapsto X_t(\omega)$ is locally γ -Hölder continuous.

Proof. There is a *P*-null set $N \in \mathscr{F}$ such that for $\omega \in \Omega \setminus N$, the map $t \mapsto X_t(\omega)$ is continuous $\mathbb{R}_{\geq 0} \to \mathbb{R}^d$. For each $0 < \gamma < \frac{\beta}{\alpha}$, we have established in (6) that there is a *P*-null set $N_{\gamma} \in \mathscr{F}$ such that for $k \geq 1$ there is some $m_k(\omega)$ such that when $s, t \in D \cap [0, k+1]$ and $|t-s| \leq 2^{-m_k(\omega)}$,

$$|X_t(\omega) - X_s(\omega)| \le C_\gamma |t - s|^\gamma, \tag{10}$$

where $C_{\gamma} = 2^{\gamma+1} + \frac{4}{1-2-\gamma}$. Write $\delta(k,\omega) = 2^{-m_k(\omega)}$, and let $M_{\gamma} = N_{\gamma} \cup N$. For $\omega \in \Omega \setminus M_{\gamma}$, the map $t \mapsto X_t(\omega)$ is continuous $\mathbb{R}_{\geq 0} \to \mathbb{R}^d$. For $k \geq 1$ and for $s, t \in [0, k+1]$ satisfying $|s-t| \leq \delta(k,\omega)$, say with $s \leq t$, let $m = \frac{t-s}{2}$ and let $s \leq s_n \leq t$ be a sequence of dyadic rationals decreasing to s and let $s \leq t_n \leq t$ be a sequence of dyadic rationals increasing to t. Then $s_n, t_n \in D \cap [0, k+1]$ and $|s_n - t_n| \leq |s-t| \leq \delta(k,\omega)$, so by (10),

$$|X_{t_n}(\omega) - X_{s_n}(\omega)| \le C_{\gamma} |t_n - s_n|^{\gamma}.$$

¹¹Heinz Bauer, *Probability Theory*, p. 338, Theorem 39.4.

Because $\omega \in \Omega \setminus N$, $X_{t_n}(\omega) \to X_t(\omega)$ and $X_{s_n}(\omega) \to X_s(\omega)$, so

$$\begin{aligned} |X_t(\omega) - X_s(\omega)| &\leq |X_t(\omega) - X_{t_n}(\omega)| + |X_{t_n}(\omega) - X_{s_n}(\omega)| + |X_s(\omega) - X_{s_n}(\omega)| \\ &\leq |X_t(\omega) - X_{t_n}(\omega)| + C_{\gamma}|t_n - s_n|^{\gamma} + |X_s(\omega) - X_{s_n}(\omega)| \\ &\downarrow C_{\gamma}|t - s|^{\gamma}, \end{aligned}$$

thus

$$|X_t(\omega) - X_s(\omega)| \le C_{\gamma} |t - s|^{\gamma},$$

showing that for $0 < \gamma < \frac{\beta}{\alpha}$ and $\omega \in \Omega \setminus M_{\gamma}$, the map $t \mapsto X_t(\omega)$ is locally $\gamma\text{-H\"older}$ continuous.

Let $0 < \gamma_n < \frac{\beta}{\alpha}$ be a sequence increasing to $\frac{\beta}{\alpha}$ and let

$$M = \bigcup_{n \ge 1} M_{\gamma_n},$$

which is a *P*-null set. Let $0 < \gamma < \frac{\beta}{\alpha}$ and let *n* be such that $\gamma_n \geq \gamma$. For $\omega \in \Omega \setminus M$, the map $t \mapsto X_t(\omega)$ is locally γ_n -Hölder continuous, and because $\gamma \leq \gamma_n$ this implies that the map is locally γ -Hölder continuous, completing the proof.

Bauer attributes the following theorem to Kolgmorov and Chentsov.¹² It does not merely state that for any $0 < \gamma < \frac{\beta}{\alpha}$ there is a modification that is locally γ -Hölder continuous, but that there is a modification that for all $0 < \gamma < \frac{\beta}{\alpha}$ is locally γ -Hölder continuous.¹³

Theorem 5 (Kolmogorov-Chentsov theorem). If a stochastic process $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ with state space \mathbb{R}^d satisfies (1), then X has a modification Y such that for all $\omega \in \Omega$ and $0 < \gamma < \frac{\beta}{\alpha}$, the path $t \mapsto Y_t(\omega)$ is locally γ -Hölder continuous.

Proof. Applying the Kolmogorov continuity theorem, there is a continuous modification Z of X that also satisfies (1). By Theorem 4, there is a P-null set Msuch that for $\omega \in \Omega \setminus M$ and $0 < \gamma < \frac{\beta}{\alpha}$, the map $t \mapsto Z_t(\omega)$ is locally γ -Hölder continuous. For $t \in \mathbb{R}_{>0}$, define

$$Y_t(\omega) = \begin{cases} Z_t(\omega) & \omega \in \Omega \setminus M \\ 0 & \omega \in M, \end{cases}$$

i.e. $Y_t = \mathbb{1}_{\Omega \setminus M} Z_t$, which is measurable $\mathscr{F} \to \mathscr{B}_{\mathbb{R}^d}$, and so $(Y_t)_{t \in \mathbb{R}_{>0}}$ is a stochastic process. For every $\omega \in \Omega$ and $0 < \gamma < \frac{\beta}{\alpha}$, the map $t \mapsto Y_t(\omega)$ is locally γ -Hölder continuous. For $t \in \mathbb{R}_{>0}$,

 $\{X_t \neq Y_t\} = \{X_t \neq Y_t, X_t = Z_t\} \cup \{X_t \neq Y_t, X_t \neq Z_t\} \subset \{Y_t \neq Z_t\} \cup \{X_t \neq Z_t\}.$

Because $P(Y_t \neq Z_t) = P(M) = 0$ and $P(X_t \neq Z_t) = 0$, since Z is a modification of X, we get $P(X_t \neq Y_t) = 0$, namely, Y is a modification of X.

¹²Nikolai Nikolaevich Chentsov, 1930–1993, obituary in Russian Math. Surveys 48 (1993), no. 2, 161–166. ¹³Heinz Bauer, *Probability Theory*, p. 339, Corollary 39.5.