Functions of bounded variation and a theorem of Khinchin

Jordan Bell

March 12, 2016

For $q \geq 1$ let

$$
\mathscr{A}_{q}=\left\{\frac{a}{q}: 0 \leq a \leq q, \operatorname{gcd}(a, q)=1\right\} .
$$

The sets \mathscr{A}_{q} are pairwise disjoint. In particular $0 \in \mathscr{A}_{1}$ and $0 \notin \mathscr{A}_{q}$ for $q>1$. We have

$$
[0,1] \cap \mathbb{Q}=\bigcup_{q \geq 1} \mathscr{A}_{q} .
$$

Write μ for Lebesgue measure on $[0,1]$.
The following is a version of a theorem of Khinchin about continued fractions. ${ }^{1}$ In the literature on Diophantine approximation it is usually proved with the Borel-Cantelli lemma, rather than the machinery of bounded variation and almost everywhere differentiability.

Theorem 1 (Khinchin). Let $F: \mathbb{Z}_{\geq 1} \rightarrow \mathbb{R}_{>0}$ and let A be the set of those $x \in[0,1] \backslash \mathbb{Q}$ such that there are infinitely many q for which there is some $\frac{a}{q} \in \mathscr{A}_{q}$ satisfying

$$
\left|\alpha-\frac{a}{q}\right|<\frac{1}{q F(q)} .
$$

If

$$
\sum_{q=1}^{\infty} \frac{1}{F(q)}<\infty
$$

then $\mu(A)=0$.
Proof. Define $f:[0,1] \rightarrow \mathbb{R}_{>0}$ by

$$
f(x)= \begin{cases}\frac{1}{q F(q)} & x \in \mathscr{A}_{q} \\ 0 & x \in[0,1] \backslash \mathbb{Q}\end{cases}
$$

Let $N \geq 1$. If

$$
0=t_{0}<t_{1}<\cdots<t_{N}=1
$$

[^0]then
\[

$$
\begin{aligned}
\sum_{j=0}^{N} f\left(t_{j}\right) & =\sum_{q=1}^{\infty} \sum_{j=0}^{N} f\left(t_{j}\right) \cdot 1_{\mathscr{A}_{q}}\left(t_{j}\right) \\
& =\sum_{q=1}^{\infty} \sum_{j=0}^{N} \frac{1}{q F(q)} \cdot 1_{\mathscr{\Omega}_{q}}\left(t_{j}\right) \\
& \leq \sum_{q=1}^{\infty} \frac{1}{F(q)},
\end{aligned}
$$
\]

and so

$$
\sum_{j=1}^{N}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \leq 2 \sum_{j=1}^{N} f\left(t_{j}\right) \leq 2 \sum_{q=1}^{\infty} \frac{1}{F(q)}
$$

Therefore

$$
V(f) \leq 2 \sum_{q=1}^{\infty} \frac{1}{F(q)}<\infty
$$

by hypothesis, where $V(f)$ denotes the variation of f on $[0,1]$. The set D_{f} of points at which f is differentiable is a Borel set, ${ }^{2}$ and because f has bounded variation, $\mu\left(D_{f}\right)=1 .^{3}$ Let $E=D_{f} \backslash \mathbb{Q}$, whose measure is $\mu(E)=1$. Now let $x \in E$. There are $x_{n} \in[0,1] \backslash \mathbb{Q}, x_{n} \neq x, x_{n} \rightarrow x$, with which

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} \frac{f\left(x_{n}\right)-f(x)}{x_{n}-x}=\lim _{n \rightarrow \infty} \frac{0-0}{x_{n}-x}=0
$$

If $\frac{a_{n}}{q_{n}} \rightarrow x$ with $\frac{a_{n}}{q_{n}} \in \mathscr{A}_{q_{n}}$, then

$$
\frac{f\left(a_{n} / q_{n}\right)-f(x)}{\frac{a_{n}}{q_{n}}-x}=\frac{1}{q_{n} F\left(q_{n}\right)\left(\frac{a_{n}}{q_{n}}-x\right)} \rightarrow f^{\prime}(x)=0
$$

so $q_{n} F\left(q_{n}\right)\left|\frac{a_{n}}{q_{n}}-x\right| \rightarrow \infty$. There is thus some N such that if $n \geq N$ then

$$
q_{n} F\left(q_{n}\right)\left|\frac{a_{n}}{q_{n}}-x\right| \geq 1
$$

i.e. if $n \geq N$ then

$$
\left|x-\frac{a_{n}}{q_{n}}\right| \geq \frac{1}{q_{n} F\left(q_{n}\right)}
$$

Assume by contradiction that $x \in A$, so there are $\frac{a_{n}}{q_{n}} \in \mathscr{A}_{q_{n}}, \frac{a_{n}}{q_{n}} \neq \frac{a_{m}}{q_{m}}$ for $n \neq m$, with

$$
\left|x-\frac{a_{n}}{q_{n}}\right|<\frac{1}{q_{n} F\left(q_{n}\right)}
$$

[^1]and because $\sum_{q=1}^{\infty} \frac{1}{F(q)}<\infty$ it holds that $F(q) \rightarrow \infty$ and thus $\frac{1}{q_{n} F\left(q_{n}\right)} \rightarrow 0$. This means that $x-\frac{a_{n}}{q_{n}} \rightarrow 0$, which implies that $x \notin E$. We have shown that if $x \in A$ then $x \notin E$, so $A \subset[0,1] \backslash E$ and hence $\mu(A) \leq 1-\mu(E)=0$.

[^0]: ${ }^{1}$ John J. Benedetto and Wojciech Czaja, Integration and Modern Analysis, p. 183, Theorem 4.3.3.

[^1]: ${ }^{2}$ V. I. Bogachev, Measure Theory, volume 1, p. 371, Theorem 5.8.12.
 ${ }^{3}$ V. I. Bogachev, Measure Theory, volume 1, p. 335, Theorem 5.2.6.

