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1 Introduction

I hope eventually to expand these notes into a standalone presentation of KAM
that presents a precise formulation of the theorem and gives detailed proofs of
everything. There are few presentations of KAM in the literature that give a
precise formulation of the theorem, and even those that give precise formulations
such as [6] and [7] glide over some details. Gallavotti [4] explains the history of
quasi-periodic phenomena in celestial mechanics.

Let Tn = Rn/Zn.
For x, y ∈ Rn, let ⟨x, y⟩ =

∑n
j=1 xjyj . Let ∥x∥ =

∑n
j=1 x

2
j and let ∥x∥∞ =

max1≤j≤n |xj |. For x, y ∈ Rn, we have |⟨x, y⟩| ≤ n∥x∥∞∥y∥∞.
If (M,ω) is a symplectic manifold and H ∈ C∞(M), then the Hamiltonian

vector field with energy function H is the vector field XH on M uniquely deter-
mined by the condition ωx(XH(x), v) = (dH)(x)(v) for all points x ∈ M and
tangent vectors v ∈ TxM .

We say that (q1, . . . , qn, p1, . . . , pn) are canonical coordinates for (M,ω) if
ω =

∑n
j=1 dq

j ∧ dpj . If (q1, . . . , qn, p1, . . . , pn) are canonical coordinates for
(M,ω) and H ∈ C∞(M) then

XH(x) = ((∂pH)(x), (−∂qH)(x))

for all x ∈M , where

∂qH =
(∂H
∂q1

, . . . ,
∂H

∂qn

)
, ∂pH =

(∂H
∂p1

, . . . ,
∂H

∂pn

)
.

Let ϕ be the flow of XH on M . Then

d(qj(ϕt(x)))

dt
=
∂H

∂pj
(ϕt(x)),

d(pj(ϕt(x)))

dt
= −∂H

∂qj
(ϕt(x)),

called Hamilton’s equations.

2 Action-angle coordinates

Let (M,ω) be a 2n-dimensional symplectic manifold. Let f1, . . . , fn ∈ C∞(M).
If {fi, fj} = 0 for all 1 ≤ i, j ≤ n (namely the functions are in involution) and
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if at each point in M the differentials of the functions are linearly independent
in the cotangent space at that point, then we say that the set of functions is
completely integrable.

We define the momentum map F :M → Rn by F = f1 × · · · × fn.
We say that F is locally trivial at a value y0 in its range if there is a neigh-

borhood U of y0 such that for all y ∈ U there is a smooth map hy : F−1(U) →
F−1(y0) such that F × hy is a diffeomorphism from F−1(U) to U × F−1(y0).
The bifurcation set of F is the set ΣF of y0 ∈ Rn at which F fails to be locally
trivial.

The following theorem is proved in [1, Theorem 5.2.21].

Theorem 1. Let U ⊆ Rn be open. If F |F−1(U) : F−1(U) → U is a proper map
then each of the vector fields Xfi |F−1(U) is complete, U ⊆ Rn \ ΣF , and the
fibers of the locally trivial fibration F |F−1(U) are disjoint unions of manifolds
each diffeomorphic with Tn.

Let ν ∈ Rn, and define the linear flow F on Rn by Ft(v) = v + tν. Let
π : Rn → Tn be the projection map and let ϕt : Tn → Tn be such that
π ◦ Ft = ϕt ◦ π; if π(v1) = π(v2) then π ◦ Ft(v1) = π ◦ Ft(v2), so such a map
exists, and is clearly unique. A flow ϕ on Tn induced by a linear flow on Rn is
called a quasi-periodic flow.

Say that ν ̸= µ, and let ϕ be the flow induced by ν and ψ be the flow
induced by µ. Then for some i, νi ̸= µi and for any t such that t(νi − µi) ̸∈ Z,
ϕt(θ) ̸= ψt(θ) for any θ ∈ Tn. Hence ϕ ̸= ψ. Thus a quasi-periodic flow is
induced by a unique vector ν ∈ Rn. We call ν the frequency vector of the flow
ϕ.

We say that ν ∈ Rn is resonant if there is some 0 ̸= k ∈ Zn such that
⟨k, ν⟩ = 0, and we say that it is nonresonant otherwise.

Let ϕ be the quasi-periodic flow on Tn with frequency vector ν ∈ Rn. It can
be shown that each orbit of ϕ is dense in Tn if and only if ν is nonresonant.
This is proved in [1, pp. 818–820]; that each orbit of ϕ is dense in Tn if ν is
nonresonant is proved in [5, Theorem 444].

Let H = f1; we call this distinguished function the Hamiltonian, and we are
concerned with the flow of the Hamiltonian vector field XH .

The following theorem is proved in [1, Theorem 5.2.24].

Theorem 2. Let c be in the range of F , let I0c denote a connected component
of F−1(c), and let ϕ be the flow of XH . Then there is a quasiperiodic flow ψ on
Tn and a diffeomorphism g : Tn → I0c such that g ◦ ψt = ϕt|I0c ◦ g.

Let R2n = {q1, . . . , qn, p1, . . . , pn} and let ω =
∑n
j=1 dq

j ∧ dpj . Let J =[
0 I
−I 0

]
, where I is the n × n identity matrix. For u, v ∈ R2n we have that

ω(u, v) = ⟨u, Jv⟩.
Let Bn be an open ball in Rn. Bn × Tn is a symplectic submanifold of

R2n. We define coordinates Ij = qj and θj = pj + Z, j = 1, . . . , n. If H ∈
C∞(Bn × Tn) does not depend on θ1, . . . , θn then we say that it has action-
angle coordinates in Bn × Tn.
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If H ∈ C∞(Bn × Tn) admits action-angle coordinates (I, θ) then for all
x ∈ Bn × Tn we have

d(Ij(ϕt(x)))

dt
=
∂H

∂θj
(ϕt(x)) = 0,

i.e. Ij(ϕt(x)) = Ij(x) for all t, and as H depends only on I this gives

d(θj(ϕt(x)))

dt
= −∂H

∂Ij
(ϕt(x)) = −∂H

∂Ij
(x) = νj ,

where ν = ν(I(x)). We integrate this equation from 0 to t and get

θj(ϕt(x))− θj(x) = tνj .

Thus for x ∈ Bn×Tn, given I(x) the trajectory ϕt(x) of x under the Hamiltonian
flow of H can be explicitly seen if we know ν(I(x)). We say that a value of I
determines an invariant torus for the Hamiltonian flow of H.

If (M,ω) is a symplectic manifold and H ∈ C∞(M), we say that H admits
action-angle coordinates (I, θ) on an open set U ⊂M if there exists a symplectic
diffeomorphism ψ : U → Bn×Tn such thatH◦ψ−1 has action-angle coordinates
(I, θ) in Bn × Tn. If H admits action-angle coordinates, then one can check
that the push-forward ψ∗XH is the Hamiltonian vector field XH◦ψ−1 , so that

ψ∗XH = −
n∑
j=1

∂(H ◦ ψ−1)

∂Ij

∂

∂θj
.

Let f1, . . . , fn ∈ C∞(R2n). If the set {f1, . . . , fn} is completely integrable,
with H = f1, then for any open set U ⊆ R2n \ ΣF for which F−1(c) = Tn for
all c ∈ U , Abraham and Marsden [1, pp. 398–400] find action-angle coordinates
in U . Here F = f1 × · · · fn, the momentum map. This construction is also
explained by Arnold [2, pp. 282–284].

Suppose that H ∈ C∞(Bn × Tn) has action-angle coordinates (I, θ), and
assume that for all I ∈ Bn,

det(∂2IH(I)) ̸= 0.

Then by the inverse function theorem, for every I ∈ Bn there is a neighborhood
U of I and a neighborhood V of ν = ∂IH(I) such that ∂IH : U → V is a
diffeomorphism. In U × Tn we can use ν and θ as coordinates.

For ν ∈ Rn, let gν = {k ∈ Zn : ⟨ν, k⟩ = 0}, and let rank(gν) be the rank of
the Z-module gν , i.e. the maximal number of elements of gν that are linearly
independent over Z. The proof of the following theorem follows [8, Proposition
2.1].

Theorem 3. Let ν ∈ Ω and let r = rank(gν). In the torus with frequency ν, each
trajectory is dense in some (n− r)-dimensional subtorus and the n-dimensional
torus is foliated by these (n− r)-dimensional tori.

3



Proof. There exists a basis k1, . . . , kr of gν and vectors k∗1 , . . . , k
∗
n−r ∈ Zn such

that the n×n matrix K0 with rows k∗1 , . . . , k
∗
n−r, k1, . . . , kr, has determinant 1.

(I should show why such a basis exists.) Let K0 =

[
K∗

K

]
. K∗ is an (n− r)× n

matrix and K is an r × n matrix.
Let q = K0θ. Since det(K0) = 1, K0 is invertible over Z. The coordinate θ

is only determined up to Zn, and for q1 − q2 ∈ Zn then also θ1 − θ2 ∈ Zn. Thus
q = K0θ are coordinates on Tn. The equation θ̇ = ν can be written using the q
coordinates as q̇ = K0ν. Then

K0ν =

[
K∗

K

]
ν =

[
K∗ν
Kν

]
=

[
K∗ν
0

]
.

Let ν∗ = K∗ν.
We see that {l ∈ Zn : l1 = · · · = ln−r = 0} ⊆ gK0ν ; since they both

have rank r, they are equal. It follows that ν∗ ∈ Rn−r is nonresonant. Hence
any trajectory on the n-dimensional torus with frequency ν is dense in the
r-dimensional torus {q ∈ Tn : qn−r+1 = · · · = qn = constant}.

3 Diophantine frequency vectors

For c > 0 and γ ≥ 0 we define

Dn(c, γ) = {ν ∈ Rn : |⟨k, ν⟩| ≥ 1

c∥k∥γ∞
for all k ∈ Zn}.

We further define Dn(γ) =
⋃
c>0Dn(c, γ).

Theorem 4. For any ν ∈ Rn and for any positive integer K, there is some
0 ̸= k ∈ Zn with ∥k∥∞ ≤ 2K such that

|⟨k, ν⟩| ≤ n∥ν∥∞
(2K)n−1

.

Proof. Let BK = {k ∈ Zn : 0 < ∥k∥∞ ≤ K}. The set BK has (2K + 1)n − 1
elements. For k ∈ BK we have

|⟨k, ν⟩| ≤ n∥k∥∞∥ν∥∞ ≤ nK∥ν∥∞.

Let A = nK∥ν∥∞.
Let M = (2K + 1)n − 2. In the set {|⟨k, ν⟩| : k ∈ BK}, there are two

elements that are in same interval [ (j−1)A
M , jAM ], j = 1, . . . ,M , since BK has

M + 1 elements and there are M such intervals. That is, there are k′, k′′ ∈ BK
such that |⟨k′, ν⟩|, |⟨k′′, ν⟩| ∈ [ (j−1)A

M , jAM ] for some j. Hence |⟨k′, ν⟩ − ⟨k′′, ν⟩| ≤
A
M = nK∥ν∥∞

(2K+1)n−2 .

One can show by induction that for all n ≥ 1, K
(2K+1)n−2 ≤ 1

(2K)n−1 . There-

fore for k = k′ − k′′ we have

|⟨k, ν⟩| ≤ n∥ν∥∞
(2K)n−1

,
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Finally, ∥k∥∞ ≤ ∥k′∥∞ + ∥k′′∥∞ ≤ 2K.

Corollary 5. If γ < n− 1 then Dn(γ) = ∅.

Proof. Let c > 0. Suppose that there is some ν ∈ Dn(c, γ). Let K be the least
integer such that (2K)n−1−γ is greater than 2cn∥ν∥∞; since n− 1− γ > 0 such
a K exists.

By Theorem 4, there is some 0 ̸= k ∈ Zn with

|⟨k, ν⟩| ≤ n∥ν∥∞
(2K)n−1

.

Then

|⟨k, ν⟩| ≤ n∥ν∥∞(2K)−γ

(2K)n−1−γ

≤ n∥ν∥∞(2K)−γ

2cn∥ν∥∞

=
1

2c(2K)γ

≤ 1

2c(4∥k∥∞)γ

<
1

c∥k∥γ∞
,

contradicting that ν ∈ Dn(c, γ). Therefore for all c > 0, Dn(c, γ) = ∅.

Treschev and Zubelevich give a construction for points in Dn(c, n − 1) for
sufficiently large c [8, Theorem 9.2]. Thus there is some C(n) such that for all
c ≥ C(n), Dn(c, n − 1) ̸= ∅. It is clear that for γ′ ≥ γ we have the inclusion
Dn(c, γ) ⊆ Dn(c, γ

′). Hence this construction also shows that Dn(c, γ) ̸= ∅
for all γ ≥ n − 1 and c ≥ C(n). However this construction does not show that
m(Dn(c, n−1)) > 0 for c ≥ C(n). Indeed, one can show that m(Dn(n−1)) = 0,
but also that the set Dn(n− 1) has Hausdorff dimension n [7, p. 5].

Our proof of the following theorem expands on [8, Theorem 9.3]. Let
Qn(L) = {ν ∈ Rn : ∥ν∥∞ ≤ L

2 }, the cube in Rn of edge length L. Let m
be n-dimensional Lebesgue measure. We will use the fact that the maximal
n−1 dimensional area of the intersection of Qn(L) and a hyperplane is

√
2Ln−1

[3].

Theorem 6. Let L > 0. For γ > n− 1 and c > 0,

m(Qn(L) \Dn(c, γ)) ≤
4
√
2n(3L)n−1

c

(
1− 1

γ − n+ 1

)
.
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Proof. Let Qn = Qn(L). Let Πk = {ν ∈ Rn : |⟨ν, k⟩| < 1
c∥k∥γ

∞
}. Let ν ∈

Qn \ Dn(c, γ). Then there is some k ̸= 0 such that |⟨k, ν⟩| < 1
c∥k∥γ

∞
, and so

ν ∈ Πk. Thus

Qn \Dn(c, γ) ⊆
⋃
k ̸=0

(Qn ∩Πk),

so
m(Qn \Dn(c, γ)) ≤

∑
k ̸=0

m(Qn ∩Πk).

Let k ̸= 0. Πk is the region bounded by the two hyperplanes π1 = {ν ∈ Rn :
⟨ν, k⟩ = 1

c∥k∥γ
∞
} and π2 = {ν ∈ Rn : ⟨ν, k⟩ = − 1

c∥k∥γ
∞
}. Let p1 = k

c∥k∥γ
∞∥k∥ ∈ π1

and p2 = − k
c∥k∥γ

∞∥k∥π2. For any two points ν1, ν2 ∈ π1 we can check that

⟨p1 − p2, ν1 − ν2⟩ = 0, and for any two points ν1, ν2 ∈ π2 we can check that
⟨p1 − p2, ν1 − ν2⟩ = 0. Thus the vector p1 − p2 is orthogonal to each of the
hyperplanes π1 and π2. It follows that the distance between the hyperplanes

π1 and π2 is the distance between the points p1 and p2, which is 2 · ∥k∥
c∥k∥γ

∞∥k∥2 .

Since ∥k∥ ≥ ∥k∥∞, this is ≤ 2

c∥k∥γ+1
∞

. Therefore

m(Qn ∩Πk) ≤
2

c∥k∥γ+1
∞

·
√
2Ln−1,

where we use the fact that the maximal n−1 dimensional area of the intersection
of Qn = Qn(L) and a hyperplane is

√
2Ln−1 [3].

For each positive integer l, the hypercube {k ∈ Zn : ∥k∥∞ = l} has 2n faces,
on each of which there are (2l+1)n−1 points with integer coordinates. Hence for
each integer positive integer l, we have #{k ∈ Zn : ∥k∥∞ = l} ≤ 2n(2l+ 1)n−1.

Therefore

m(Qn \Dn(c, γ)) ≤
∑
k ̸=0

m(Qn ∩Πk)

≤
∑
k ̸=0

2
√
2Ln−1

c∥k∥γ+1
∞

=

∞∑
l=1

∑
∥k∥∞=l

2
√
2Ln−1

clγ+1

≤
∞∑
l=1

2n(2l + 1)n−1 2
√
2Ln−1

clγ+1

≤
∞∑
l=1

2n(3l)n−1 2
√
2Ln−1

clγ+1

=
4
√
2n(3L)n−1

c

∞∑
l=1

1

lγ−n+2
.
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Since the terms in the sum are positive and decreasing, we can estimate the
sum using an integral:

∞∑
l=1

1

lγ−n+2
≤ 1 +

∫ ∞

1

dx

xγ−n+2
= 1 +

1

γ − n+ 1
,

finishing the proof.

Corollary 7. If γ > n− 1 then m(Rn \Dn(γ)) = 0.

Proof. Let L > 0. For every c > 0,m(Qn(L)\Dn(γ)) ≤ m(Qn(L)\Dn(c, γ)). By
Theorem 6, m(Qn(L) \Dn(c, γ)) → 0 as c→ ∞. Hence m(Qn(L) \Dn(γ)) = 0.
But then

m(Rn \Dn(γ)) = lim
L→∞

m(Qn(L) \Dn(γ)) = lim
L→∞

0 = 0.

Fix γ > n − 1. Let α = 1
c . Let Aα be an α-neighborhood of the boundary

of Ω. We will make whatever assumption about ∂Ω we need in order to get
m(Aα) = O(α).

Suppose that L is sufficiently large so that Ω ⊆ Qn(L). Then Theorem 6
gives us that m(Ω \Dn(c, γ)) = O(α).

Let Ωα = Dn(c, γ)∩ (Ω \Aα). Since Ω \Ωα = (Ω \Dn(c, γ))∪ (Ω∩Aα), we
have m(Ω \ Ωα) = O(α).

4 Statement of KAM

If we have a Hamiltonian system which admits action-angle coordinates in Bn×
Tn, then the trajectories of points in phase space are constrained to lie on
invariant tori. Moreover, on these tori the dynamics of the system are quasi-
periodic; a priori we don’t have a reason to expect that the dynamics should be
so nice just because the trajectories lie on tori. But a generic Hamiltonian on
the same phase space (I would like to make this notion precise) does not admit
action-angle coordinates. The KAM theorem is a statement about the dynamics
induced by making a sufficiently small change to a Hamiltonian. If we perturb a
Hamiltonian which admits action-angle coordinates to one which probably does
not, if the perturbation is sufficiently small, then most of the trajectories of
points under the flow of the new Hamiltonian will also lie on tori. In some sense
which I want to clarify, the invariant tori of the new Hamiltonian are close to
the invariant tori of the Hamiltonian that admits action-angle coordinates. It is
not clear to me how an invariant torus of the old Hamiltonian transforms into
an invariant torus of the new Hamiltonian; in what sense does an invariant torus
for the old Hamiltonian become an invariant torus for the new Hamiltonian?

In particular, a consequence of the KAM theorem is that if we make a small
perturbation of a Hamiltonian system that admits action-angle coordinates then
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the trajectories of most points will not be dense on a hypersurface in phase space,
since they are constrained to lie on n-dimensional tori. In other words, the new
Hamiltonian system is not ergodic, since the invariant tori have lower dimension
than n− 1, and so have n− 1-dimensional measure 0.

Let’s explain the KAM theorem in another way. Suppose that we have a
symplectic manifoldM and a Lagrangian foliation F0 whose leaves are tori, and
suppose that the leaves of F0 are invariant tori for a Hamiltonian H0. That is,
the Hamiltonian vector field XH0

is tangent to all the leaves in F0. Now let
H = H0 + ϵH1. The leaves of the foliation F0 will not be invariant under the
flow of H. We would like to obtain a symplectomorphism Φ : M → M such
that the Hamiltonian vector field XH is tangent to most leaves in the foliation
F = Φ(F0). Here we mean most in a measure theoretic sense that depends on
the magnitude ϵ of the perturbation away from the Hamiltonian that admits
action-angle coordinates.

How do we construct a diffeomorphism? Often the best way is to demand
that it be the time 1 flow of a vector field, so Φ = Φ1 for some Φt, and to see
if such a vector field exists. Suppose that f is a function such that if Φt is the
flow of Xf then Φ1 = Φ.

5 Normal forms

Normal forms of vector fields, homological equation [9].
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