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Let A be a finite subset of Z2 and let A’ = Z2\ A. Let o' € {—1,+1}", a
fixed configuration of spins outside A. Let Q = {—1,+1}"; Q is the space of
all configurations of spins on A. We define a Hamiltonian Hy(-]o") : @ — R
(depending on the fixed external configuration ¢’) by

Hy(olo) == Y ol@)oly) = > ol2)o(y).

Hy(-|o’) gives the energy of a configuration o € 2, conditioned on the external
configuration o”.
For a parameter 8 > 0 (called the inverse temperature), we define the parti-
tion function by
Z(B, A 0") = Y exp(~BHa(o]0")).
ceQ
Then we define the Gibbs distribution for the configuration space €2, depending
on the external configuration ¢’, by
Py alolo’) = S exp(~BH(oo")).
' Z(B,A,0")
The purpose of the partition function is to normalize the above expression to
be a probability measure on the configuration space 2.
For example, let A be a square of side length 3 centred at the origin, and
take o’ to be an external configuration of all negative spins. Define o € Q by

o(-1,1) =41 o0(0,1)=+1 o(1,1)=-1
o(-1,0)=-1 0(0,00)=+1 o(1,0)=-1
o(-1,-1)= -1 o(0,-1)=-1 o(1,-1) = +1

We show this configuration in Figure 1. We calculate that the energy of this
configuration is Hy(c|c’) = 0. We can calculate the energy of this configuration
in a different way, using line segments separating lattice points with different
spins, as follows. For an n x n square, there are 2n(n + 1) nearest neighbor
interactions. Put a line segment between every two lattice points with different
spins; let B(o|o’) be the set of these line segments. We show this in Figure 2.



Figure 1: An example of a configuration (and negative external spins)

Figure 2: Calculating energy using contours



Generally, if A is an n X n square then we have
Hy(o|o') = —2n(n+ 1) + 2|B(a|d’)|.

Indeed, in our above example, n = 3 and |B(c|o’)| = 12, so the above expression
is —24 4+ 212 = 0, and we have already calculated that Hp(o|o’) = 0. What
matters is that if we know the external configuration, then to describe the con-
figuration inside a region A it suffices to know the edges that separate opposite
spins. And since the energy of any configuration has the term —2n(n + 1) and
this appears in the numerator and denominator of the expression for the Gibbs
distribution, we can omit it to calculate the Gibbs distribution. By a contour
we mean a closed path of edges that does not intersect itself. We can express
the Gibbs distribution in terms of contours as

P (O"O'l) H’YGF(U,U/) eXp(—2|’}/|)
A = ;
’ St I er exp(—251)

['(0,0") is the set of contours corresponding to the configuration o with the
external configuration o/, and the summation is over all sets I" of nonintersecting
contours.

We are not in fact interested in the Gibbs distribution on the configurations
on a finite subset A of Z2, but instead limits of Gibbs distributions with A,, —
Z?. A Gibbs distribution Pg (-|c’) on © is in fact a probability measure on

{+1, —1}Z2: for o € {+1, —1}22, a configuration on the plane, we define

~ , 0 o|N # o
Pga(olo’) {P57A((U|A)|O'/) gl = o

Fix some (. Let A, be a sequence of n x n squares centred at the origin, let
or;h + be a sequence of external configurations where all lattice points outside A,
have positive spins, and let O’;l’f be a sequence of external configurations where
all lattice points outside A,, have negative spins. Let P, ; be the sequence of
Gibbs distributions corresponding to the positive external spins, and let P, _
be the sequence of Gibbs distributions corresponding to the negative external
spins. These extend to probability measures P,y and P, _ on {Jrl,fl}ZQ.
Since {+1,—1} is a compact metrizable space, the product {Jrl,fl}Z2 is a
compact metrizable space and thus the space of probability measures on it is
compact. Hence the sequence P, ; has at least one limit point, say P, and
the sequence Isn,_ has at least one limit point, say P_. We shall show that
P, # P_, namely that there is not a unique limit Gibbs measure on the set of
all configurations on Z2.

Let Vi = {o € {+1,-1}% : 6(0) = +1} and V_ = {5 € {+1,-1}Z : 5(0) =
—1}. Suppose that for all n we had P, (V_) < 1. Taking limits we have that
P.(V_) < § and so P4 (V) > 2 (since the events V. and V_ are disjoint and
their union is the set of all configurations on Z2). But P, , (V_) = P, _(V,),
so taking limits we also get P_(Vy) < 1. Therefore the measures P, and P_



give different measures to the set V, so they are distinct. Thus to show that
the measures P, and P_ are distinct it suffices to show that for all n we have

Pay (Vo) < L.
We have
}B,H_(V_) < Prob (there exists a contoury C B(c|o’),0 € Int(7y))
< > Prob(y C B(o]o"))
0€Int(~)
< > exp(—=28h).
0€Tnt ()

The above sum is over all contours such that the origin lies in their interior.
We can write the set of all contours around the origin as a union of the set of

all contours of length k around the origin, £ > 4. There are at most (%)2 4k
contours of length k£ around the origin. Therefore

i k— exp —2Bk).

k=4

@

As 8 — oo, this is O(exp(— 86)). In particular there is some 3y such that if
B > Bo then for all n we have Pn7+(V_) < 5. This shows that the limit Gibbs
measures gives different measures to the set V., hence they are distinct.

Further reading

Minlos [4], Sinai [6], Cipra [1], Simon [5], Le Ny [3], Kadanoff [2].
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