Integral operators

Jordan Bell

April 26, 2016

1 Product measures

Let (X, \mathscr{A}, μ) be a σ-finite measure space. Then with $\mathscr{A} \otimes \mathscr{A}$ the product σ algebra and $\mu \otimes \mu$ the product measure on $\mathscr{A} \otimes \mathscr{A},(X \times X, \mathscr{A} \otimes \mathscr{A}, \mu \otimes \mu)$ is itself a σ-finite measure space.

Write $F_{x}(y)=F(x, y)$ and $F^{y}(x)=F(x, y)$. For any measurable space $\left(X^{\prime}, \mathscr{A}^{\prime}\right)$, it is a fact that if $F: X \times X \rightarrow X^{\prime}$ is measurable then F_{x} is measurable for each $x \in X$ and F^{y} is measurable for each $y \in X .{ }^{1}$

Suppose that $F \in \mathscr{L}^{1}(X \times X), F: X \rightarrow \mathbb{C}$. Fubini's theorem tells us the following. ${ }^{2}{ }^{3}$ There are sets $N_{1}, N_{2} \in \mathscr{A}$ with $\mu\left(N_{1}\right)=0$ and $\mu\left(N_{2}\right)=0$ such that if $x \in N_{1}^{c}$ then $F_{x} \in \mathscr{L}^{1}(X)$ and if $y \in N_{2}^{c}$ then $F^{y} \in \mathscr{L}^{1}(X)$. Define

$$
I_{1}(x)= \begin{cases}\int_{X} F_{x}(y) d \mu(y) & x \in N_{1}^{c} \\ 0 & x \in N_{1}\end{cases}
$$

and

$$
I_{2}(y)= \begin{cases}\int_{X} F^{y}(x) d \mu(x) & y \in N_{2}^{c} \\ 0 & y \in N_{2}\end{cases}
$$

$I_{1} \in \mathscr{L}^{1}(X)$ and $I_{2} \in \mathscr{L}^{1}(X)$, and

$$
\int_{X \times X} F d(\mu \otimes \mu)=\int_{X} I_{2}(y) d \mu(y)=\int_{X} I_{1}(x) d \mu(x) .
$$

${ }^{1}$ Heinz Bauer, Measure and Integration Theory, p. 138, Lemma 23.5.
${ }^{2}$ Heinz Bauer, Measure and Integration Theory, p. 139, Corollary 23.7.
${ }^{3}$ Suppose that $F: X \times X \rightarrow[0, \infty]$ is measurable. Tonelli's theorem, Heinz Bauer, Measure and Integration Theory, p. 138, Theorem 23.6, tells us that the functions

$$
x \mapsto \int_{X} F_{x} d \mu, \quad y \mapsto \int_{X} F^{y} d \mu
$$

are measurable $X \rightarrow[0, \infty]$, and that

$$
\int_{X \times X} F d(\mu \otimes \mu)=\int_{X}\left(\int_{X} F^{y} d \mu\right) d \mu(y)=\int_{X}\left(\int_{X} F_{x} d \mu\right) d \mu(x)
$$

2 Integral operators in L^{2}

Let $k \in \mathscr{L}^{2}(X \times X)$ and let $g \in \mathscr{L}^{2}(X)$. By Fubini's theorem, there is a set $Z \in \mathscr{A}$ with $\mu(Z)=0$ such that if $x \in Z^{c}$ then $k_{x} \in \mathscr{L}^{2}(X)$. For $x \in Z_{n}^{c}$, by the Cauchy-Schwarz inequality,

$$
\int_{X}\left|k_{x} g\right| d \mu \leq\left(\int_{X}\left|k_{x}\right|^{2} d \mu\right)^{1 / 2}\left(\int_{X}|g|^{2} d \mu\right)^{1 / 2}=\left\|k_{x}\right\|_{L^{2}}\|g\|_{L^{2}}
$$

so $k_{x} g \in \mathscr{L}^{1}(X)$.
Since μ is σ-finite, there are $A_{n} \in \mathscr{A}, \mu\left(A_{n}\right)<\infty$, with $A_{n} \uparrow X$. For each n, the function $(x, y) \mapsto 1_{A_{n}}(x) g(y)$ belongs to $\mathscr{L}^{2}(X \times X)$ and hence, by the Cauchy-Schwarz inequality, $(x, y) \mapsto k(x, y) 1_{A_{n}}(x) g(y)$ belongs to $\mathscr{L}^{1}(X \times X)$. Applying Fubini's theorem, there is a set $N_{n} \in \mathscr{A}$ with $\mu\left(N_{n}\right)=0$ such that if $x \in N_{n}^{c}$ then $y \mapsto k(x, y) 1_{A_{n}}(x) g(y)$ belongs to $\mathscr{L}^{1}(X)$, and the function $I_{n}: X \rightarrow \mathbb{C}$ defined by

$$
I_{n}(x)= \begin{cases}\int_{X} k_{x}(y) 1_{A_{n}}(x) g(y) d \mu(y) & x \in N_{n}^{c} \\ 0 & x \in N_{n}\end{cases}
$$

belongs to $\mathscr{L}^{1}(X)$.
Let $M=\bigcup_{n}\left(Z \cup N_{n}\right)$, for which

$$
\mu(M) \leq \sum_{n} \mu\left(Z \cup N_{n}\right) \leq \sum_{n}\left(\mu(Z)+\mu\left(N_{n}\right)\right)=0 .
$$

We note

$$
M^{c}=\bigcap_{n}\left(Z^{c} \cap N_{n}^{c}\right)
$$

For $g \in \mathscr{L}^{2}(X)$, define $K_{M} g: X \rightarrow \mathbb{C}$ by

$$
K_{M} g(x)= \begin{cases}\int_{X} k_{x}(y) g(y) d \mu(y) & x \in M^{c} \tag{1}\\ 0 & x \in M\end{cases}
$$

For $x \in M^{c}$,
$I_{n}(x)=\int_{X} k_{x}(y) 1_{A_{n}}(x) g(y) d \mu(y)=1_{A_{n}}(x) \int_{X} k_{x}(y) g(y) d \mu(y)=1_{A_{n}}(x) \cdot K_{M} g(x)$.
Then

$$
1_{A_{n}} \cdot K_{M} g=1_{M^{c}} \cdot 1_{A_{n}} \cdot K g=1_{M^{c}} \cdot I_{n},
$$

which shows that $f_{n}=1_{A_{n}} \cdot K_{M} g$ is measurable $X \rightarrow \mathbb{C}$. For any $x \in X$, for sufficiently large n we have $f_{n}(x)=K_{M} g(x)$, thus $f_{n} \rightarrow K_{M} g$ pointwise, which implies that $K_{M} g: X \rightarrow \mathbb{C}$ is measurable. ${ }^{4}$

[^0]Using the Cauchy-Schwarz inequality and then Fubini's theorem,

$$
\begin{aligned}
\int_{X}\left|K_{M} g(x)\right|^{2} d \mu(x) & =\int_{M^{c}}\left|\int_{X} k_{x}(y) g(y) d \mu(y)\right|^{2} d \mu(x) \\
& \leq\|g\|_{L^{2}}^{2} \cdot \int_{M^{c}}\left(\int_{X}\left|k_{x}(y)\right|^{2} d \mu(y)\right) d \mu(x) \\
& =\|g\|_{L^{2}}^{2} \cdot\|k\|_{L^{2}}^{2}
\end{aligned}
$$

This shows that $K_{M} g \in \mathscr{L}^{2}(X)$, with

$$
\left\|K_{M} g\right\|_{L^{2}} \leq\|k\|_{L^{2}} \cdot\|g\|_{L^{2}}
$$

Recapitulating, for $g \in \mathscr{L}^{2}(X)$ there is some $M \in \mathscr{A}$ with $\mu(M)=0$ such that for $x \in M^{c}, k_{x} \in \mathscr{L}^{2}(X)$, and such that $K_{M} g: X \rightarrow \mathbb{C}$ defined by (1) belongs to $\mathscr{L}^{2}(X)$. If N is any set satisfying these conditions, then for $x \in M^{c} \cap N^{c}$,

$$
K_{M} g(x)=\int_{X} k_{x}(y) g(y) d \mu(y)=K_{N} g(x)
$$

and $\mu\left(\left(M^{c} \cap N^{c}\right)^{c}\right)=\mu(M \cup N)=0$. Therefore, for $g \in \mathscr{L}^{2}(X)$ it makes sense to define $K g \in L^{2}(X)$ by $K g=K_{M} g$.

If $f, g \in \mathscr{L}^{2}(X)$ and $f=g$ in $L^{2}(X)$, check that $K f=K g$ in $L^{2}(X)$. We thus define $K: L^{2}(X) \rightarrow L^{2}(X)$ for $g \in L^{2}(X)$ as

$$
K g(x)=\int_{X} k_{x}(y) g(y) d \mu(y)=\left\langle g, \overline{k_{x}}\right\rangle
$$

where

$$
\langle f, g\rangle=\int_{X} f \cdot \bar{g} d \mu
$$

Theorem 1. Let (X, \mathscr{A}, μ) be a σ-finite measure space. For $k \in L^{2}(X \times X)$, it makes sense to define $K g \in L^{2}(X)$ by

$$
K g(x)=\int_{X} k_{x}(y) g(y) d \mu(y)=\left\langle g, \overline{k_{x}}\right\rangle
$$

$K: L^{2}(X) \rightarrow L^{2}(X)$ is a bounded linear operator with $\|K\| \leq\|k\|_{L^{2}}$.

3 Integrals of functions

Suppose that $f: X \rightarrow \mathbb{C}$ is a function, which we do not ask to be measurable, and that $Z_{1}, Z_{2} \in \mathscr{A}, \mu\left(Z_{1}\right)=0, \mu\left(Z_{2}\right)=0$, satisfy $1_{Z_{1}^{c}} \cdot f, 1_{Z_{2}^{c}} \cdot f \in \mathscr{L}^{1}(X)$.

We have

$$
\begin{aligned}
\int_{X} 1_{Z_{1}^{c}} \cdot f d \mu & =\int_{X} 1_{Z_{1}^{c}} \cdot\left(1_{Z_{2}}+1_{Z_{2}^{c}}\right) \cdot f d \mu \\
& =\int_{X} 1_{Z_{1}^{c} \cap Z_{2}} \cdot f d \mu+\int_{X} 1_{Z_{1}^{c} \cap Z_{2}^{c}} \cdot f d \mu \\
& =\int_{X} 1_{Z_{1}^{c} \cap Z_{2}^{c}} \cdot f d \mu \\
& =\int_{X} 1_{Z_{2}^{c} \cap Z_{1}^{c}} \cdot f d \mu \\
& =\int_{X} 1_{Z_{2}^{c}} \cdot f d \mu .
\end{aligned}
$$

Therefore if there is some $Z \in \mathscr{A}$ with $\mu(Z)=0$ and $1_{Z} \cdot f \in \mathscr{L}^{1}(X)$, it makes sense to define

$$
\int_{X} f d \mu=\int_{X} 1_{Z} \cdot f d \mu
$$

However, only if f is itself measurable do we write $f \in \mathscr{L}^{1}(X)$.

4 Self-adjoint operators

Theorem 2. Let (X, \mathscr{A}, μ) be a σ-finite measure space. For $k \in L^{2}(X \times X)$ satisfying $k_{x}=\overline{k^{x}}, K: L^{2}(X) \rightarrow L^{2}(X)$ is self-adjoint.
Proof. For $f, g \in L^{2}(X)$,

$$
\begin{aligned}
\langle K f, g\rangle & =\int_{X} K f(x) \cdot \overline{g(x)} d \mu(x) \\
& =\int_{X}\left(\int_{X} k_{x}(y) f(y) d \mu(y)\right) \overline{g(x)} d \mu(x) \\
& =\int_{X}\left(\int_{X} k^{y}(x) \cdot \overline{g(x)} d \mu(x)\right) f(y) d \mu(y) \\
& =\int_{X}\left(\int_{X} \overline{k_{y}(x) g(x)} d \mu(x)\right) f(y) d \mu(y) \\
& =\int_{X} \overline{K g(y)} \cdot f(y) d \mu(y) \\
& =\langle f, K g\rangle .
\end{aligned}
$$

It follows that $K: L^{2}(X) \rightarrow L^{2}(X)$ is self-adjoint.

5 Hilbert-Schmidt operators

Let (X, \mathscr{A}, μ) be a measure space and let $1 \leq p<\infty$. It is a fact that if μ is σ-finite and \mathscr{A} is countably generated, then the Banach space $L^{p}(X)$ is
separable. ${ }^{5}$
Theorem 3. Let (X, \mathscr{A}, μ) be a σ-finite countably generated measure space. For $k \in L^{2}(X \times X), K: L^{2}(X) \rightarrow L^{2}(X)$ is a Hilbert-Schmidt operator with

$$
\|K\|_{\mathrm{HS}}=\|k\|_{L^{2}}
$$

Proof. $L^{2}(X)$ is separable, so there is an orthonormal basis $\left\{e_{n}\right\}$ for $L^{2}(X)$. Using Parseval's formula and then Fubini's theorem,

$$
\begin{aligned}
\sum_{n}\left\langle K e_{n}, K e_{n}\right\rangle & =\sum_{n} \int_{X}\left|K e_{n}(x)\right|^{2} d \mu(x) \\
& =\sum_{n} \int_{X}\left|\left\langle e_{n}, \overline{k_{x}}\right\rangle\right|^{2} d \mu(x) \\
& =\int_{X}\left(\sum_{n}\left|\left\langle e_{n}, \overline{k_{x}}\right\rangle\right|^{2}\right) d \mu(x) \\
& =\int_{X}\left\langle\overline{k_{x}}, \overline{k_{x}}\right\rangle d \mu(x) \\
& =\int_{X}\left(\int_{X}\left|k_{x}\right|^{2} d \mu(y)\right) d \mu(x) \\
& =\int_{X \times X}|k|^{2} d(\mu \otimes \mu) \\
& =\|k\|_{L^{2}}^{2} .
\end{aligned}
$$

This shows that

$$
\|K\|_{\mathrm{HS}}=\left(\sum_{n}\left\langle K e_{n}, K e_{n}\right\rangle\right)^{1 / 2}=\|k\|_{L^{2}}
$$

If T is a compact linear operator on $L^{2}(X)$, then $T^{*} T$ is a positive compact operator on $L^{2}(X)$. Then $|T|=\sqrt{T^{*} T}$ is a positive compact operator. ${ }^{6}$ Let s_{j} be the nonzero eigenvalues of $|T|$ repeated according to geometric multiplicity, with $s_{j+1} \leq s_{j}, j \geq 1$, called the singular values of T. By the spectral theorem, there is an orthonormal basis for $\left\{e_{j}: j \geq 1\right\}$ for $L^{2}(X)$ such that

[^1]$|T| e_{j}=s_{j} e_{j}$ for each $j \geq 1$. Then
\[

$$
\begin{aligned}
\|T\|_{\mathrm{HS}}^{2} & =\sum_{j \geq 1}\left\langle T e_{j}, T e_{j}\right\rangle \\
& =\sum_{j \geq 1}\left\langle T^{*} T e_{j}, e_{j}\right\rangle \\
& \left.=\left.\sum_{j \geq 1}\langle | T\right|^{2} e_{j}, e_{j}\right\rangle \\
& =\sum_{j \geq 1}\langle | T\left|e_{j},|T| e_{j}\right\rangle \\
& =\sum_{j \geq 1}\left\langle s_{j}, s_{j}\right\rangle \\
& =\sum_{j \geq 1}\left|s_{j}\right|^{2} .
\end{aligned}
$$
\]

Summarizing,

$$
\|k\|_{L^{2}}^{2}=\|K\|_{\mathrm{HS}}^{2}=\sum_{j \geq 1}\left|s_{j}(T)\right|^{2}
$$

6 Trace class operators

A compact operator T on $L^{2}(X)$ is called trace class if $\|T\|_{\text {tr }}<\infty$, where

$$
\|T\|_{\mathrm{tr}}=\sum_{j \geq 1} s_{j}(T)
$$

For a trace class operator it makes sense to define

$$
\operatorname{tr}(T)=\sum_{n}\left\langle T e_{n}, e_{n}\right\rangle
$$

which does not depend on the orthonormal basis $\left\{e_{n}\right\}$ of $L^{2}(X)$.
Let X be a locally compact Hausdorff space and let \mathscr{B} be the Borel σ-algebra of X. A Borel measure on X is a measure on \mathscr{B}. We say that a Borel measure μ on X is locally finite if for each $x \in X$ there is an open set U_{x} with $x \in U_{x}$ and $\mu\left(U_{x}\right)<\infty$. A Radon measure on X is a locally finite Borel measure μ on X such that for each $A \in \mathscr{B}$ and for any $\epsilon>0$ there is an open set U_{ϵ} with $A \subset U_{\epsilon}$ and

$$
\mu(A)>\mu\left(U_{\epsilon}\right)-\epsilon
$$

and for each open set U and for any $\epsilon>0$ there is a compact set K_{ϵ} with $K_{\epsilon} \subset U$ and

$$
\mu(U)<\mu\left(K_{\epsilon}\right)+\epsilon
$$

By definition, if μ is a Radon measure then $\mu(U)$ can be approximated by $\mu(K)$ for compact sets K contained in U. We prove that this holds for $\mu(A)$ if $\mu(A)<\infty .{ }^{7}$

Lemma 4. Let X be a locally compact Hausdorff space and let μ be a Radon measure on X. If $A \in \mathscr{B}$ with $\mu(A)<\infty$, there for any $\epsilon>0$ there is a compact set $K_{\epsilon}, K_{\epsilon} \subset A$, such that

$$
\mu(A)<\mu\left(K_{\epsilon}\right)+\epsilon
$$

Proof. If L is a compact set, $B \in \mathscr{B}$, and $B \subset L$, let $T=L \backslash B$. For $\delta>0$ there is an open set $W_{\delta}, T \subset W_{\delta}$, such that $\mu\left(W_{\delta}\right)<\mu(T)+\delta$. Let $K_{\delta}=L \backslash W_{\delta}$, and because X is Hausdorff, L is closed and hence K_{δ} is closed and therefore compact. Now, as $B \subset L$,

$$
L \backslash W_{\delta} \subset L \backslash T=L \backslash(L \backslash B)=B
$$

and

$$
\mu\left(B \backslash K_{\delta}\right)=\mu\left(B \backslash\left(L \backslash W_{\delta}\right)\right) \leq \mu\left(W_{\delta} \backslash(L \backslash B)\right)=\mu\left(W_{\delta} \backslash T\right)<\delta
$$

We have proved that if L is a compact set and B is a Borel set contained in L, then for any $\delta>0$ then there is a compact set K_{δ} with $K_{\delta} \subset B$ and

$$
\mu\left(B \backslash K_{\delta}\right)<\delta
$$

Now let U be an open set with $A \subset U$ and $\mu(U)<\infty$, say $\mu(U)<\mu(A)+1$. Let L be a compact set with $L \subset U$ and

$$
\mu(U)<\mu(L)+\epsilon
$$

$A=(A \cap L) \cup(A \backslash L)$, so

$$
\mu(A)=\mu(A \cap L)+\mu(A \backslash L)
$$

and

$$
\mu(A \backslash L) \leq \mu(U \backslash L)<\epsilon
$$

Let $B=A \cap L$. Because B is a Borel set contained in a compact set L, there is a compact set K contained in B such that

$$
\mu(B \backslash K)<\epsilon
$$

As $A=B \cup(A \backslash L)$ and $K \subset B$,

$$
\mu(A \backslash K)=\mu((B \backslash K) \cup(A \backslash L))=\mu(B \backslash K)+\mu(A \backslash L)<2 \epsilon
$$

[^2]Let X be a locally compact Hausdorff space and let μ be a Radon measure on X. An admissible kernel is a function $k \in C(X \times X) \cap \mathscr{L}^{2}(X \times X)$ for which there is some $g \in C(X) \cap \mathscr{L}^{2}(X)$ such that $|k(x, y)| \leq g(x) g(y)$ for all $(x, y) \in X \times X$. We call $S: L^{2}(X) \rightarrow L^{2}(X)$ an admissible integral operator if there is an admissible kernel k such that

$$
S g(x)=\int_{X} k_{x}(y) g(y) d \mu(y)
$$

The following gives conditions under which we can calculate the trace of an integral operator. ${ }^{8}$

Theorem 5. Let X be a first-countable locally compact Hausdorff space and let μ be a Radon measure on X. Let $k \in C(X \times X) \cap \mathscr{L}^{2}(X)$ and let

$$
K g(x)=\int_{X} k_{x}(y) g(y) d \mu(y)
$$

If there are admissible integral operators S_{1} and S_{2} such that $K=S_{1} S_{2}$, then K is of trace class and

$$
\operatorname{tr}(K)=\int_{X} k(x, x) d \mu(x) .
$$

The following is Mercer's theorem. ${ }^{9}$
Theorem 6 (Mercer's theorem). If $k \in C(X \times X) \cap \mathscr{L}^{2}(X \times X)$ and K : $L^{2}(X) \rightarrow L^{2}(X)$ is a positive operator, then

$$
\operatorname{tr}(K)=\int_{X} k(x, x) d \mu(x) .
$$

[^3]
[^0]: ${ }^{4}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 142, Lemma 4.29.

[^1]: ${ }^{5}$ Donald L. Cohn, Measure Theory, second ed., p. 102, Proposition 3.4.5.
 ${ }^{6}$ See Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed., p. 109, Theorem 5.1.3

[^2]: ${ }^{7}$ Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed., p. 291, Lemma B.2.1.

[^3]: ${ }^{8}$ Anton Deitmar and Siegfried Echterhoff, Principles of Harmonic Analysis, second ed., p. 172, Proposition 9.3.1.
 ${ }^{9}$ E. Brian Davies, Linear Operators and their Spectra, p. 156, Proposition 5.6.9.

