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1 Schwartz functions
For ¢ € C*(R,C) and p > 0, let

¢l = sup sup(1+u?)P2[6® (u)].
0<k<pu€R

We define . to be the set of those ¢ € C*°(R, C) such that |¢|, < oo for all
p > 0. 7 is a complex vector space and each |- |, is a norm, and because each
| -], is a norm, a fortiori {| - |, : p > 0} is a separating family of seminorms.
With the topology induced by this family of seminorms, . is a Fréchet space.!
Furthermore, D : . — . defined by

(Dg)(z) =¢'(x), xeR
and M : ¥ — ¥ defined by
(M¢)(x) = zp(z), =z €R

are continuous linear maps.
Let ./ be the collection of continuous linear maps . — C. For ¢ € .¥,
define ey : " — C by

eg(w) = w(e), we.s.

The initial topology for the collection {ey : ¢ € .} is called the weak-*
topology on .#’. With this topology, .#’ is a locally convex space whose dual
space is {eg : ¢ € S}.

2 L? norms

For p > 0 and ¢,y € &, let

p

Gl =3 / (1 -+ )76 (u) 6 (w)dus,

k=0"R

IWalter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.



and let ,
(92 = [0, ¢l = Z/(l + u?)P|p®) (u)|*du.
k=0"R

Because (1+u?)? < (1+u?)? when p < ¢, it is immediate that [¢], < [¢], when

p<gq.

We relate the norms | - |, and the norms [-],.2

Lemma 1. For each p > 1, for all ¢ € .,

p%mp_l < 6l < Vot Dllpar.

Proof. For 0 < k < p,

/ (1+ w216 (w)Pdu < sup((1 + w27 6® () ?) / (1+u?)'du
R u€R R

= sup((1 + )P pP (w)?) - 7
ueR

< 71—‘¢|;27+17

hence

(], = p (1 +u®)|p™) (u) Pdu
>

p
< Zﬂ-|¢|127+1
k=0
= (p+ V)7lolp 1

For 0 < k <p—1and u € R, using the fundamental theorem of calculus

2Takeyuki Hida, Brownian Motion, p. 305, Lemma A.1.



and the Cauchy-Schwarz inequality,

(1420w = | [ (@ o020 0y
< [ lo= 1t )07 160 1)
+/R\(1+t2)(p_1)/2¢(k+1)(t)|dt
<= 1) [ (B0 1)

+ / (146271214 202600 (1)t
R

==y (/]R(l i tQ)_ldt>1/2 (/R(l + ’fQ)""llqb(’“’(t)l%lt)1/2

+ (/R(l +t2)1dt)1/2 </R(1 +t2)p¢(k+1)(t)2dt) 1/2

< (p— DVa(glp—1 + V7ldlp
<

which shows that

|¢‘p—1 < p\/%[ﬁb]zr

3 Hermite functions

Let A\ be Lebesgue measure on R, and let

(f.9)2 = /R fgdA.

L?(\) with the inner product (-, )2 is a separable Hilbert space. For n > 0, let
ho(z) = (—1)"(2"nly/7) "/ 2e” /2 Dre—2"

the Hermite functions, the set of which is an orthonormal basis for L?(\).
We remark that the Hermite functions belong to .. For n < 0 we define

hn, =0,

to write some expressions in a uniform way.
We calculate that for n > 0,

n In+1
Dh,, = ihnfl - Tthrl'



We define the Hermite operator A : . — . by
A=-D?4+ M?+1.

A is a densely defined operator in L?()\) that is symmetric and positive, and
satisfies
Ahy, = (20 + 2)hy,.

There is a unique bounded linear operator T : L2(\) — L?(\) satisfying
Thy, =A"h, =2n+2)"'h,, n>0.

The operator norm of T is ||T|| = %, and T is self-adjoint. For p > 1, TP is a

Hilbert-Schmidt operator with Hilbert-Schmidt norm || 77| 4q = 2771/¢(2p).
We define the creation operator B :.¥ — .¥ by

B=D+M
and we define the annihilation operator C : . — . by
C=-D+ M,
which are continuous linear maps. They satisfy, for n > 0,
Bh, = (20)Y?h,_1,  Chy = (204 2)Y %Ry y1.

(We remind ourselves that we have defined h_y = 0.) It is immediate that
BC = A and that B — C' = 2D. Using the creation operator, we can write the
Hermite functions as

h = (2"00)TV/2C"hg = 7= VA2 Rl T2 (7).

For ¢, v € ., using integration by parts,

(D6, )12 = / ¢ (2)P(@)ds = - / ()0 (@)de = (¢, (D)) 12,

and
(M, )2 = / zo(x)Y(x)dr = (¢, M) 2.
R
Thus,
(B¢a ¢)L2 = (D¢a ¢)L2 + (M¢, w)L2

= (¢, (=D)) 2 + (¢, M¥) 2

= (¢7 C’(/J)l?
and

(Co,¢)> = (¢, BY) L2

We shall use these calculations to obtain the following lemma.



Lemma 2. For p > 0 and for ¢ € .,

0 1/2
Bl = oP/? Z <(n+‘p)'> (6, hnp) 2l

n:
n=0

and

oo n! 1/2
CPp = op/2 Z(Q hn—p) L2 ((n —p)!) hy,.

n=0

Proof. Because Ch,, = (2n + 2)'/2h,, 1,

i 1/2 o ((n+p)! 12
(¢,CPhn)12 = (6, hnip)L2 jll (27 +2)'% = (6, hnsp) 122"/ <n,> :

With
¢ Z d)? L2 hna

and because (B¢, )2 = (¢, C) 2, we have
B¢ = Z P$, ) 12l

= Z(qs, CPhy) 2hy,

n=0
o 1/2
n+p)!
- Z(¢a hn+p)L22p/2 ((n')) .
n=0

Because Bh,, = (2n)1/ 2h,,_1, and reminding ourselves that we define h,, = 0
for n < 0,

1/2 _ /2 n! 1z
e A (=

(¢7 Bphn) 2 = ((ba hnfp) 2
’ " an N (n —p)!

j=n—p+1
Because (C, )2 = (¢, Bi)r2, we have

oo

CP¢ = (CP¢,¢)12hy,

1
My T

(¢a Bp’l/))l/z hn

(6, ho_p) 122702 ("‘)/h |
o (n—p)! !

3
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M
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We define the Fourier transform . : . — . by

/ ¢ —7576 )1/27 5 cR.

Z . — & is a continuous linear map, and satisfies

FM=iDZ, FD=iM%F.
From these we obtain
FA=AZ, FB=iBZ, FC =—-iCH,
and one proves the following using the above.

Lemma 3. For n > 0,

Fhyp = (—=1)"hp.
We further remark that for ¢ € .7,

I9ll.e <27 Y2(Igl132 + 16']12)- (1

)
Finally, there is a unique Hilbert space isomorphism .# : L2(\) — L?()\)
whose restriction to . is equal to % as already defined. Thus for f € L?(\),

as
f Z fa L2hna
we get

Ff = (fhn)r2(—i)" .
n=0

4 Hermite operator

For p > 0 and f € L?()\), we define

oo

IF12 =" (@20 +2)%|(f, hn) 2|

n=0
We define
Sy ={f e L*(\) : I fll, < oo},
and for f,g € 7, we define

(oo}

(fv g)p = Z(QTL =+ 2)2p(f7 hn)L2 (g7 hn)L27

n=0

for which

I£12 = (£, f)p-



Lemma 4. For ¢ € .7, for each p > 0, ¢ € .}, and
loll, = 1A oll - -

Proof. AP¢ € 7, so |AP@|| ;. < oo. Because A is a symmetric operator and as
Ah, = (2n + 2)hy,,

|AP||7. = §:|<AP¢, )2|?
=" 1(¢, APhy,) 2|
n=0
=Y (2n+2)*|(¢, hn) 2
n=0

= l#ll; -

For f,g € L*(\), because T is self-adjoint,

(2n +2)*P(TP f, hy) 12 (TP f, hy) 12

M8

(Tpf’ Tpg)in =

Il
=]

n

(2n + 2)%P(f,TPhy,) 12 (g, TPhy) 12

s

g il

= Z(Qn +2)(f,(2n 4 2)"Phy)12(g, (20 + 2)"Phy) 12

= Z fa L2 g7 ) 2
= (f)g)L2
and so [[T?f||, = [|f|| 2, which shows that
TPL*(\) = ..

If f; € #p is a Cauchy sequence in the norm ||| ,, then as [ T7Pf; = TP f;|| .. =
Ifi = fill,» T77 fi is a Cauchy sequence in the norm ||-[| ;> and so there is some
g € L*(\) for which |T7Pf; — g||;= — 0. We have TPg € .%,, and

Ifi = TPgll, = |T77fi — g .. =0,

thus f; — TPg in the norm |||, showing that (%}, (-,-),) is a Hilbert space.

Furthermore, T? : L*(\) — .7, is an isomorphism of Hilbert spaces, and thus
{T?h,, : n > 0} is an orthonormal basis for (.%, (-, ")p)-



For p < q,
1A, <51,

so .7, C F,. For p>gq,let iy, : %, — 7, be the inclusion map.?

Theorem 5. For p < ¢, the inclusion map i, : 745 — 7 is a Hilbert-Schmidt
operator, with Hilbert-Schmidt norm

Hiq,p”Hs =279t V <(2q - 2p)-

Proof. {T9h,, : n > 0} is an orthonormal basis for (.7, (-,-)q), and

llig.p

oo

2 . 2

s = 2 ligpThall;
n=0

=D Tl

n=0

_ ZO [ (2n + 2)—%””2

= i(Qn +2)724(2n 4 2)%

n=0

= 2720F2P((2g — 2p).

5 The Hilbert spaces S,
For f € L*(\),
f = Z(fa hn)LZhru
n=0

and for N > 0 we define fy : R — C by

N
fn(@) = (fihn)r2ha(z),  z€ER,
n=0
which belongs to .7
For k > 0, we define CF(R) to be the set of those functions R — C that are
k-times differentiable and such that for each 0 < j < k, f\) is continuous and
bounded. With the norm

oo

k
Il = [+
§=0

this is a Banach space. Because the Hermite functions belong to ., for f €
L%(\) and for any k and N, the function fy belongs to CF(R).

3Hui-Hsiung Kuo, White Noise Distribution Theory, p. 18, Lemma 3.3.




Lemma 6. If p> 1 and f € .%,, then there is some F' € C’ffl(R) such that f
is equal almost everywhere to F'.

Proof. Cramér’s inequality states that there is a constant Ky such that for
all n, ||yl < Ko. For M < N, using this and the Cauchy-Schwarz inequality,

N

> (fha)r2h

n=M+1

v = fullco =

oo

N 1/2 N 1/2
§< Z (2n+2)2) < Z (2n+2)2(f,hn)Lz|2>

n=M+1

N 1/2
=< > (2n+2)‘2> Ifn = fally -

n=M+1

Because f € ., C .1, fn is a Cauchy sequence in .}, hence fy is a Cauchy
sequence in CP (R), so there is some F' € Cp(R) such that fy converges to F in
CP(R). We assert that F' = f as elements of L?(\).

Using
n n+1
Dhn = 7hn7 - hn )
\/; Loy Ty
we calculate

N Ty MR PN LES Ty P
+NZ: (W(f, s =[50 hn_l)m> -
hence for M < N, _
fyn—Tu= —\/f(f, hn-1)r2hn — W(f, hn)r2hn 11
+ \/?(f, har—1)r2har + \/@(ﬁ har)rzhar s
4 3 (W(f, hni1)2 — \/Z(f, hnl)Lz> B,

n=M




and for N > M + 2,

N+1
2T(fvhN71)|%2

M+2

N
I fx = farlly = 2N + 2)2§|(f, hn-1)[72 4+ (2N +4)
(2M+2)2M2Jrl

I(f, hM+1)|%2 + (2M +4)?

|(f7 h]\/[-i—l)'%2

HTH(f, hipt1)r2 — \/z(ﬁ hp—1) 2

2

+ Z_: (2n +2)?

n=M+2
=O(llf5 = fmllo),
whence f is a Cauchy sequence in Cp(R), and so fy is a Cauchy sequence in
CLR). O

We prove that for p > 1 the derivatives of the partial sums fy are a Cauchy
sequence in L2(\).4

Lemma 7. For p > 1 and f € ., f} is a Cauchy sequence in L*(\).
Proof. Because fy € .7,

B-C
2

fy=Dfn = fn-

Then 1 L
v = Farllpe < 3 |Bfn — Bfumllp + 3 ICfn —Cfullpe -
For M < N, as Bh,, = (2n)'/?h,,_,

N

B > (f hn)r2hn

n=M+1

IBfx — Bfulze =

L2
N
> (o hn)z2(2n) by
n=M+1
N
ST 1 b2 P (2n)
n=M+1
N
< > @n+22(f e

n=M+1

L2

4Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Lemma 7.1.
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and as Ch, = (2n + 2)1/2hn+1,
2

N
C Y (frhn)r2hn

n=M+1

ICfx = Chulle =

L2
N
> (filhn)r2@n+2)Phags
n=M+1
N
> 1(f hn) 22?20+ 2)

n=M+1

L2

N
< 30 @+ 2 bl

n=M+1

Thus
’ / 1 1
Ifn = Faellpe < 5 N = Fully + 5 I~ = fully = v = Fully -

Because f € .7, and p > 1, the series >, (2n+2)?|(f, k) 12|? converges, from
which the claim follows. O

Now we establish that if p > 1 and f € .7, then there is some F' € CP(R) such
that f is equal almost everywhere to F', F' is differentiable almost everywhere,
and F' € .%,_1.°

Theorem 8. For p > 1 and f € .%,, there is some F € CP(R) such that
f is equal almost everywhere to F, F' is differentiable almost everywhere, fj
converges to F’ in the norm |[|-||; ., and F' € .,_;.

Proof. Lemma 7 tells us that f} is a Cauchy sequence in the norm ||-||;., and
hence there is some g € L?()\) to which f}; converges in the norm |[-||,.. For
x <y, by the fundamental theorem of calculus,

fn(y) = flz) + / fola+ 1y — 2)) - (y — z)dt.

By the Cauchy-Schwarz inequality,
1
ittty =)+ (v = ) = gl + tly — ) - (g~ )l
0

Y
= [ 1#3(w) ~ glald
<VIT=E Ikl

5Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Theorem 7.3.
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Because || fyy — g/, = 0 as N — oo,

/fz’v(w+t(y—x))~(y—x)dt—>/ oo+ ty — ) - (y — 2)dt.
0 0

Then by Lemma 6, taking N — oo, for any y > x we have

1 1 Yy
Fly) = F@)+ [ (et =) - =)t = P+ —— [ g(s)as.

By the Lebesgue differentiation theorem, for almost all z € R,

1
Yy—x

Yy

/ g(8)ds — g(x), Yy — .
x

Therefore for almost all x € R,

Fl(z) = g().

Thus F’ = g in L?()\), and as fy — g in L?()),

, B-C\ &
-t (%5) Srno

n=0

for which

2

1 & _
1" ey = 3 D20+ 272 @+ 2)Y2(f hn) 12 — (20)2(f R ) 12
n=0

IN

>+ 2 (204 2o+ 20l a1 ).
n=0

which is finite because f € .#,. Therefore F' € .,_1.

12



