Schwartz functions, Hermite functions, and the Hermite operator

Jordan Bell

July 17, 2015

1 Schwartz functions

For $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ and $p \geq 0$, let

$$
|\phi|_{p}=\sup _{0 \leq k \leq p} \sup _{u \in \mathbb{R}}\left(1+u^{2}\right)^{p / 2}\left|\phi^{(k)}(u)\right| .
$$

We define \mathscr{S} to be the set of those $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ such that $|\phi|_{p}<\infty$ for all $p \geq 0 . \mathscr{S}$ is a complex vector space and each $|\cdot|_{p}$ is a norm, and because each $|\cdot|_{p}$ is a norm, a fortiori $\left\{|\cdot|_{p}: p \geq 0\right\}$ is a separating family of seminorms. With the topology induced by this family of seminorms, \mathscr{S} is a Fréchet space. ${ }^{1}$ Furthermore, $D: \mathscr{S} \rightarrow \mathscr{S}$ defined by

$$
(D \phi)(x)=\phi^{\prime}(x), \quad x \in \mathbb{R}
$$

and $M: \mathscr{S} \rightarrow \mathscr{S}$ defined by

$$
(M \phi)(x)=x \phi(x), \quad x \in \mathbb{R}
$$

are continuous linear maps.
Let \mathscr{S}^{\prime} be the collection of continuous linear maps $\mathscr{S} \rightarrow \mathbb{C}$. For $\phi \in \mathscr{S}$, define $e_{\phi}: \mathscr{S}^{\prime} \rightarrow \mathbb{C}$ by

$$
e_{\phi}(\omega)=\omega(\phi), \quad \omega \in \mathscr{S}^{\prime} .
$$

The initial topology for the collection $\left\{e_{\phi}: \phi \in \mathscr{S}\right\}$ is called the weak-* topology on \mathscr{S}^{\prime}. With this topology, \mathscr{S}^{\prime} is a locally convex space whose dual space is $\left\{e_{\phi}: \phi \in \mathscr{S}\right\}$.

$2 L^{2}$ norms

For $p \geq 0$ and $\phi, \psi \in \mathscr{S}$, let

$$
[\phi, \psi]_{p}=\sum_{k=0}^{p} \int_{\mathbb{R}}\left(1+u^{2}\right)^{p} \phi^{(k)}(u) \overline{\psi^{(k)}(u)} d u
$$

[^0]and let
$$
[\phi]_{p}^{2}=[\phi, \phi]_{p}=\sum_{k=0}^{p} \int_{\mathbb{R}}\left(1+u^{2}\right)^{p}\left|\phi^{(k)}(u)\right|^{2} d u .
$$

Because $\left(1+u^{2}\right)^{p} \leq\left(1+u^{2}\right)^{q}$ when $p \leq q$, it is immediate that $[\phi]_{p} \leq[\phi]_{q}$ when $p \leq q$.

We relate the norms $|\cdot|_{p}$ and the norms $[\cdot]_{p} .{ }^{2}$
Lemma 1. For each $p \geq 1$, for all $\phi \in \mathscr{S}$,

$$
\frac{1}{p \sqrt{\pi}}|\phi|_{p-1} \leq[\phi]_{p} \leq \sqrt{(p+1) \pi}|\phi|_{p+1} .
$$

Proof. For $0 \leq k \leq p$,

$$
\begin{aligned}
\int_{\mathbb{R}}\left(1+u^{2}\right)^{p}\left|\phi^{(k)}(u)\right|^{2} d u & \leq \sup _{u \in \mathbb{R}}\left(\left(1+u^{2}\right)^{p+1}\left|\phi^{(k)}(u)\right|^{2}\right) \int_{\mathbb{R}}\left(1+u^{2}\right)^{-1} d u \\
& =\sup _{u \in \mathbb{R}}\left(\left(1+u^{2}\right)^{p+1}\left|\phi^{(k)}(u)\right|^{2}\right) \cdot \pi \\
& \leq \pi|\phi|_{p+1}^{2},
\end{aligned}
$$

hence

$$
\begin{aligned}
{[\phi]_{p}^{2} } & =\sum_{k=0}^{p} \int_{\mathbb{R}}\left(1+u^{2}\right)^{p}\left|\phi^{(k)}(u)\right|^{2} d u \\
& \leq \sum_{k=0}^{p} \pi|\phi|_{p+1}^{2} \\
& =(p+1) \pi|\phi|_{p+1}^{2} .
\end{aligned}
$$

For $0 \leq k \leq p-1$ and $u \in \mathbb{R}$, using the fundamental theorem of calculus

[^1]and the Cauchy-Schwarz inequality,
\[

$$
\begin{aligned}
\left|\left(1+u^{2}\right)^{(p-1) / 2} \phi^{(k)}(u)\right| & =\left|\int_{-\infty}^{u}\left(\left(1+t^{2}\right)^{(p-1) / 2} \phi^{(k)}(t)\right)^{\prime} d t\right| \\
& \leq \int_{\mathbb{R}}\left|(p-1) t\left(1+t^{2}\right)^{(p-1) / 2-1} \phi^{(k)}(t)\right| d t \\
& +\int_{\mathbb{R}}\left|\left(1+t^{2}\right)^{(p-1) / 2} \phi^{(k+1)}(t)\right| d t \\
& \leq(p-1) \int_{\mathbb{R}}\left(1+t^{2}\right)^{-1 / 2}\left(1+t^{2}\right)^{(p-1) / 2}\left|\phi^{(k)}(t)\right| d t \\
& +\int_{\mathbb{R}}\left(1+t^{2}\right)^{-1 / 2}\left(1+t^{2}\right)^{p / 2}\left|\phi^{(k+1)}(t)\right| d t \\
& \leq(p-1)\left(\int_{\mathbb{R}}\left(1+t^{2}\right)^{-1} d t\right)^{1 / 2}\left(\int_{\mathbb{R}}\left(1+t^{2}\right)^{p-1}\left|\phi^{(k)}(t)\right|^{2} d t\right)^{1 / 2} \\
& +\left(\int_{\mathbb{R}}\left(1+t^{2}\right)^{-1} d t\right)^{1 / 2}\left(\int_{\mathbb{R}}\left(1+t^{2}\right)^{p}\left|\phi^{(k+1)}(t)\right|^{2} d t\right)^{1 / 2} \\
& \leq(p-1) \sqrt{\pi}[\phi]_{p-1}+\sqrt{\pi}[\phi]_{p} \\
& \leq p \sqrt{\pi}[\phi]_{p},
\end{aligned}
$$
\]

which shows that

$$
|\phi|_{p-1} \leq p \sqrt{\pi}[\phi]_{p}
$$

3 Hermite functions

Let λ be Lebesgue measure on \mathbb{R}, and let

$$
(f, g)_{L^{2}}=\int_{\mathbb{R}} f \bar{g} d \lambda
$$

$L^{2}(\lambda)$ with the inner product $(\cdot, \cdot)_{L^{2}}$ is a separable Hilbert space. For $n \geq 0$, let

$$
h_{n}(x)=(-1)^{n}\left(2^{n} n!\sqrt{\pi}\right)^{-1 / 2} e^{x^{2} / 2} D^{n} e^{-x^{2}}
$$

the Hermite functions, the set of which is an orthonormal basis for $L^{2}(\lambda)$. We remark that the Hermite functions belong to \mathscr{S}. For $n<0$ we define

$$
h_{n}=0,
$$

to write some expressions in a uniform way.
We calculate that for $n \geq 0$,

$$
D h_{n}=\sqrt{\frac{n}{2}} h_{n-1}-\sqrt{\frac{n+1}{2}} h_{n+1} .
$$

We define the Hermite operator $A: \mathscr{S} \rightarrow \mathscr{S}$ by

$$
A=-D^{2}+M^{2}+1
$$

A is a densely defined operator in $L^{2}(\lambda)$ that is symmetric and positive, and satisfies

$$
A h_{n}=(2 n+2) h_{n}
$$

There is a unique bounded linear operator $T: L^{2}(\lambda) \rightarrow L^{2}(\lambda)$ satisfying

$$
T h_{n}=A^{-1} h_{n}=(2 n+2)^{-1} h_{n}, \quad n \geq 0
$$

The operator norm of T is $\|T\|=\frac{1}{2}$, and T is self-adjoint. For $p \geq 1, T^{p}$ is a Hilbert-Schmidt operator with Hilbert-Schmidt norm $\left\|T^{p}\right\|_{\mathrm{HS}}=2^{-p} \sqrt{\zeta(2 p)}$.

We define the creation operator $B: \mathscr{S} \rightarrow \mathscr{S}$ by

$$
B=D+M
$$

and we define the annihilation operator $C: \mathscr{S} \rightarrow \mathscr{S}$ by

$$
C=-D+M
$$

which are continuous linear maps. They satisfy, for $n \geq 0$,

$$
B h_{n}=(2 n)^{1 / 2} h_{n-1}, \quad C h_{n}=(2 n+2)^{1 / 2} h_{n+1}
$$

(We remind ourselves that we have defined $h_{-1}=0$.) It is immediate that $B C=A$ and that $B-C=2 D$. Using the creation operator, we can write the Hermite functions as

$$
h_{n}=\left(2^{n} n!\right)^{-1 / 2} C^{n} h_{0}=\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2} C^{n}\left(e^{-x^{2} / 2}\right)
$$

For $\phi, \psi \in \mathscr{S}$, using integration by parts,

$$
(D \phi, \psi)_{L^{2}}=\int_{\mathbb{R}} \phi^{\prime}(x) \overline{\psi(x)} d x=-\int_{\mathbb{R}} \phi(x) \overline{\psi^{\prime}(x)} d x=(\phi,(-D) \psi)_{L^{2}}
$$

and

$$
(M \phi, \psi)_{L^{2}}=\int_{\mathbb{R}} x \phi(x) \overline{\psi(x)} d x=(\phi, M \psi)_{L^{2}}
$$

Thus,

$$
\begin{aligned}
(B \phi, \psi)_{L^{2}} & =(D \phi, \psi)_{L^{2}}+(M \phi, \psi)_{L^{2}} \\
& =(\phi,(-D) \psi)_{L^{2}}+(\phi, M \psi)_{L^{2}} \\
& =(\phi, C \psi)_{L^{2}}
\end{aligned}
$$

and

$$
(C \phi, \psi)_{L^{2}}=(\phi, B \psi)_{L^{2}}
$$

We shall use these calculations to obtain the following lemma.

Lemma 2. For $p \geq 0$ and for $\phi \in \mathscr{S}$,

$$
B^{p} \phi=2^{p / 2} \sum_{n=0}^{\infty}\left(\frac{(n+p)!}{n!}\right)^{1 / 2}\left(\phi, h_{n+p}\right)_{L^{2}} h_{n}
$$

and

$$
C^{p} \phi=2^{p / 2} \sum_{n=0}^{\infty}\left(\phi, h_{n-p}\right)_{L^{2}}\left(\frac{n!}{(n-p)!}\right)^{1 / 2} h_{n} .
$$

Proof. Because $C h_{n}=(2 n+2)^{1 / 2} h_{n+1}$,

$$
\left(\phi, C^{p} h_{n}\right)_{L^{2}}=\left(\phi, h_{n+p}\right)_{L^{2}} \prod_{j=n}^{n+p-1}(2 j+2)^{1 / 2}=\left(\phi, h_{n+p}\right)_{L^{2}} 2^{p / 2}\left(\frac{(n+p)!}{n!}\right)^{1 / 2}
$$

With

$$
\phi=\sum_{n=0}^{\infty}\left(\phi, h_{n}\right)_{L^{2}} h_{n},
$$

and because $(B \phi, \psi)_{L^{2}}=(\phi, C \psi)_{L^{2}}$, we have

$$
\begin{aligned}
B^{p} \phi & =\sum_{n=0}^{\infty}\left(B^{p} \phi, h_{n}\right)_{L^{2}} h_{n} \\
& =\sum_{n=0}^{\infty}\left(\phi, C^{p} h_{n}\right)_{L^{2}} h_{n} \\
& =\sum_{n=0}^{\infty}\left(\phi, h_{n+p}\right)_{L^{2}} 2^{p / 2}\left(\frac{(n+p)!}{n!}\right)^{1 / 2} h_{n}
\end{aligned}
$$

Because $B h_{n}=(2 n)^{1 / 2} h_{n-1}$, and reminding ourselves that we define $h_{n}=0$ for $n<0$,

$$
\left(\phi, B^{p} h_{n}\right)_{L^{2}}=\left(\phi, h_{n-p}\right)_{L^{2}} \prod_{j=n-p+1}^{n}(2 j)^{1 / 2}=\left(\phi, h_{n-p}\right)_{L^{2}} 2^{p / 2}\left(\frac{n!}{(n-p)!}\right)^{1 / 2}
$$

Because $(C \phi, \psi)_{L^{2}}=(\phi, B \psi)_{L^{2}}$, we have

$$
\begin{aligned}
C^{p} \phi & =\sum_{n=0}^{\infty}\left(C^{p} \phi, \psi\right)_{L^{2}} h_{n} \\
& =\sum_{n=0}^{\infty}\left(\phi, B^{p} \psi\right)_{L^{2}} h_{n} \\
& =\sum_{n=0}^{\infty}\left(\phi, h_{n-p}\right)_{L^{2}} 2^{p / 2}\left(\frac{n!}{(n-p)!}\right)^{1 / 2} h_{n}
\end{aligned}
$$

We define the Fourier transform $\mathscr{F}: \mathscr{S} \rightarrow \mathscr{S}$ by

$$
(\mathscr{F} \phi)(\xi)=\int_{\mathbb{R}} \phi(x) e^{-i \xi x} \frac{d x}{(2 \pi)^{1 / 2}}, \quad \xi \in \mathbb{R}
$$

$\mathscr{F}: \mathscr{S} \rightarrow \mathscr{S}$ is a continuous linear map, and satisfies

$$
\mathscr{F} M=i D \mathscr{F}, \quad \mathscr{F} D=i M \mathscr{F} .
$$

From these we obtain

$$
\mathscr{F} A=A \mathscr{F}, \quad \mathscr{F} B=i B \mathscr{F}, \quad \mathscr{F} C=-i C \mathscr{F},
$$

and one proves the following using the above.
Lemma 3. For $n \geq 0$,

$$
\mathscr{F} h_{n}=(-i)^{n} h_{n} .
$$

We further remark that for $\phi \in \mathscr{S}$,

$$
\begin{equation*}
\|\phi\|_{\infty} \leq 2^{-1 / 2}\left(\|\phi\|_{L^{2}}^{2}+\left\|\phi^{\prime}\right\|_{L^{2}}^{2}\right) \tag{1}
\end{equation*}
$$

Finally, there is a unique Hilbert space isomorphism $\mathscr{F}: L^{2}(\lambda) \rightarrow L^{2}(\lambda)$ whose restriction to \mathscr{S} is equal to \mathscr{F} as already defined. Thus for $f \in L^{2}(\lambda)$, as

$$
f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} h_{n},
$$

we get

$$
\mathscr{F} f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}}(-i)^{n} h_{n} .
$$

4 Hermite operator

For $p \geq 0$ and $f \in L^{2}(\lambda)$, we define

$$
\|f\|_{p}^{2}=\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}
$$

We define

$$
\mathscr{S}_{p}=\left\{f \in L^{2}(\lambda):\|f\|_{p}<\infty\right\}
$$

and for $f, g \in \mathscr{S}_{p}$ we define

$$
(f, g)_{p}=\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left(f, h_{n}\right)_{L^{2}} \overline{\left(g, h_{n}\right)_{L^{2}}}
$$

for which

$$
\|f\|_{p}^{2}=(f, f)_{p}
$$

Lemma 4. For $\phi \in \mathscr{S}$, for each $p \geq 0, \phi \in \mathscr{S}_{p}$, and

$$
\|\phi\|_{p}=\left\|A^{p} \phi\right\|_{L^{2}}
$$

Proof. $A^{p} \phi \in \mathscr{S}$, so $\left\|A^{p} \phi\right\|_{L^{2}}<\infty$. Because A is a symmetric operator and as $A h_{n}=(2 n+2) h_{n}$,

$$
\begin{aligned}
\left\|A^{p} \phi\right\|_{L^{2}}^{2} & =\sum_{n=0}^{\infty}\left|\left(A^{p} \phi, h_{n}\right)_{L^{2}}\right|^{2} \\
& =\sum_{n=0}^{\infty}\left|\left(\phi, A^{p} h_{n}\right)_{L^{2}}\right|^{2} \\
& =\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left|\left(\phi, h_{n}\right)_{L^{2}}\right|^{2} \\
& =\|\phi\|_{p}^{2} .
\end{aligned}
$$

For $f, g \in L^{2}(\lambda)$, because T is self-adjoint,

$$
\begin{aligned}
\left(T^{p} f, T^{p} g\right)_{p} & =\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left(T^{p} f, h_{n}\right)_{L^{2}} \overline{\overline{\left(T^{p} f, h_{n}\right)_{L^{2}}}} \\
& =\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left(f, T^{p} h_{n}\right)_{L^{2}} \overline{\left(g, T^{p} h_{n}\right)_{L^{2}}} \\
& =\sum_{n=0}^{\infty}(2 n+2)^{2 p}\left(f,(2 n+2)^{-p} h_{n}\right)_{L^{2}} \overline{\left(g,(2 n+2)^{-p} h_{n}\right)_{L^{2}}} \\
& =\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} \overline{\left(g, h_{n}\right)_{L^{2}}} \\
& =(f, g)_{L^{2}}
\end{aligned}
$$

and so $\left\|T^{p} f\right\|_{p}=\|f\|_{L^{2}}$, which shows that

$$
T^{p} L^{2}(\lambda)=\mathscr{S}_{p}
$$

If $f_{i} \in \mathscr{S}_{p}$ is a Cauchy sequence in the norm $\|\cdot\|_{p}$, then as $\left\|T^{-p} f_{i}-T^{-p} f_{j}\right\|_{L^{2}}=$ $\left\|f_{i}-f_{j}\right\|_{p}, T^{-p} f_{i}$ is a Cauchy sequence in the norm $\|\cdot\|_{L^{2}}$ and so there is some $g \in L^{2}(\lambda)$ for which $\left\|T^{-p} f_{i}-g\right\|_{L^{2}} \rightarrow 0$. We have $T^{p} g \in \mathscr{S}_{p}$, and

$$
\left\|f_{i}-T^{p} g\right\|_{p}=\left\|T^{-p} f_{i}-g\right\|_{L^{2}} \rightarrow 0
$$

thus $f_{i} \rightarrow T^{p} g$ in the norm $\|\cdot\|_{p}$, showing that $\left(\mathscr{S}_{p},(\cdot, \cdot)_{p}\right)$ is a Hilbert space. Furthermore, $T^{p}: L^{2}(\lambda) \rightarrow \mathscr{S}_{p}$ is an isomorphism of Hilbert spaces, and thus $\left\{T^{p} h_{n}: n \geq 0\right\}$ is an orthonormal basis for $\left(\mathscr{S}_{p},(\cdot, \cdot)_{p}\right)$.

For $p \leq q$,

$$
\|f\|_{p} \leq\|f\|_{q}
$$

so $\mathscr{S}_{q} \subset \mathscr{S}_{p}$. For $p \geq q$, let $i_{q, p}: \mathscr{S}_{q} \rightarrow \mathscr{S}_{p}$ be the inclusion map. ${ }^{3}$
Theorem 5. For $p<q$, the inclusion map $i_{q, p}: \mathscr{S}_{q} \rightarrow \mathscr{S}_{p}$ is a Hilbert-Schmidt operator, with Hilbert-Schmidt norm

$$
\left\|i_{q, p}\right\|_{\mathrm{HS}}=2^{-q+p} \sqrt{\zeta(2 q-2 p)}
$$

Proof. $\left\{T^{q} h_{n}: n \geq 0\right\}$ is an orthonormal basis for $\left(\mathscr{S}_{q},(\cdot, \cdot)_{q}\right)$, and

$$
\begin{aligned}
\left\|i_{q, p}\right\|_{\mathrm{HS}}^{2} & =\sum_{n=0}^{\infty}\left\|i_{q, p} T^{q} h_{n}\right\|_{p}^{2} \\
& =\sum_{n=0}^{\infty}\left\|T^{q} h_{n}\right\|_{p}^{2} \\
& =\sum_{n=0}^{\infty}\left\|(2 n+2)^{-q} h_{n}\right\|_{p}^{2} \\
& =\sum_{n=0}^{\infty}(2 n+2)^{-2 q}(2 n+2)^{2 p} \\
& =2^{-2 q+2 p} \zeta(2 q-2 p)
\end{aligned}
$$

5 The Hilbert spaces S_{p}

For $f \in L^{2}(\lambda)$,

$$
f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} h_{n}
$$

and for $N \geq 0$ we define $f_{N}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
f_{N}(x)=\sum_{n=0}^{N}\left(f, h_{n}\right)_{L^{2}} h_{n}(x), \quad x \in \mathbb{R}
$$

which belongs to \mathscr{S}.
For $k \geq 0$, we define $C_{b}^{k}(\mathbb{R})$ to be the set of those functions $\mathbb{R} \rightarrow \mathbb{C}$ that are k-times differentiable and such that for each $0 \leq j \leq k, f^{(j)}$ is continuous and bounded. With the norm

$$
\|f\|_{C_{b}^{k}}=\sum_{j=0}^{k}\left\|f^{(j)}\right\|_{\infty}
$$

this is a Banach space. Because the Hermite functions belong to \mathscr{S}, for $f \in$ $L^{2}(\lambda)$ and for any k and N, the function f_{N} belongs to $C_{b}^{k}(\mathbb{R})$.

[^2]Lemma 6. If $p \geq 1$ and $f \in \mathscr{S}_{p}$, then there is some $F \in C_{b}^{p-1}(\mathbb{R})$ such that f is equal almost everywhere to F.

Proof. Cramér's inequality states that there is a constant K_{0} such that for all $n,\left\|h_{n}\right\|_{\infty} \leq K_{0}$. For $M<N$, using this and the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\left\|f_{N}-f_{M}\right\|_{C_{b}^{0}} & =\left\|\sum_{n=M+1}^{N}\left(f, h_{n}\right)_{L^{2}} h_{n}\right\|_{\infty} \\
& \leq K_{0} \sum_{n=M+1}^{N}\left|\left(f, h_{n}\right)_{L^{2}}\right| \\
& =K_{0} \sum_{n=M+1}^{N}(2 n+2)^{-1}(2 n+2)\left|\left(f, h_{n}\right)_{L^{2}}\right| \\
& \leq\left(\sum_{n=M+1}^{N}(2 n+2)^{-2}\right)^{1 / 2}\left(\sum_{n=M+1}^{N}(2 n+2)^{2}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}\right)^{1 / 2} \\
& =\left(\sum_{n=M+1}^{N}(2 n+2)^{-2}\right)^{1 / 2}\left\|f_{N}-f_{M}\right\|_{1}
\end{aligned}
$$

Because $f \in \mathscr{S}_{p} \subset \mathscr{S}_{1}, f_{N}$ is a Cauchy sequence in \mathscr{S}_{1}, hence f_{N} is a Cauchy sequence in $C_{b}^{0}(\mathbb{R})$, so there is some $F \in C_{b}^{0}(\mathbb{R})$ such that f_{N} converges to F in $C_{b}^{0}(\mathbb{R})$. We assert that $F=f$ as elements of $L^{2}(\lambda)$.

Using

$$
D h_{n}=\sqrt{\frac{n}{2}} h_{n-1}-\sqrt{\frac{n+1}{2}} h_{n+1}
$$

we calculate

$$
\begin{aligned}
f_{N}^{\prime} & =-\sqrt{\frac{N}{2}}\left(f, h_{N-1}\right)_{L^{2}} h_{N}-\sqrt{\frac{N+1}{2}}\left(f, h_{N}\right)_{L^{2}} h_{N+1} \\
& +\sum_{n=0}^{N-1}\left(\sqrt{\frac{n+1}{2}}\left(f, h_{n+1}\right)_{L^{2}}-\sqrt{\frac{n}{2}}\left(f, h_{n-1}\right)_{L^{2}}\right) h_{n}
\end{aligned}
$$

hence for $M<N$,

$$
\begin{aligned}
f_{N}^{\prime}-f_{M}^{\prime} & =-\sqrt{\frac{N}{2}}\left(f, h_{N-1}\right)_{L^{2}} h_{N}-\sqrt{\frac{N+1}{2}}\left(f, h_{N}\right)_{L^{2}} h_{N+1} \\
& +\sqrt{\frac{M}{2}}\left(f, h_{M-1}\right)_{L^{2}} h_{M}+\sqrt{\frac{M+1}{2}}\left(f, h_{M}\right)_{L^{2}} h_{M+1} \\
& +\sum_{n=M}^{N-1}\left(\sqrt{\frac{n+1}{2}}\left(f, h_{n+1}\right)_{L^{2}}-\sqrt{\frac{n}{2}}\left(f, h_{n-1}\right)_{L^{2}}\right) h_{n}
\end{aligned}
$$

and for $N \geq M+2$,

$$
\begin{aligned}
\left\|f_{N}^{\prime}-f_{M}^{\prime}\right\|_{1} & =(2 N+2)^{2} \frac{N}{2}\left|\left(f, h_{N-1}\right)\right|_{L^{2}}^{2}+(2 N+4)^{2} \frac{N+1}{2}\left|\left(f, h_{N-1}\right)\right|_{L^{2}}^{2} \\
& (2 M+2)^{2} \frac{M+1}{2}\left|\left(f, h_{M+1}\right)\right|_{L^{2}}^{2}+(2 M+4)^{2} \frac{M+2}{2}\left|\left(f, h_{M+1}\right)\right|_{L^{2}}^{2} \\
& +\sum_{n=M+2}^{N-1}(2 n+2)^{2}\left|\sqrt{\frac{n+1}{2}}\left(f, h_{n+1}\right)_{L^{2}}-\sqrt{\frac{n}{2}}\left(f, h_{n-1}\right)_{L^{2}}\right|^{2} \\
& =O\left(\left\|f_{N}-f_{M}\right\|_{2}\right),
\end{aligned}
$$

whence f_{N}^{\prime} is a Cauchy sequence in $C_{b}^{0}(\mathbb{R})$, and so f_{N} is a Cauchy sequence in $C_{b}^{1}(\mathbb{R})$.

We prove that for $p \geq 1$ the derivatives of the partial sums f_{N} are a Cauchy sequence in $L^{2}(\lambda) .{ }^{4}$

Lemma 7. For $p \geq 1$ and $f \in \mathscr{S}_{p}, f_{N}^{\prime}$ is a Cauchy sequence in $L^{2}(\lambda)$.
Proof. Because $f_{N} \in \mathscr{S}$,

$$
f_{N}^{\prime}=D f_{N}=\frac{B-C}{2} f_{N} .
$$

Then

$$
\left\|f_{N}^{\prime}-f_{M}^{\prime}\right\|_{L^{2}} \leq \frac{1}{2}\left\|B f_{N}-B f_{M}\right\|_{L^{2}}+\frac{1}{2}\left\|C f_{N}-C f_{M}\right\|_{L^{2}} .
$$

For $M<N$, as $B h_{n}=(2 n)^{1 / 2} h_{n-1}$,

$$
\begin{aligned}
\left\|B f_{N}-B f_{M}\right\|_{L^{2}}^{2} & =\left\|B \sum_{n=M+1}^{N}\left(f, h_{n}\right)_{L^{2}} h_{n}\right\|_{L^{2}}^{2} \\
& =\left\|\sum_{n=M+1}^{N}\left(f, h_{n}\right)_{L^{2}}(2 n)^{1 / 2} h_{n-1}\right\|_{L^{2}}^{2} \\
& =\sum_{n=M+1}^{N}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}(2 n) \\
& \leq \sum_{n=M+1}^{N}(2 n+2)^{2}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2},
\end{aligned}
$$

[^3]and as $C h_{n}=(2 n+2)^{1 / 2} h_{n+1}$,
\[

$$
\begin{aligned}
\left\|C f_{N}-C f_{M}\right\|_{L^{2}}^{2} & =\left\|C \sum_{n=M+1}^{N}\left(f, h_{n}\right)_{L^{2}} h_{n}\right\|_{L^{2}}^{2} \\
& =\left\|\sum_{n=M+1}^{N}\left(f, h_{n}\right)_{L^{2}}(2 n+2)^{1 / 2} h_{n+1}\right\|_{L^{2}}^{2} \\
& =\sum_{n=M+1}^{N}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}(2 n+2) \\
& \leq \sum_{n=M+1}^{N}(2 n+2)^{2}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}
\end{aligned}
$$
\]

Thus

$$
\left\|f_{N}^{\prime}-f_{M}^{\prime}\right\|_{L^{2}} \leq \frac{1}{2}\left\|f_{N}-f_{M}\right\|_{1}+\frac{1}{2}\left\|f_{N}-f_{M}\right\|_{1}=\left\|f_{N}-f_{M}\right\|_{1}
$$

Because $f \in \mathscr{S}_{p}$ and $p \geq 1$, the series $\sum_{n=0}^{\infty}(2 n+2)^{2}\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}$ converges, from which the claim follows.

Now we establish that if $p \geq 1$ and $f \in \mathscr{S}_{p}$ then there is some $F \in C_{b}^{0}(\mathbb{R})$ such that f is equal almost everywhere to F, F is differentiable almost everywhere, and $F^{\prime} \in \mathscr{S}_{p-1} .{ }^{5}$

Theorem 8. For $p \geq 1$ and $f \in \mathscr{S}_{p}$, there is some $F \in C_{b}^{0}(\mathbb{R})$ such that f is equal almost everywhere to F, F is differentiable almost everywhere, f_{N}^{\prime} converges to F^{\prime} in the norm $\|\cdot\|_{L^{2}}$, and $F^{\prime} \in \mathscr{S}_{p-1}$.
Proof. Lemma 7 tells us that f_{N}^{\prime} is a Cauchy sequence in the norm $\|\cdot\|_{L^{2}}$, and hence there is some $g \in L^{2}(\lambda)$ to which f_{N}^{\prime} converges in the norm $\|\cdot\|_{L^{2}}$. For $x \leq y$, by the fundamental theorem of calculus,

$$
f_{N}(y)=f_{N}(x)+\int_{0}^{1} f_{N}^{\prime}(x+t(y-x)) \cdot(y-x) d t
$$

By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
& \int_{0}^{1}\left|f_{N}^{\prime}(x+t(y-x)) \cdot(y-x)-g(x+t(y-x)) \cdot(y-x)\right| d t \\
= & \int_{x}^{y}\left|f_{N}^{\prime}(u)-g(u)\right| d u \\
\leq & \sqrt{y-x}\left\|f_{N}^{\prime}-g\right\|_{L^{2}} .
\end{aligned}
$$

[^4]Because $\left\|f_{N}^{\prime}-g\right\|_{L^{2}} \rightarrow 0$ as $N \rightarrow \infty$,

$$
\int_{0}^{1} f_{N}^{\prime}(x+t(y-x)) \cdot(y-x) d t \rightarrow \int_{0}^{1} g(x+t(y-x)) \cdot(y-x) d t
$$

Then by Lemma 6 , taking $N \rightarrow \infty$, for any $y>x$ we have

$$
F(y)=F(x)+\int_{0}^{1} g(x+t(y-x)) \cdot(y-x) d t=F(x)+\frac{1}{y-x} \int_{x}^{y} g(s) d s
$$

By the Lebesgue differentiation theorem, for almost all $x \in \mathbb{R}$,

$$
\frac{1}{y-x} \int_{x}^{y} g(s) d s \rightarrow g(x), \quad y \rightarrow x
$$

Therefore for almost all $x \in \mathbb{R}$,

$$
F^{\prime}(x)=g(x)
$$

Thus $F^{\prime}=g$ in $L^{2}(\lambda)$, and as $f_{N}^{\prime} \rightarrow g$ in $L^{2}(\lambda)$,

$$
\begin{aligned}
F^{\prime} & =\lim _{N \rightarrow \infty} f_{N}^{\prime} \\
& =\lim _{N \rightarrow \infty}\left(\frac{B-C}{2}\right) \sum_{n=0}^{N}\left(f, h_{n}\right)_{L^{2}} h_{n} \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}}\left((2 n)^{1 / 2} h_{n-1}-(2 n+2)^{1 / 2} h_{n+1}\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left((2 n+2)^{1 / 2}\left(f, h_{n}\right)_{L^{2}}-(2 n)^{1 / 2}\left(f, h_{n-1}\right)_{L^{2}}\right) h_{n}
\end{aligned}
$$

for which

$$
\begin{aligned}
\left\|F^{\prime}\right\|_{p-1}^{2} & =\frac{1}{4} \sum_{n=0}^{\infty}(2 n+2)^{2 p-2}\left|(2 n+2)^{1 / 2}\left(f, h_{n}\right)_{L^{2}}-(2 n)^{1 / 2}\left(f, h_{n-1}\right)_{L^{2}}\right|^{2} \\
& \leq \frac{1}{2} \sum_{n=0}^{\infty}(2 n+2)^{2 p-2}\left((2 n+2)\left|\left(f, h_{n}\right)_{L^{2}}\right|^{2}+2 n\left|\left(f, h_{n-1}\right)_{L^{2}}\right|^{2}\right)
\end{aligned}
$$

which is finite because $f \in \mathscr{S}_{p}$. Therefore $F^{\prime} \in \mathscr{S}_{p-1}$.

[^0]: ${ }^{1}$ Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.

[^1]: ${ }^{2}$ Takeyuki Hida, Brownian Motion, p. 305, Lemma A.1.

[^2]: ${ }^{3}$ Hui-Hsiung Kuo, White Noise Distribution Theory, p. 18, Lemma 3.3.

[^3]: ${ }^{4}$ Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Lemma 7.1.

[^4]: ${ }^{5}$ Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Theorem 7.3.

