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1 Schwartz functions

For ϕ ∈ C∞(R,C) and p ≥ 0, let

|ϕ|p = sup
0≤k≤p

sup
u∈R

(1 + u2)p/2|ϕ(k)(u)|.

We define S to be the set of those ϕ ∈ C∞(R,C) such that |ϕ|p < ∞ for all
p ≥ 0. S is a complex vector space and each | · |p is a norm, and because each
| · |p is a norm, a fortiori {| · |p : p ≥ 0} is a separating family of seminorms.
With the topology induced by this family of seminorms, S is a Fréchet space.1

Furthermore, D : S → S defined by

(Dϕ)(x) = ϕ′(x), x ∈ R

and M : S → S defined by

(Mϕ)(x) = xϕ(x), x ∈ R

are continuous linear maps.
Let S ′ be the collection of continuous linear maps S → C. For ϕ ∈ S ,

define eϕ : S ′ → C by

eϕ(ω) = ω(ϕ), ω ∈ S ′.

The initial topology for the collection {eϕ : ϕ ∈ S } is called the weak-*
topology on S ′. With this topology, S ′ is a locally convex space whose dual
space is {eϕ : ϕ ∈ S }.

2 L2 norms

For p ≥ 0 and ϕ, ψ ∈ S , let

[ϕ, ψ]p =

p∑
k=0

∫
R
(1 + u2)pϕ(k)(u)ψ(k)(u)du,

1Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
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and let

[ϕ]2p = [ϕ, ϕ]p =

p∑
k=0

∫
R
(1 + u2)p|ϕ(k)(u)|2du.

Because (1+u2)p ≤ (1+u2)q when p ≤ q, it is immediate that [ϕ]p ≤ [ϕ]q when
p ≤ q.

We relate the norms | · |p and the norms [·]p.2

Lemma 1. For each p ≥ 1, for all ϕ ∈ S ,

1

p
√
π
|ϕ|p−1 ≤ [ϕ]p ≤

√
(p+ 1)π|ϕ|p+1.

Proof. For 0 ≤ k ≤ p,∫
R
(1 + u2)p|ϕ(k)(u)|2du ≤ sup

u∈R
((1 + u2)p+1|ϕ(k)(u)|2)

∫
R
(1 + u2)−1du

= sup
u∈R

((1 + u2)p+1|ϕ(k)(u)|2) · π

≤ π|ϕ|2p+1,

hence

[ϕ]2p =

p∑
k=0

∫
R
(1 + u2)p|ϕ(k)(u)|2du

≤
p∑

k=0

π|ϕ|2p+1

= (p+ 1)π|ϕ|2p+1.

For 0 ≤ k ≤ p − 1 and u ∈ R, using the fundamental theorem of calculus

2Takeyuki Hida, Brownian Motion, p. 305, Lemma A.1.
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and the Cauchy-Schwarz inequality,

|(1 + u2)(p−1)/2ϕ(k)(u)| =
∣∣∣∣∫ u

−∞
((1 + t2)(p−1)/2ϕ(k)(t))′dt

∣∣∣∣
≤
∫
R
|(p− 1)t(1 + t2)(p−1)/2−1ϕ(k)(t)|dt

+

∫
R
|(1 + t2)(p−1)/2ϕ(k+1)(t)|dt

≤ (p− 1)

∫
R
(1 + t2)−1/2(1 + t2)(p−1)/2|ϕ(k)(t)|dt

+

∫
R
(1 + t2)−1/2(1 + t2)p/2|ϕ(k+1)(t)|dt

≤ (p− 1)

(∫
R
(1 + t2)−1dt

)1/2(∫
R
(1 + t2)p−1|ϕ(k)(t)|2dt

)1/2

+

(∫
R
(1 + t2)−1dt

)1/2(∫
R
(1 + t2)p|ϕ(k+1)(t)|2dt

)1/2

≤ (p− 1)
√
π[ϕ]p−1 +

√
π[ϕ]p

≤ p
√
π[ϕ]p,

which shows that
|ϕ|p−1 ≤ p

√
π[ϕ]p.

3 Hermite functions

Let λ be Lebesgue measure on R, and let

(f, g)L2 =

∫
R
fgdλ.

L2(λ) with the inner product (·, ·)L2 is a separable Hilbert space. For n ≥ 0, let

hn(x) = (−1)n(2nn!
√
π)−1/2ex

2/2Dne−x2

,

the Hermite functions, the set of which is an orthonormal basis for L2(λ).
We remark that the Hermite functions belong to S . For n < 0 we define

hn = 0,

to write some expressions in a uniform way.
We calculate that for n ≥ 0,

Dhn =

√
n

2
hn−1 −

√
n+ 1

2
hn+1.
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We define the Hermite operator A : S → S by

A = −D2 +M2 + 1.

A is a densely defined operator in L2(λ) that is symmetric and positive, and
satisfies

Ahn = (2n+ 2)hn.

There is a unique bounded linear operator T : L2(λ) → L2(λ) satisfying

Thn = A−1hn = (2n+ 2)−1hn, n ≥ 0.

The operator norm of T is ∥T∥ = 1
2 , and T is self-adjoint. For p ≥ 1, T p is a

Hilbert-Schmidt operator with Hilbert-Schmidt norm ∥T p∥HS = 2−p
√
ζ(2p).

We define the creation operator B : S → S by

B = D +M

and we define the annihilation operator C : S → S by

C = −D +M,

which are continuous linear maps. They satisfy, for n ≥ 0,

Bhn = (2n)1/2hn−1, Chn = (2n+ 2)1/2hn+1.

(We remind ourselves that we have defined h−1 = 0.) It is immediate that
BC = A and that B − C = 2D. Using the creation operator, we can write the
Hermite functions as

hn = (2nn!)−1/2Cnh0 = π−1/4(2nn!)−1/2Cn(e−x2/2).

For ϕ, ψ ∈ S , using integration by parts,

(Dϕ,ψ)L2 =

∫
R
ϕ′(x)ψ(x)dx = −

∫
R
ϕ(x)ψ′(x)dx = (ϕ, (−D)ψ)L2 ,

and

(Mϕ,ψ)L2 =

∫
R
xϕ(x)ψ(x)dx = (ϕ,Mψ)L2 .

Thus,

(Bϕ,ψ)L2 = (Dϕ,ψ)L2 + (Mϕ,ψ)L2

= (ϕ, (−D)ψ)L2 + (ϕ,Mψ)L2

= (ϕ,Cψ)L2

and
(Cϕ,ψ)L2 = (ϕ,Bψ)L2 .

We shall use these calculations to obtain the following lemma.
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Lemma 2. For p ≥ 0 and for ϕ ∈ S ,

Bpϕ = 2p/2
∞∑

n=0

(
(n+ p)!

n!

)1/2

(ϕ, hn+p)L2hn

and

Cpϕ = 2p/2
∞∑

n=0

(ϕ, hn−p)L2

(
n!

(n− p)!

)1/2

hn.

Proof. Because Chn = (2n+ 2)1/2hn+1,

(ϕ,Cphn)L2 = (ϕ, hn+p)L2

n+p−1∏
j=n

(2j + 2)1/2 = (ϕ, hn+p)L22p/2
(
(n+ p)!

n!

)1/2

.

With

ϕ =

∞∑
n=0

(ϕ, hn)L2hn,

and because (Bϕ,ψ)L2 = (ϕ,Cψ)L2 , we have

Bpϕ =

∞∑
n=0

(Bpϕ, hn)L2hn

=

∞∑
n=0

(ϕ,Cphn)L2hn

=

∞∑
n=0

(ϕ, hn+p)L22p/2
(
(n+ p)!

n!

)1/2

hn.

Because Bhn = (2n)1/2hn−1, and reminding ourselves that we define hn = 0
for n < 0,

(ϕ,Bphn)L2 = (ϕ, hn−p)L2

n∏
j=n−p+1

(2j)1/2 = (ϕ, hn−p)L22p/2
(

n!

(n− p)!

)1/2

.

Because (Cϕ,ψ)L2 = (ϕ,Bψ)L2 , we have

Cpϕ =

∞∑
n=0

(Cpϕ, ψ)L2hn

=

∞∑
n=0

(ϕ,Bpψ)L2hn

=

∞∑
n=0

(ϕ, hn−p)L22p/2
(

n!

(n− p)!

)1/2

hn.
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We define the Fourier transform F : S → S by

(Fϕ)(ξ) =

∫
R
ϕ(x)e−iξx dx

(2π)1/2
, ξ ∈ R.

F : S → S is a continuous linear map, and satisfies

FM = iDF , FD = iMF .

From these we obtain

FA = AF , FB = iBF , FC = −iCF ,

and one proves the following using the above.

Lemma 3. For n ≥ 0,
Fhn = (−i)nhn.

We further remark that for ϕ ∈ S ,

∥ϕ∥∞ ≤ 2−1/2(∥ϕ∥2L2 + ∥ϕ′∥2L2). (1)

Finally, there is a unique Hilbert space isomorphism F : L2(λ) → L2(λ)
whose restriction to S is equal to F as already defined. Thus for f ∈ L2(λ),
as

f =

∞∑
n=0

(f, hn)L2hn,

we get

Ff =

∞∑
n=0

(f, hn)L2(−i)nhn.

4 Hermite operator

For p ≥ 0 and f ∈ L2(λ), we define

∥f∥2p =

∞∑
n=0

(2n+ 2)2p|(f, hn)L2 |2.

We define
Sp = {f ∈ L2(λ) : ∥f∥p <∞},

and for f, g ∈ Sp we define

(f, g)p =

∞∑
n=0

(2n+ 2)2p(f, hn)L2(g, hn)L2 ,

for which
∥f∥2p = (f, f)p.
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Lemma 4. For ϕ ∈ S , for each p ≥ 0, ϕ ∈ Sp, and

∥ϕ∥p = ∥Apϕ∥L2 .

Proof. Apϕ ∈ S , so ∥Apϕ∥L2 <∞. Because A is a symmetric operator and as
Ahn = (2n+ 2)hn,

∥Apϕ∥2L2 =

∞∑
n=0

|(Apϕ, hn)L2 |2

=

∞∑
n=0

|(ϕ,Aphn)L2 |2

=

∞∑
n=0

(2n+ 2)2p|(ϕ, hn)L2 |2

= ∥ϕ∥2p .

For f, g ∈ L2(λ), because T is self-adjoint,

(T pf, T pg)p =

∞∑
n=0

(2n+ 2)2p(T pf, hn)L2(T pf, hn)L2

=

∞∑
n=0

(2n+ 2)2p(f, T phn)L2(g, T phn)L2

=

∞∑
n=0

(2n+ 2)2p(f, (2n+ 2)−phn)L2(g, (2n+ 2)−phn)L2

=

∞∑
n=0

(f, hn)L2(g, hn)L2

= (f, g)L2 ,

and so ∥T pf∥p = ∥f∥L2 , which shows that

T pL2(λ) = Sp.

If fi ∈ Sp is a Cauchy sequence in the norm ∥·∥p, then as ∥T−pfi − T−pfj∥L2 =

∥fi − fj∥p, T
−pfi is a Cauchy sequence in the norm ∥·∥L2 and so there is some

g ∈ L2(λ) for which ∥T−pfi − g∥L2 → 0. We have T pg ∈ Sp, and

∥fi − T pg∥p =
∥∥T−pfi − g

∥∥
L2 → 0,

thus fi → T pg in the norm ∥·∥p, showing that (Sp, (·, ·)p) is a Hilbert space.

Furthermore, T p : L2(λ) → Sp is an isomorphism of Hilbert spaces, and thus
{T phn : n ≥ 0} is an orthonormal basis for (Sp, (·, ·)p).
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For p ≤ q,
∥f∥p ≤ ∥f∥q ,

so Sq ⊂ Sp. For p ≥ q, let iq,p : Sq → Sp be the inclusion map.3

Theorem 5. For p < q, the inclusion map iq,p : Sq → Sp is a Hilbert-Schmidt
operator, with Hilbert-Schmidt norm

∥iq,p∥HS = 2−q+p
√
ζ(2q − 2p).

Proof. {T qhn : n ≥ 0} is an orthonormal basis for (Sq, (·, ·)q), and

∥iq,p∥2HS =

∞∑
n=0

∥iq,pT qhn∥2p

=

∞∑
n=0

∥T qhn∥2p

=

∞∑
n=0

∥∥(2n+ 2)−qhn
∥∥2
p

=

∞∑
n=0

(2n+ 2)−2q(2n+ 2)2p

= 2−2q+2pζ(2q − 2p).

5 The Hilbert spaces Sp

For f ∈ L2(λ),

f =

∞∑
n=0

(f, hn)L2hn,

and for N ≥ 0 we define fN : R → C by

fN (x) =

N∑
n=0

(f, hn)L2hn(x), x ∈ R,

which belongs to S .
For k ≥ 0, we define Ck

b (R) to be the set of those functions R → C that are
k-times differentiable and such that for each 0 ≤ j ≤ k, f (j) is continuous and
bounded. With the norm

∥f∥Ck
b
=

k∑
j=0

∥∥∥f (j)∥∥∥
∞

this is a Banach space. Because the Hermite functions belong to S , for f ∈
L2(λ) and for any k and N , the function fN belongs to Ck

b (R).
3Hui-Hsiung Kuo, White Noise Distribution Theory, p. 18, Lemma 3.3.
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Lemma 6. If p ≥ 1 and f ∈ Sp, then there is some F ∈ Cp−1
b (R) such that f

is equal almost everywhere to F .

Proof. Cramér’s inequality states that there is a constant K0 such that for
all n, ∥hn∥∞ ≤ K0. For M < N , using this and the Cauchy-Schwarz inequality,

∥fN − fM∥C0
b
=

∥∥∥∥∥
N∑

n=M+1

(f, hn)L2hn

∥∥∥∥∥
∞

≤ K0

N∑
n=M+1

|(f, hn)L2 |

= K0

N∑
n=M+1

(2n+ 2)−1(2n+ 2)|(f, hn)L2 |

≤

(
N∑

n=M+1

(2n+ 2)−2

)1/2( N∑
n=M+1

(2n+ 2)2|(f, hn)L2 |2
)1/2

=

(
N∑

n=M+1

(2n+ 2)−2

)1/2

∥fN − fM∥1 .

Because f ∈ Sp ⊂ S1, fN is a Cauchy sequence in S1, hence fN is a Cauchy
sequence in C0

b (R), so there is some F ∈ C0
b (R) such that fN converges to F in

C0
b (R). We assert that F = f as elements of L2(λ).
Using

Dhn =

√
n

2
hn−1 −

√
n+ 1

2
hn+1,

we calculate

f ′N = −
√
N

2
(f, hN−1)L2hN −

√
N + 1

2
(f, hN )L2hN+1

+

N−1∑
n=0

(√
n+ 1

2
(f, hn+1)L2 −

√
n

2
(f, hn−1)L2

)
hn,

hence for M < N ,

f ′N − f ′M = −
√
N

2
(f, hN−1)L2hN −

√
N + 1

2
(f, hN )L2hN+1

+

√
M

2
(f, hM−1)L2hM +

√
M + 1

2
(f, hM )L2hM+1

+

N−1∑
n=M

(√
n+ 1

2
(f, hn+1)L2 −

√
n

2
(f, hn−1)L2

)
hn,
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and for N ≥M + 2,

∥f ′N − f ′M∥1 = (2N + 2)2
N

2
|(f, hN−1)|2L2 + (2N + 4)2

N + 1

2
|(f, hN−1)|2L2

(2M + 2)2
M + 1

2
|(f, hM+1)|2L2 + (2M + 4)2

M + 2

2
|(f, hM+1)|2L2

+

N−1∑
n=M+2

(2n+ 2)2

∣∣∣∣∣
√
n+ 1

2
(f, hn+1)L2 −

√
n

2
(f, hn−1)L2

∣∣∣∣∣
2

= O(∥fN − fM∥2),

whence f ′N is a Cauchy sequence in C0
b (R), and so fN is a Cauchy sequence in

C1
b (R).

We prove that for p ≥ 1 the derivatives of the partial sums fN are a Cauchy
sequence in L2(λ).4

Lemma 7. For p ≥ 1 and f ∈ Sp, f
′
N is a Cauchy sequence in L2(λ).

Proof. Because fN ∈ S ,

f ′N = DfN =
B − C

2
fN .

Then

∥f ′N − f ′M∥L2 ≤ 1

2
∥BfN −BfM∥L2 +

1

2
∥CfN − CfM∥L2 .

For M < N , as Bhn = (2n)1/2hn−1,

∥BfN −BfM∥2L2 =

∥∥∥∥∥B
N∑

n=M+1

(f, hn)L2hn

∥∥∥∥∥
2

L2

=

∥∥∥∥∥
N∑

n=M+1

(f, hn)L2(2n)1/2hn−1

∥∥∥∥∥
2

L2

=

N∑
n=M+1

|(f, hn)L2 |2(2n)

≤
N∑

n=M+1

(2n+ 2)2|(f, hn)L2 |2,

4Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Lemma 7.1.
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and as Chn = (2n+ 2)1/2hn+1,

∥CfN − CfM∥2L2 =

∥∥∥∥∥C
N∑

n=M+1

(f, hn)L2hn

∥∥∥∥∥
2

L2

=

∥∥∥∥∥
N∑

n=M+1

(f, hn)L2(2n+ 2)1/2hn+1

∥∥∥∥∥
2

L2

=

N∑
n=M+1

|(f, hn)L2 |2(2n+ 2)

≤
N∑

n=M+1

(2n+ 2)2|(f, hn)L2 |2.

Thus

∥f ′N − f ′M∥L2 ≤ 1

2
∥fN − fM∥1 +

1

2
∥fN − fM∥1 = ∥fN − fM∥1 .

Because f ∈ Sp and p ≥ 1, the series
∑∞

n=0(2n+2)2|(f, hn)L2 |2 converges, from
which the claim follows.

Now we establish that if p ≥ 1 and f ∈ Sp then there is some F ∈ C0
b (R) such

that f is equal almost everywhere to F , F is differentiable almost everywhere,
and F ′ ∈ Sp−1.

5

Theorem 8. For p ≥ 1 and f ∈ Sp, there is some F ∈ C0
b (R) such that

f is equal almost everywhere to F , F is differentiable almost everywhere, f ′N
converges to F ′ in the norm ∥·∥L2 , and F ′ ∈ Sp−1.

Proof. Lemma 7 tells us that f ′N is a Cauchy sequence in the norm ∥·∥L2 , and
hence there is some g ∈ L2(λ) to which f ′N converges in the norm ∥·∥L2 . For
x ≤ y, by the fundamental theorem of calculus,

fN (y) = fN (x) +

∫ 1

0

f ′N (x+ t(y − x)) · (y − x)dt.

By the Cauchy-Schwarz inequality,∫ 1

0

|f ′N (x+ t(y − x)) · (y − x)− g(x+ t(y − x)) · (y − x)|dt

=

∫ y

x

|f ′N (u)− g(u)|du

≤
√
y − x ∥f ′N − g∥L2 .

5Jeremy J. Becnel and Ambar N. Sengupta, The Schwartz space: a background to white
noise analysis, https://www.math.lsu.edu/~preprint/2004/as20041.pdf, Theorem 7.3.
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Because ∥f ′N − g∥L2 → 0 as N → ∞,∫ 1

0

f ′N (x+ t(y − x)) · (y − x)dt→
∫ 1

0

g(x+ t(y − x)) · (y − x)dt.

Then by Lemma 6, taking N → ∞, for any y > x we have

F (y) = F (x) +

∫ 1

0

g(x+ t(y − x)) · (y − x)dt = F (x) +
1

y − x

∫ y

x

g(s)ds.

By the Lebesgue differentiation theorem, for almost all x ∈ R,

1

y − x

∫ y

x

g(s)ds→ g(x), y → x.

Therefore for almost all x ∈ R,

F ′(x) = g(x).

Thus F ′ = g in L2(λ), and as f ′N → g in L2(λ),

F ′ = lim
N→∞

f ′N

= lim
N→∞

(
B − C

2

) N∑
n=0

(f, hn)L2hn

=
1

2

∞∑
n=0

(f, hn)L2((2n)1/2hn−1 − (2n+ 2)1/2hn+1)

=
1

2

∞∑
n=0

(
(2n+ 2)1/2(f, hn)L2 − (2n)1/2(f, hn−1)L2

)
hn,

for which

∥F ′∥2p−1 =
1

4

∞∑
n=0

(2n+ 2)2p−2

∣∣∣∣(2n+ 2)1/2(f, hn)L2 − (2n)1/2(f, hn−1)L2

∣∣∣∣2
≤ 1

2

∞∑
n=0

(2n+ 2)2p−2

(
(2n+ 2)|(f, hn)L2 |2 + 2n|(f, hn−1)L2 |2

)
,

which is finite because f ∈ Sp. Therefore F
′ ∈ Sp−1.
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