Hermite functions

Jordan Bell

September 9, 2015

1 Locally convex spaces

If V is a vector space and $\left\{p_{\alpha}: \alpha \in A\right\}$ is a separating family of seminorms on V, then there is a unique topology with which V is a locally convex space and such that the collection of finite intersections of sets of the form

$$
\left\{v \in V: p_{\alpha}(v)<\epsilon\right\}, \quad \alpha \in A, \quad \epsilon>0
$$

is a local base at $0 .{ }^{1}$ We call this the topology induced by the family of seminorms. If $\left\{p_{n}: n \geq 0\right\}$ is a separating family of seminorms, then

$$
d(v, w)=\sum_{n=0}^{\infty} 2^{-n} \frac{p_{n}(v-w)}{1+p_{n}(v-w)}, \quad v, w \in V
$$

is a metric on V that induces the same topology as the family of seminorms. If d is a complete metric, then V is called a Fréchet space.

2 Schwartz functions

For $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ and $n \geq 0$, let

$$
p_{n}(\phi)=\sup _{0 \leq k \leq n} \sup _{u \in \mathbb{R}}\left(1+u^{2}\right)^{n / 2}\left|\phi^{(k)}(u)\right| .
$$

We define \mathscr{S} to be the set of those $\phi \in C^{\infty}(\mathbb{R}, \mathbb{C})$ such that $p_{n}(\phi)<\infty$ for all $n \geq 0 . \mathscr{S}$ is a complex vector space and each p_{n} is a norm, and because each p_{n} is a norm, a fortiori $\left\{p_{n}: n \geq 0\right\}$ is a separating family of seminorms. With the topology induced by this family of seminorms, \mathscr{S} is a Fréchet space. ${ }^{2}$ As well, $D: \mathscr{S} \rightarrow \mathscr{S}$ defined by

$$
(D \phi)(x)=\phi^{\prime}(x), \quad x \in \mathbb{R}
$$

and $M: \mathscr{S} \rightarrow \mathscr{S}$ defined by

$$
(M \phi)(x)=x \phi(x), \quad x \in \mathbb{R}
$$

are continuous linear maps.

[^0]
3 Hermite functions

Let λ be Lebesgue measure on \mathbb{R} and let

$$
(f, g)_{L^{2}}=\int_{\mathbb{R}} f \bar{g} d \lambda
$$

With this inner product, $L^{2}(\lambda)$ is a separable Hilbert space. We write

$$
|f|_{L^{2}}^{2}=(f, f)_{L^{2}}=\int_{\mathbb{R}}|f|^{2} d \lambda
$$

For $n \geq 0$, define $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} D^{n} e^{-x^{2}}
$$

which is a polynomial of degree $n . H_{n}$ are called Hermite polynomials. It can be shown that

$$
\begin{equation*}
\exp \left(2 z x-z^{2}\right)=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) z^{n}, \quad z \in \mathbb{C} \tag{1}
\end{equation*}
$$

For $m, n \geq 0$,

$$
\int_{\mathbb{R}} H_{m}(x) H_{n}(x) e^{-x^{2}} d \lambda(x)=2^{n} n!\sqrt{\pi} \delta_{m, n}
$$

For $n \geq 0$, define $h_{n}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
h_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-1 / 2} e^{-x^{2} / 2} H_{n}(x)=(-1)^{n}\left(2^{n} n!\sqrt{\pi}\right)^{-1 / 2} e^{x^{2} / 2} D^{n} e^{-x^{2}}
$$

h_{n} are called Hermite functions. Then for $m, n \geq 0$,

$$
\left(h_{m}, h_{n}\right)_{L^{2}}=\int_{\mathbb{R}} h_{m}(x) h_{n}(x) d \lambda(x)=\delta_{m, n}
$$

One proves that $\left\{h_{n}: n \geq 0\right\}$ is an orthonormal basis for $\left(L^{2}(\lambda),(\cdot, \cdot)_{L^{2}}\right) \cdot{ }^{3}$
We remind ourselves that for $x \in \mathbb{R},{ }^{4}$

$$
e^{-x^{2}}=2^{-1} \pi^{-1 / 2} \int_{\mathbb{R}} e^{-y^{2} / 4} e^{-i x y} d y
$$

and by the dominated convergence theorem this yields

$$
D^{n} e^{-x^{2}}=2^{-1} \pi^{-1 / 2} \int_{\mathbb{R}}(-i y)^{n} e^{-y^{2} / 4} e^{-i x y} d y
$$

and so

$$
\begin{equation*}
h_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-1 / 2} e^{x^{2} / 2} \cdot 2^{-1} \pi^{-1 / 2} \int_{\mathbb{R}}(i y)^{n} e^{-y^{2} / 4} e^{-i x y} d y \tag{2}
\end{equation*}
$$

[^1]
4 Mehler's formula

We now prove Mehler's formula for the Hermite functions. ${ }^{5}$
Theorem 1 (Mehler's formula). For $z \in \mathbb{C}$ with $|z|<1$ and for $x, y \in \mathbb{R}$,
$\sum_{n=0}^{\infty} h_{n}(x) h_{n}(y) z^{n}=\pi^{-1 / 2}\left(1-z^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \cdot \frac{1+z^{2}}{1-z^{2}}\left(x^{2}+y^{2}\right)+\frac{2 z}{1-z^{2}} x y\right)$.
Proof. Using (2),

$$
\begin{aligned}
& \sum_{n=0}^{\infty} h_{n}(x) h_{n}(y) z^{n} \\
= & \sum_{n=0}^{\infty} \frac{\sqrt{\pi}}{2^{n} n!} e^{\left(x^{2}+y^{2}\right) / 2} z^{n}\left(\int_{\mathbb{R}}(2 \pi i \xi)^{n} e^{-\pi^{2} \xi^{2}} e^{-2 \pi i x \xi} d \xi\right)\left(\int_{\mathbb{R}}(2 \pi i \zeta)^{n} e^{-\pi^{2} \zeta^{2}} e^{-2 \pi i y \zeta} d \zeta\right) \\
= & \sqrt{\pi} e^{\left(x^{2}+y^{2}\right) / 2} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-\pi^{2} \xi^{2}-\pi^{2} \zeta^{2}-2 \pi i x \xi-2 \pi i \zeta y} \sum_{n=0}^{\infty} \frac{\left(-2 \pi^{2} \xi \zeta z\right)^{n}}{n!} d \xi d \zeta \\
= & \sqrt{\pi} e^{\left(x^{2}+y^{2}\right) / 2} \int_{\mathbb{R}} \int_{\mathbb{R}} e^{-\pi^{2} \xi^{2}-\pi^{2} \zeta^{2}-2 \pi i x \xi-2 \pi i \zeta y} e^{-2 \pi^{2} \xi \zeta z} d \xi d \zeta .
\end{aligned}
$$

Now, writing $a=\frac{i y}{\pi}+\xi z$, we calculate

$$
\begin{aligned}
\int_{\mathbb{R}} e^{-\pi^{2} \zeta^{2}-2 \pi i \zeta y-2 \pi^{2} \xi \zeta z} d \zeta & =\int_{\mathbb{R}} e^{-\pi^{2}(\zeta+a)^{2}+\pi^{2} a^{2}} d \zeta \\
& =\frac{1}{\sqrt{\pi}} e^{\pi^{2} a^{2}} \\
& =\frac{1}{\sqrt{\pi}} \exp \left(-y^{2}+2 \pi i y \xi z+\pi^{2} \xi^{2} z^{2}\right)
\end{aligned}
$$

[^2]Then, for $\alpha=\left(1-z^{2}\right) \pi^{2}$,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} h_{n}(x) h_{n}(y) z^{n} \\
= & e^{\left(x^{2}+y^{2}\right) / 2} \int_{\mathbb{R}} e^{-\pi^{2} \xi^{2}-2 \pi i x \xi-y^{2}+2 \pi i y \xi z+\pi^{2} \xi^{2} z^{2}} d \xi \\
= & e^{\left(x^{2}-y^{2}\right) / 2} \int_{\mathbb{R}} e^{-\alpha \xi^{2}-2 \pi i(x-y z) \xi} d \xi \\
= & e^{\left(x^{2}-y^{2}\right) / 2} \sqrt{\frac{\pi}{\alpha}} \exp \left(-\frac{\pi^{2}}{\alpha}(x-y z)^{2}\right) \\
= & \pi^{-1 / 2} e^{\left(x^{2}-y^{2}\right) / 2}\left(1-z^{2}\right)^{-1 / 2} \exp \left(-\frac{(x-y z)^{2}}{1-z^{2}}\right) \\
= & \pi^{-1 / 2}\left(1-z^{2}\right)^{-1 / 2} \exp \left(-\frac{x^{2}}{1-z^{2}}+\frac{2 x y z}{1-z^{2}}-\frac{y^{2} z^{2}}{1-z^{2}}+\frac{x^{2}}{2}-\frac{y^{2}}{2}\right) \\
= & \pi^{-1 / 2}\left(1-z^{2}\right)^{-1 / 2} \exp \left(-\frac{1}{2} \frac{1+z^{2}}{1-z^{2}}\left(x^{2}+y^{2}\right)+\frac{2 z}{1-z^{2}} x y\right) .
\end{aligned}
$$

5 The Hermite operator

We define $A: \mathscr{S} \rightarrow \mathscr{S}$ by

$$
(A \phi)(x)=-\phi^{\prime \prime}(x)+\left(x^{2}+1\right) \phi(x), \quad x \in \mathbb{R}
$$

i.e.,

$$
A=-D^{2}+M^{2}+1
$$

which is a continuous linear map $\mathscr{S} \rightarrow \mathscr{S}$, which we call the Hermite operator. \mathscr{S} is a dense linear subspace of the Hilbert space $L^{2}(\lambda)$, and $A: \mathscr{S} \rightarrow \mathscr{S}$ is a linear map, so A is a densely defined operator in $L^{2}(\lambda)$. For $\phi, \psi \in \mathscr{S}$, integrating by parts,

$$
\begin{aligned}
(A \phi, \psi)_{L^{2}} & =\int_{\mathbb{R}}\left(-\phi^{\prime \prime}(x)+\left(x^{2}+1\right) \phi(x)\right) \overline{\psi(x)} d \lambda(x) \\
& =\int_{\mathbb{R}}-\phi^{\prime \prime}(x) \overline{\psi(x)} d \lambda(x)+\int_{\mathbb{R}}\left(x^{2}+1\right) \phi(x) \overline{\psi(x)} d \lambda(x) \\
& =\int_{\mathbb{R}}-\phi(x) \overline{\psi^{\prime \prime}(x)} d \lambda(x)+\int_{\mathbb{R}}\left(x^{2}+1\right) \phi(x) \overline{\psi(x)} d \lambda(x) \\
& =(\phi, A \psi)_{L^{2}}
\end{aligned}
$$

showing that $A: \mathscr{S} \rightarrow \mathscr{S}$ is symmetric. Furthermore, also integrating by parts,

$$
(A \phi, \phi)_{L^{2}}=\int_{\mathbb{R}}\left(\phi^{\prime}(x) \overline{\phi^{\prime}(x)}+\left(x^{2}+1\right) \phi(x) \overline{\phi(x)}\right) d \lambda(x) \geq 0
$$

so A is a positive operator.
It is straightforward to check that each h_{n} belongs to \mathscr{S}. For $n \geq 0$, we calculate that

$$
h_{n}^{\prime \prime}(x)+\left(2 n+1-x^{2}\right) h_{n}(x)=0,
$$

and hence

$$
\left(A h_{n}\right)(x)=\left(2 n+1-x^{2}\right) h_{n}(x)+x^{2} h_{n}(x)+h_{n}(x)=(2 n+2) h_{n}(x)
$$

i.e.

$$
A h_{n}=(2 n+2) h_{n}
$$

Therefore, for each $h_{n}, A^{-1} h_{n}=\frac{1}{2 n+2} h_{n}$, and it follows that there is a unique bounded linear operator $T: L^{2}(\lambda) \rightarrow L^{2}(\lambda)$ such that ${ }^{6}$

$$
\begin{equation*}
T h_{n}=A^{-1} h_{n}=(2 n+2)^{-1} h_{n}, \quad n \geq 0 \tag{3}
\end{equation*}
$$

The operator norm of T is

$$
\|T\|=\sup _{n \geq 0} \frac{1}{2 n+2}=\frac{1}{2}
$$

The Hermite functions are an orthonormal basis for $L^{2}(\lambda)$, so for $f \in L^{2}(\lambda)$,

$$
f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} h_{n} .
$$

For $f, g \in L^{2}(\lambda)$,

$$
\begin{aligned}
(T f, g)_{L^{2}} & =\left(\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} T h_{n}, \sum_{n=0}^{\infty}\left(g, h_{n}\right)_{L^{2}} h_{n}\right)_{L^{2}} \\
& =\left(\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}}(2 n+2)^{-1} h_{n}, \sum_{n=0}^{\infty}\left(g, h_{n}\right)_{L^{2}} h_{n}\right)_{L^{2}} \\
& =\sum_{n=0}^{\infty}(2 n+2)^{-1}\left(f, h_{n}\right)_{L^{2}} \overline{\left(g, h_{n}\right)_{L^{2}}}
\end{aligned}
$$

from which it is immediate that T is self-adjoint.
For $p \geq 0$,

$$
\left|T^{p} h_{n}\right|_{L^{2}}^{2}=\left|(2 n+2)^{-p} h_{n}\right|_{L^{2}}^{2}=(2 n+2)^{-2 p}\left|h_{n}\right|_{L^{2}}^{2}=(2 n+2)^{-2 p}
$$

Therefore for $p \geq 1$,

$$
\sum_{n=0}^{\infty}\left|T^{p} h_{n}\right|_{L^{2}}^{2}=\sum_{n=0}^{\infty}(2 n+2)^{-2 p}=2^{-2 p} \sum_{m=1}^{\infty} m^{-2 p}=2^{-2 p} \zeta(2 p)
$$

This means that for $p \geq 1, T^{p}$ is a Hilbert-Schmidt operator with HilbertSchmidt norm ${ }^{7}$

$$
\left\|T^{p}\right\|_{\mathrm{HS}}=2^{-p} \sqrt{\zeta(2 p)}
$$

[^3]
6 Creation and annihilation operators

Taking the derivative of (1) with respect to x gives

$$
2 \sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x) z^{n+1}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}^{\prime}(x) z^{n}
$$

so $H_{0}^{\prime}=0$ and for $n \geq 1, \frac{1}{n!} H_{n}^{\prime}(x)=\frac{1}{(n-1)!} 2 H_{n-1}(x)$, i.e.

$$
H_{n}^{\prime}=2 n H_{n-1},
$$

and so

$$
h_{n}^{\prime}(x)=(2 n)^{1 / 2} h_{n-1}(x)-x h_{n}(x),
$$

i.e.

$$
D h_{n}=(2 n)^{1 / 2} h_{n-1}-M h_{n} .
$$

Furthermore, from its definition we calculate

$$
h_{n}^{\prime}(x)=x h_{n}(x)-(2 n+2)^{1 / 2} h_{n+1}(x),
$$

i.e.

$$
D h_{n}=M h_{n}-(2 n+2)^{1 / 2} h_{n+1} .
$$

We define $B: \mathscr{S} \rightarrow \mathscr{S}$, called the annihilation operator, by

$$
(B \phi)(x)=\phi^{\prime}(x)+x \phi(x), \quad x \in \mathbb{R}
$$

i.e.

$$
B=D+M
$$

which is a continuous linear map $\mathscr{S} \rightarrow \mathscr{S}$. For $n \geq 1$, we calculate

$$
B h_{n}=(2 n)^{1 / 2} h_{n-1},
$$

and $h_{0}(x)=\pi^{-1 / 4} e^{-x^{2} / 2}$, so $B h_{0}=0$.
We define $C: \mathscr{S} \rightarrow \mathscr{S}$, called the creation operator, by

$$
(C \phi)(x)=-\phi^{\prime}(x)+x \phi(x), \quad x \in \mathbb{R}
$$

i.e.

$$
C=-D+M,
$$

which is a continuous linear map $\mathscr{S} \rightarrow \mathscr{S}$. For $n \geq 0$, we calculate

$$
C h_{n}=(2 n+2)^{1 / 2} h_{n+1} .
$$

Thus,

$$
\begin{equation*}
h_{n}=\left(2^{n} n!\right)^{-1 / 2} C^{n} h_{0}=\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2} C^{n}\left(e^{-x^{2} / 2}\right) \tag{4}
\end{equation*}
$$

For $\phi \in \mathscr{S}$,

$$
B-C=2 D
$$

Furthermore,

$$
B C=-D^{2}+M^{2}+1=A
$$

and

$$
C B=-D^{2}+M^{2}-1=A-2
$$

7 The Fourier transform

Define $\mathscr{F}: \mathscr{S} \rightarrow \mathscr{S}$, for $\phi \in \mathscr{S}$, by

$$
(\mathscr{F} \phi)(\xi)=\hat{\phi}(\xi)=\int_{\mathbb{R}} \phi(x) e^{-i \xi x} \frac{d x}{(2 \pi)^{1 / 2}}, \quad \xi \in \mathbb{R}
$$

For $\xi \in \mathbb{R}$, by the dominated convergence theorem we have

$$
\lim _{h \rightarrow 0} \frac{\hat{\phi}(\xi+h)-\hat{\phi}(\xi)}{h}=\int_{\mathbb{R}}(-i x) \phi(x) e^{-i \xi x} \frac{d x}{(2 \pi)^{1 / 2}},
$$

i.e.

$$
\widehat{x \phi(x)}(\xi)=-i^{-1} D \hat{\phi}(\xi)=i D \hat{\phi}(\xi),
$$

in other words,

$$
\begin{equation*}
\mathscr{F}(M \phi)=i D(\mathscr{F} \phi) . \tag{5}
\end{equation*}
$$

Also, by the dominated convergence theorem we obtain

$$
\widehat{D \phi}(\xi)=i \xi \hat{\phi}(\xi)
$$

in other words,

$$
\begin{equation*}
\mathscr{F}(D \phi)=i M(\mathscr{F} \phi) . \tag{6}
\end{equation*}
$$

For $\phi \in \mathscr{S}$,

$$
\begin{equation*}
\phi(x)=\int_{\mathbb{R}} \hat{\phi}(\xi) e^{i x \xi} \frac{d \xi}{(2 \pi)^{1 / 2}}, \quad x \in \mathbb{R} \tag{7}
\end{equation*}
$$

$\phi \mapsto \hat{\phi}$ is an isomorphism of locally convex spaces $\mathscr{S} \rightarrow \mathscr{S} .{ }^{8}$ Using (7) and the Cauchy-Schwarz inequality

$$
\begin{aligned}
\|\phi\|_{\infty} & \leq \int_{\mathbb{R}}\left(1+\xi^{2}\right)^{1 / 2}\left(1+\xi^{2}\right)^{-1 / 2}|\hat{\phi}(\xi)| \frac{d \xi}{(2 \pi)^{1 / 2}} \\
& \leq(2 \pi)^{-1 / 2}\left(\int_{\mathbb{R}}\left(1+\xi^{2}\right)^{-1} d \xi\right)^{1 / 2}\left(\int_{\mathbb{R}}\left(1+\xi^{2}\right)|\hat{\phi}(\xi)|^{2} d \xi\right)^{1 / 2} \\
& =2^{-1 / 2}\left(\int_{\mathbb{R}}\left(1+\xi^{2}\right)|\hat{\phi}(\xi)|^{2} d \xi\right)^{1 / 2}
\end{aligned}
$$

and using (6) and the fact that $|\hat{\phi}|_{L^{2}}=|\phi|_{L^{2}}$,

$$
\begin{aligned}
\|\phi\|_{\infty}^{2} & \leq 2^{-1} \int_{\mathbb{R}}|\hat{\phi}(\xi)|^{2} d \xi+2^{-1} \int_{\mathbb{R}} \xi^{2}|\hat{\phi}(\xi)|^{2} d \xi \\
& =2^{-1} \int_{\mathbb{R}}|\hat{\phi}(\xi)|^{2} d \xi+2^{-1} \int_{\mathbb{R}}\left|\left(\mathscr{F} \phi^{\prime}\right)(\xi)\right|^{2} d \xi \\
& =2^{-1}|\phi|_{L^{2}}^{2}+2^{-1}\left|\phi^{\prime}\right|_{L^{2}}^{2},
\end{aligned}
$$

[^4]and therefore
\[

$$
\begin{equation*}
\|\phi\|_{\infty} \leq 2^{-1 / 2}\left(|\phi|_{L^{2}}+\left|\phi^{\prime}\right|_{L^{2}}\right) \tag{8}
\end{equation*}
$$

\]

We remind ourselves that

$$
A=-D^{2}+M^{2}+1, \quad B=D+M, \quad C=-D+M
$$

Using

$$
\mathscr{F} D=i M \mathscr{F}, \quad D \mathscr{F}=\frac{1}{i} \mathscr{F} M
$$

we get

$$
\begin{aligned}
\mathscr{F} A & =\mathscr{F}\left(-D^{2}+M^{2}+1\right) \\
& =-(i M \mathscr{F}) D+(i D \mathscr{F}) M+\mathscr{F} \\
& =-i M(i M \mathscr{F})+i D(i D \mathscr{F})+\mathscr{F} \\
& =M^{2} \mathscr{F}-D^{2} \mathscr{F}+\mathscr{F} \\
& =A \mathscr{F},
\end{aligned}
$$

and

$$
\mathscr{F} B=\mathscr{F}(D+M)=i M \mathscr{F}+i D \mathscr{F}=i B \mathscr{F}
$$

and

$$
\mathscr{F} C=\mathscr{F}(-D+M)=-i M \mathscr{F}+i D \mathscr{F}=-i C \mathscr{F} .
$$

We now determine the Fourier transform of the Hermite functions.
Theorem 2. For $n \geq 0$,

$$
\mathscr{F} h_{n}=(-i)^{n} h_{n} .
$$

Proof. For $n \geq 0$, by induction, from $\mathscr{F} C=-i C \mathscr{F}$ we get

$$
\mathscr{F} C^{n}=(-i C)^{n} \mathscr{F} .
$$

From (4),

$$
h_{n}=\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2} C^{n}\left(e^{-x^{2} / 2}\right)
$$

Writing $g(x)=e^{-x^{2} / 2}$, it is a fact that

$$
\mathscr{F} g=g
$$

and using this with the above yields

$$
\begin{aligned}
\mathscr{F} h_{n} & =\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2} \mathscr{F} C^{n} g \\
& =\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2}(-i C)^{n} \mathscr{F} g \\
& =\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2}(-i C)^{n} g \\
& =\pi^{-1 / 4}\left(2^{n} n!\right)^{-1 / 2}(-i)^{n} \cdot \pi^{1 / 4}\left(2^{n} n!\right)^{1 / 2} h_{n} \\
& =(-i)^{n} h_{n} .
\end{aligned}
$$

There is a unique Hilbert space isomorphism $\mathscr{F}: L^{2}(\lambda) \rightarrow L^{2}(\lambda)$ such that $\mathscr{F} f=\hat{f}$ for all $f \in \mathscr{S} .{ }^{9}$ For $f \in L^{2}(\lambda)$,

$$
f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} h_{n}
$$

and then

$$
\mathscr{F} f=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}} \mathscr{F} h_{n}=\sum_{n=0}^{\infty}\left(f, h_{n}\right)_{L^{2}}(-i)^{n} h_{n} .
$$

8 Asymptotics

For $x=0,(1)$ reads

$$
\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(0) z^{n}=\exp \left(-z^{2}\right)=\sum_{n=0}^{\infty} \frac{\left(-z^{2}\right)^{n}}{n!}
$$

thus

$$
H_{2 n}(0)=(-1)^{n} \frac{(2 n)!}{n!}, \quad H_{2 n+1}(0)=0
$$

Similarly, taking the derivative of (1) with respect to x yields

$$
H_{2 n}^{\prime}(0)=0, \quad H_{2 n+1}^{\prime}(0)=2(-1)^{n} \frac{(2 n+1)!}{n!}
$$

For $u(x)=e^{-x^{2} / 2} H_{n}(x),{ }^{10}$
$u^{\prime}(x)=-x u+e^{-x^{2} / 2} H_{n}^{\prime}(x), \quad u^{\prime \prime}(x)=-u-x u^{\prime}-x e^{-x^{2} / 2} H_{n}^{\prime}(x)+e^{-x^{2} / 2} H_{n}^{\prime \prime}(x)$.
Using

$$
H_{n}^{\prime}(x)=2 x H_{n}(x)-H_{n+1}(x), \quad H_{n}^{\prime}(x)=2 n H_{n-1}(x)
$$

we get

$$
H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}(x)+2 n H_{n}(x)=0
$$

and thence

$$
u^{\prime \prime}=-u+x^{2} u-2 n u .
$$

Thus, writing $f(x)=x^{2} u(x), u$ satisfies the initial value problem

$$
\begin{equation*}
v^{\prime \prime}+(2 n+1) v=f, \quad v(0)=H_{n}(0), \quad v^{\prime}(0)=H_{n}^{\prime}(0) \tag{9}
\end{equation*}
$$

Now, for $\lambda>0$, two linearly independent solutions of $v^{\prime \prime}+\lambda v=0$ are $v_{1}(x)=$ $\cos \left(\lambda^{1 / 2} x\right)$ and $v_{2}(x)=\sin \left(\lambda^{1 / 2} x\right)$. The Wronskian of $\left(v_{1}, v_{2}\right)$ is $W=\lambda^{1 / 2}$, and

[^5]using variation of parameters, if v satisfies $v^{\prime \prime}+\lambda v=g$ then there are c_{1}, c_{2} such that
$$
v(x)=c_{1} v_{1}+c_{2} v_{2}+A v_{1}+B v_{2}
$$
where
$$
A(x)=-\int_{0}^{x} \frac{1}{W} v_{2}(t) g(t) d t, \quad B(x)=\int_{0}^{x} \frac{1}{W} v_{1}(t) g(t) d t
$$

We calculate that the unique solution of the initial value problem $v^{\prime \prime}+\lambda v=g$, $v(0)=a, v^{\prime}(0)=b$, is

$$
\begin{aligned}
v(x) & =a v_{1}(x)+b \lambda^{-1 / 2} v_{2}(x) \\
& -\lambda^{-1 / 2} v_{1}(x) \int_{0}^{x} v_{2}(t) g(t) d t+\lambda^{-1 / 2} v_{2}(x) \int_{0}^{x} v_{1}(t) g(t) d t \\
& =a \cos \left(\lambda^{1 / 2} x\right)+b \lambda^{-1 / 2} \sin \left(\lambda^{1 / 2} x\right) \\
& +\lambda^{-1 / 2} \int_{0}^{x}\left(\cos \left(\lambda^{1 / 2} t\right) \sin \left(\lambda^{1 / 2} x\right)-\sin \left(\lambda^{1 / 2} t\right) \cos \left(\lambda^{1 / 2} x\right)\right) g(t) d t \\
& =a \cos \left(\lambda^{1 / 2} x\right)+b \lambda^{-1 / 2} \sin \left(\lambda^{1 / 2} x\right)+\lambda^{-1 / 2} \int_{0}^{x} \sin \left(\lambda^{1 / 2}(x-t)\right) g(t) d t .
\end{aligned}
$$

Therefore the unique solution of the initial value problem (9) is

$$
\begin{aligned}
v(x) & =H_{n}(0) \cos \left((2 n+1)^{1 / 2} x\right)+H_{n}^{\prime}(0)(2 n+1)^{-1 / 2} \sin \left((2 n+1)^{1 / 2} x\right) \\
& +(2 n+1)^{-1 / 2} \int_{0}^{x} \sin \left((2 n+1)^{1 / 2}(x-t)\right) \cdot t^{2} u(t) d t
\end{aligned}
$$

where $u(x)=e^{-x^{2} / 2} H_{n}(x)$. If $n=2 k$ then

$$
\begin{aligned}
v(x) & =(-1)^{k} \frac{(2 k)!}{k!} \cos \left((4 k+1)^{1 / 2} x\right) \\
& +(4 k+1)^{-1 / 2} \int_{0}^{x} \sin \left((4 k+1)^{1 / 2}(x-t)\right) \cdot t^{2} u(t) d t \\
& =(-1)^{k} \frac{(2 k)!}{k!} \cos \left((4 k+1)^{1 / 2} x\right)+(4 k+1)^{-1 / 2} r_{2 k}(x) .
\end{aligned}
$$

We calculate

$$
\begin{aligned}
\left|r_{2 k}(x)\right|^{2} & \leq\left(\int_{0}^{|x|} t^{4} d t\right)\left(\int_{0}^{|x|}|u(t)|^{2} d t\right) \\
& \leq \frac{|x|^{5}}{10} \cdot \int_{\mathbb{R}} e^{-t^{2}}\left|H_{2 k}(t)\right|^{2} d t \\
& =\frac{|x|^{5}}{10} \cdot 2^{2 k}(2 k)!\sqrt{\pi}
\end{aligned}
$$

i.e.

$$
\left|r_{2 k}(x)\right| \leq \pi^{1 / 4} \frac{|x|^{5 / 2}}{\sqrt{10}} 2^{k} \sqrt{(2 k)!}
$$

By Stirling's approximation,

$$
\frac{2^{k} \sqrt{(2 k)!}}{\frac{(2 k)!}{k!}}=\frac{2^{k} k!}{\sqrt{(2 k)!}} \sim \frac{2^{k}(2 \pi k)^{1 / 2} k^{k} e^{-k}}{\left((4 \pi k)^{1 / 2}(2 k)^{2 k} e^{-2 k}\right)^{1 / 2}}=\pi^{1 / 4} k^{1 / 4}
$$

Thus for $\alpha_{2 k}=\frac{(2 k)!}{k!}$,

$$
\frac{\left|r_{2 k}(x)\right|}{\alpha_{2 k}}=O\left(|x|^{5 / 2} \cdot k^{1 / 4} \cdot k^{-1 / 2}\right)=O\left(|x|^{5 / 2} k^{-1 / 4}\right) .
$$

Thangavelu states the following inequality and asymptotics without proof, and refers to Szegő and Muckenhoupt. ${ }^{11}$

Lemma 3. There are $\gamma, C, \epsilon>0$ such that for $N=2 n+1$,

$$
\begin{aligned}
\left|h_{n}(x)\right| & \leq C\left(N^{1 / 3}+\left|x^{2}-N\right|\right)^{-1 / 4}, \quad x^{2} \leq 2 N \\
& \leq C e^{-\gamma x^{2}}, \quad x^{2}>2 N,
\end{aligned}
$$

and

$$
\left|h_{n}(x)\right| \leq N^{-1 / 8}\left(x-N^{1 / 2}\right)^{-1 / 4} e^{-\epsilon N^{1 / 4}\left(x-N^{1 / 2}\right)^{3 / 2}}
$$

for $N^{1 / 2}+N^{-1 / 6} \leq x \leq(2 N)^{1 / 2}$.
Lemma 4. For $N=2 n+1,0 \leq x \leq N^{\frac{1}{2}}-N^{-\frac{1}{6}}$, and $\theta=\arccos \left(x N^{-\frac{1}{2}}\right)$,
$h_{n}(x)=\left(\frac{2}{\pi}\right)^{1 / 2}\left(N-x^{2}\right)^{-1 / 4} \cos \left(\frac{N(2 \theta-\sin \theta)-\pi}{4}\right)+O\left(N^{1 / 2}\left(N-x^{2}\right)^{-7 / 4}\right)$.
Theorem 5. 1. $\left\|h_{n}\right\|_{p} \asymp n^{\frac{1}{2 p}-\frac{1}{4}}$ for $1 \leq p<4$.
2. $\left\|h_{n}\right\|_{p} \asymp n^{-\frac{1}{8}} \log n$ for $p=4$.
3. $\left\|h_{n}\right\|_{p} \asymp n^{-\frac{1}{6 p}-\frac{1}{12}}$ for $4<p \leq \infty$.

Rather than taking the p th power of h_{n}, one can instead take the p th power of H_{n} and integrate this with respect to Gaussian measure. Writing $d \gamma(x)=$ $(2 \pi)^{-1 / 2} e^{-x^{2} / 2} d x$ and taking H_{n} to be the Hermite polynomial that is monic, now write

$$
\left\|H_{n}\right\|_{p}^{p}=\int_{\mathbb{R}}\left|H_{n}\right|^{p} d \gamma
$$

Larsson-Cohn ${ }^{12}$ proves that for $0<p<2$ there is an explicit $c(p)$ such that

$$
\left\|H_{n}\right\|_{p}=\frac{c(p)}{n^{1 / 4}} \sqrt{n!}\left(1+O\left(n^{-1}\right)\right)
$$

[^6]and for $2<p<\infty$ there is an explicit $c(p)$ such that
$$
\left\|H_{n}\right\|_{p}=\frac{c(p)}{n^{1 / 4}} \sqrt{n!}(p-1)^{n / 2}\left(1+O\left(n^{-1}\right)\right)
$$

This uses the asymptotic expansion of Plancherel and Rotach. ${ }^{13}$

[^7]
[^0]: ${ }^{1}$ http://individual.utoronto.ca/jordanbell/notes/holomorphic.pdf, Theorem 1 and Theorem 4.
 ${ }^{2}$ Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.

[^1]: ${ }^{3}$ http://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, Theorem 8.
 ${ }^{4}$ http://individual.utoronto.ca/jordanbell/notes/completelymonotone.pdf, Lemma 5.

[^2]: ${ }^{5}$ Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy's Theorem on Lie Groups, p. 8, Proposition 1.2.1.

[^3]: ${ }^{6}$ http://individual.utoronto.ca/jordanbell/notes/traceclass.pdf, Theorem 11.
 ${ }^{7}$ http://individual.utoronto.ca/jordanbell/notes/traceclass.pdf, $\S 7$.

[^4]: ${ }^{8}$ Walter Rudin, Functional Analysis, second ed., p. 186, Theorem 7.7.

[^5]: ${ }^{9}$ Walter Rudin, Functional Analysis, second ed., p. 188, Theorem 7.9.
 ${ }^{10}$ N. N. Lebedev, Special Functions and Their Applications, p. 66, §4.14.

[^6]: ${ }^{11}$ Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, pp. 26-27, Lemma 1.5.1 and Lemma 1.5.2; Gábor Szegő, Orthogonal Polynomials; Benjamin Muckenhoupt, Mean convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433470, Lemma 15.
 ${ }^{12}$ Lars Larsson-Cohn, L^{p}-norms of Hermite polynomials and an extremal problem on Wiener chaos, Ark. Mat. 40 (2002), 134-144.

[^7]: ${ }^{13}$ M. Plancherel and W. Rotach, Sur les valeurs asymptotiques des polynomes d'Hermite, Commentarii mathematici Helvetici 1 (1929), 227-254.

