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1 Locally convex spaces

If V is a vector space and {pα : α ∈ A} is a separating family of seminorms on
V , then there is a unique topology with which V is a locally convex space and
such that the collection of finite intersections of sets of the form

{v ∈ V : pα(v) < ϵ}, α ∈ A, ϵ > 0

is a local base at 0.1 We call this the topology induced by the family of
seminorms. If {pn : n ≥ 0} is a separating family of seminorms, then

d(v, w) =

∞∑
n=0

2−n pn(v − w)

1 + pn(v − w)
, v, w ∈ V,

is a metric on V that induces the same topology as the family of seminorms. If
d is a complete metric, then V is called a Fréchet space.

2 Schwartz functions

For ϕ ∈ C∞(R,C) and n ≥ 0, let

pn(ϕ) = sup
0≤k≤n

sup
u∈R

(1 + u2)n/2|ϕ(k)(u)|.

We define S to be the set of those ϕ ∈ C∞(R,C) such that pn(ϕ) < ∞ for all
n ≥ 0. S is a complex vector space and each pn is a norm, and because each
pn is a norm, a fortiori {pn : n ≥ 0} is a separating family of seminorms. With
the topology induced by this family of seminorms, S is a Fréchet space.2 As
well, D : S → S defined by

(Dϕ)(x) = ϕ′(x), x ∈ R

and M : S → S defined by

(Mϕ)(x) = xϕ(x), x ∈ R

are continuous linear maps.

1http://individual.utoronto.ca/jordanbell/notes/holomorphic.pdf, Theorem 1 and
Theorem 4.

2Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.
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3 Hermite functions

Let λ be Lebesgue measure on R and let

(f, g)L2 =

∫
R
fgdλ.

With this inner product, L2(λ) is a separable Hilbert space. We write

|f |2L2 = (f, f)L2 =

∫
R
|f |2dλ.

For n ≥ 0, define Hn : R → R by

Hn(x) = (−1)nex
2

Dne−x2

,

which is a polynomial of degree n. Hn are called Hermite polynomials. It
can be shown that

exp(2zx− z2) =

∞∑
n=0

1

n!
Hn(x)z

n, z ∈ C. (1)

For m,n ≥ 0, ∫
R
Hm(x)Hn(x)e

−x2

dλ(x) = 2nn!
√
πδm,n.

For n ≥ 0, define hn : R → R by

hn(x) = (2nn!
√
π)−1/2e−x2/2Hn(x) = (−1)n(2nn!

√
π)−1/2ex

2/2Dne−x2

.

hn are called Hermite functions. Then for m,n ≥ 0,

(hm, hn)L2 =

∫
R
hm(x)hn(x)dλ(x) = δm,n.

One proves that {hn : n ≥ 0} is an orthonormal basis for (L2(λ), (·, ·)L2).3

We remind ourselves that for x ∈ R,4

e−x2

= 2−1π−1/2

∫
R
e−y2/4e−ixydy,

and by the dominated convergence theorem this yields

Dne−x2

= 2−1π−1/2

∫
R
(−iy)ne−y2/4e−ixydy,

and so

hn(x) = (2nn!
√
π)−1/2ex

2/2 · 2−1π−1/2

∫
R
(iy)ne−y2/4e−ixydy. (2)

3http://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, Theorem 8.
4http://individual.utoronto.ca/jordanbell/notes/completelymonotone.pdf, Lemma

5.
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4 Mehler’s formula

We now prove Mehler’s formula for the Hermite functions.5

Theorem 1 (Mehler’s formula). For z ∈ C with |z| < 1 and for x, y ∈ R,

∞∑
n=0

hn(x)hn(y)z
n = π−1/2(1−z2)−1/2 exp

(
−1

2
· 1 + z2

1− z2
(x2 + y2) +

2z

1− z2
xy

)
.

Proof. Using (2),

∞∑
n=0

hn(x)hn(y)z
n

=

∞∑
n=0

√
π

2nn!
e(x

2+y2)/2zn
(∫

R
(2πiξ)ne−π2ξ2e−2πixξdξ

)(∫
R
(2πiζ)ne−π2ζ2

e−2πiyζdζ

)

=
√
πe(x

2+y2)/2

∫
R

∫
R
e−π2ξ2−π2ζ2−2πixξ−2πiζy

∞∑
n=0

(−2π2ξζz)n

n!
dξdζ

=
√
πe(x

2+y2)/2

∫
R

∫
R
e−π2ξ2−π2ζ2−2πixξ−2πiζye−2π2ξζzdξdζ.

Now, writing a = iy
π + ξz, we calculate∫

R
e−π2ζ2−2πiζy−2π2ξζzdζ =

∫
R
e−π2(ζ+a)2+π2a2

dζ

=
1√
π
eπ

2a2

=
1√
π
exp

(
−y2 + 2πiyξz + π2ξ2z2

)
.

5Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy’s Theorem
on Lie Groups, p. 8, Proposition 1.2.1.
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Then, for α = (1− z2)π2,

∞∑
n=0

hn(x)hn(y)z
n

=e(x
2+y2)/2

∫
R
e−π2ξ2−2πixξ−y2+2πiyξz+π2ξ2z2

dξ

=e(x
2−y2)/2

∫
R
e−αξ2−2πi(x−yz)ξdξ

=e(x
2−y2)/2

√
π

α
exp

(
−π

2

α
(x− yz)2

)
=π−1/2e(x

2−y2)/2(1− z2)−1/2 exp

(
− (x− yz)2

1− z2

)
=π−1/2(1− z2)−1/2 exp

(
− x2

1− z2
+

2xyz

1− z2
− y2z2

1− z2
+
x2

2
− y2

2

)
=π−1/2(1− z2)−1/2 exp

(
−1

2

1 + z2

1− z2
(x2 + y2) +

2z

1− z2
xy

)
.

5 The Hermite operator

We define A : S → S by

(Aϕ)(x) = −ϕ′′(x) + (x2 + 1)ϕ(x), x ∈ R,

i.e.,
A = −D2 +M2 + 1,

which is a continuous linear map S → S , which we call the Hermite opera-
tor. S is a dense linear subspace of the Hilbert space L2(λ), and A : S → S
is a linear map, so A is a densely defined operator in L2(λ). For ϕ, ψ ∈ S ,
integrating by parts,

(Aϕ,ψ)L2 =

∫
R
(−ϕ′′(x) + (x2 + 1)ϕ(x))ψ(x)dλ(x)

=

∫
R
−ϕ′′(x)ψ(x)dλ(x) +

∫
R
(x2 + 1)ϕ(x)ψ(x)dλ(x)

=

∫
R
−ϕ(x)ψ′′(x)dλ(x) +

∫
R
(x2 + 1)ϕ(x)ψ(x)dλ(x)

= (ϕ,Aψ)L2 ,

showing that A : S → S is symmetric. Furthermore, also integrating by parts,

(Aϕ, ϕ)L2 =

∫
R
(ϕ′(x)ϕ′(x) + (x2 + 1)ϕ(x)ϕ(x))dλ(x) ≥ 0,
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so A is a positive operator.
It is straightforward to check that each hn belongs to S . For n ≥ 0, we

calculate that
h′′n(x) + (2n+ 1− x2)hn(x) = 0,

and hence

(Ahn)(x) = (2n+ 1− x2)hn(x) + x2hn(x) + hn(x) = (2n+ 2)hn(x),

i.e.
Ahn = (2n+ 2)hn.

Therefore, for each hn, A
−1hn = 1

2n+2hn, and it follows that there is a unique

bounded linear operator T : L2(λ) → L2(λ) such that6

Thn = A−1hn = (2n+ 2)−1hn, n ≥ 0. (3)

The operator norm of T is

∥T∥ = sup
n≥0

1

2n+ 2
=

1

2
.

The Hermite functions are an orthonormal basis for L2(λ), so for f ∈ L2(λ),

f =

∞∑
n=0

(f, hn)L2hn.

For f, g ∈ L2(λ),

(Tf, g)L2 =

( ∞∑
n=0

(f, hn)L2Thn,

∞∑
n=0

(g, hn)L2hn

)
L2

=

( ∞∑
n=0

(f, hn)L2(2n+ 2)−1hn,

∞∑
n=0

(g, hn)L2hn

)
L2

=

∞∑
n=0

(2n+ 2)−1(f, hn)L2(g, hn)L2 ,

from which it is immediate that T is self-adjoint.
For p ≥ 0,

|T phn|2L2 = |(2n+ 2)−phn|2L2 = (2n+ 2)−2p|hn|2L2 = (2n+ 2)−2p.

Therefore for p ≥ 1,

∞∑
n=0

|T phn|2L2 =

∞∑
n=0

(2n+ 2)−2p = 2−2p
∞∑

m=1

m−2p = 2−2pζ(2p).

This means that for p ≥ 1, T p is a Hilbert-Schmidt operator with Hilbert-
Schmidt norm7

∥T p∥HS = 2−p
√
ζ(2p).

6http://individual.utoronto.ca/jordanbell/notes/traceclass.pdf, Theorem 11.
7http://individual.utoronto.ca/jordanbell/notes/traceclass.pdf, §7.
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6 Creation and annihilation operators

Taking the derivative of (1) with respect to x gives

2

∞∑
n=0

1

n!
Hn(x)z

n+1 =

∞∑
n=0

1

n!
H ′

n(x)z
n,

so H ′
0 = 0 and for n ≥ 1, 1

n!H
′
n(x) =

1
(n−1)!2Hn−1(x), i.e.

H ′
n = 2nHn−1,

and so
h′n(x) = (2n)1/2hn−1(x)− xhn(x),

i.e.
Dhn = (2n)1/2hn−1 −Mhn.

Furthermore, from its definition we calculate

h′n(x) = xhn(x)− (2n+ 2)1/2hn+1(x),

i.e.
Dhn =Mhn − (2n+ 2)1/2hn+1.

We define B : S → S , called the annihilation operator, by

(Bϕ)(x) = ϕ′(x) + xϕ(x), x ∈ R,

i.e.
B = D +M,

which is a continuous linear map S → S . For n ≥ 1, we calculate

Bhn = (2n)1/2hn−1,

and h0(x) = π−1/4e−x2/2, so Bh0 = 0.
We define C : S → S , called the creation operator, by

(Cϕ)(x) = −ϕ′(x) + xϕ(x), x ∈ R,

i.e.
C = −D +M,

which is a continuous linear map S → S . For n ≥ 0, we calculate

Chn = (2n+ 2)1/2hn+1.

Thus,

hn = (2nn!)−1/2Cnh0 = π−1/4(2nn!)−1/2Cn(e−x2/2). (4)

For ϕ ∈ S ,
B − C = 2D.

Furthermore,
BC = −D2 +M2 + 1 = A

and
CB = −D2 +M2 − 1 = A− 2.
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7 The Fourier transform

Define F : S → S , for ϕ ∈ S , by

(Fϕ)(ξ) = ϕ̂(ξ) =

∫
R
ϕ(x)e−iξx dx

(2π)1/2
, ξ ∈ R.

For ξ ∈ R, by the dominated convergence theorem we have

lim
h→0

ϕ̂(ξ + h)− ϕ̂(ξ)

h
=

∫
R
(−ix)ϕ(x)e−iξx dx

(2π)1/2
, ,

i.e.
x̂ϕ(x)(ξ) = −i−1Dϕ̂(ξ) = iDϕ̂(ξ),

in other words,
F (Mϕ) = iD(Fϕ). (5)

Also, by the dominated convergence theorem we obtain

D̂ϕ(ξ) = iξϕ̂(ξ),

in other words,
F (Dϕ) = iM(Fϕ). (6)

For ϕ ∈ S ,

ϕ(x) =

∫
R
ϕ̂(ξ)eixξ

dξ

(2π)1/2
, x ∈ R. (7)

ϕ 7→ ϕ̂ is an isomorphism of locally convex spaces S → S .8 Using (7) and the
Cauchy-Schwarz inequality

∥ϕ∥∞ ≤
∫
R
(1 + ξ2)1/2(1 + ξ2)−1/2|ϕ̂(ξ)| dξ

(2π)1/2

≤ (2π)−1/2

(∫
R
(1 + ξ2)−1dξ

)1/2(∫
R
(1 + ξ2)|ϕ̂(ξ)|2dξ

)1/2

= 2−1/2

(∫
R
(1 + ξ2)|ϕ̂(ξ)|2dξ

)1/2

,

and using (6) and the fact that |ϕ̂|L2 = |ϕ|L2 ,

∥ϕ∥2∞ ≤ 2−1

∫
R
|ϕ̂(ξ)|2dξ + 2−1

∫
R
ξ2|ϕ̂(ξ)|2dξ

= 2−1

∫
R
|ϕ̂(ξ)|2dξ + 2−1

∫
R
|(Fϕ′)(ξ)|2dξ

= 2−1|ϕ|2L2 + 2−1|ϕ′|2L2 ,

8Walter Rudin, Functional Analysis, second ed., p. 186, Theorem 7.7.
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and therefore
∥ϕ∥∞ ≤ 2−1/2(|ϕ|L2 + |ϕ′|L2). (8)

We remind ourselves that

A = −D2 +M2 + 1, B = D +M, C = −D +M.

Using

FD = iMF , DF =
1

i
FM,

we get

FA = F (−D2 +M2 + 1)

= −(iMF )D + (iDF )M + F

= −iM(iMF ) + iD(iDF ) + F

=M2F −D2F + F

= AF ,

and
FB = F (D +M) = iMF + iDF = iBF

and
FC = F (−D +M) = −iMF + iDF = −iCF .

We now determine the Fourier transform of the Hermite functions.

Theorem 2. For n ≥ 0,
Fhn = (−i)nhn.

Proof. For n ≥ 0, by induction, from FC = −iCF we get

FCn = (−iC)nF .

From (4),

hn = π−1/4(2nn!)−1/2Cn(e−x2/2).

Writing g(x) = e−x2/2, it is a fact that

Fg = g,

and using this with the above yields

Fhn = π−1/4(2nn!)−1/2FCng

= π−1/4(2nn!)−1/2(−iC)nFg

= π−1/4(2nn!)−1/2(−iC)ng
= π−1/4(2nn!)−1/2(−i)n · π1/4(2nn!)1/2hn

= (−i)nhn.
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There is a unique Hilbert space isomorphism F : L2(λ) → L2(λ) such that

Ff = f̂ for all f ∈ S .9 For f ∈ L2(λ),

f =

∞∑
n=0

(f, hn)L2hn,

and then

Ff =

∞∑
n=0

(f, hn)L2Fhn =

∞∑
n=0

(f, hn)L2(−i)nhn.

8 Asymptotics

For x = 0, (1) reads

∞∑
n=0

1

n!
Hn(0)z

n = exp(−z2) =
∞∑

n=0

(−z2)n

n!
,

thus

H2n(0) = (−1)n
(2n)!

n!
, H2n+1(0) = 0.

Similarly, taking the derivative of (1) with respect to x yields

H ′
2n(0) = 0, H ′

2n+1(0) = 2(−1)n
(2n+ 1)!

n!
.

For u(x) = e−x2/2Hn(x),
10

u′(x) = −xu+e−x2/2H ′
n(x), u′′(x) = −u−xu′−xe−x2/2H ′

n(x)+e
−x2/2H ′′

n(x).

Using
H ′

n(x) = 2xHn(x)−Hn+1(x), H ′
n(x) = 2nHn−1(x)

we get
H ′′

n(x)− 2xH ′
n(x) + 2nHn(x) = 0,

and thence
u′′ = −u+ x2u− 2nu.

Thus, writing f(x) = x2u(x), u satisfies the initial value problem

v′′ + (2n+ 1)v = f, v(0) = Hn(0), v′(0) = H ′
n(0). (9)

Now, for λ > 0, two linearly independent solutions of v′′+λv = 0 are v1(x) =
cos(λ1/2x) and v2(x) = sin(λ1/2x). The Wronskian of (v1, v2) is W = λ1/2, and

9Walter Rudin, Functional Analysis, second ed., p. 188, Theorem 7.9.
10N. N. Lebedev, Special Functions and Their Applications, p. 66, §4.14.
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using variation of parameters, if v satisfies v′′+λv = g then there are c1, c2 such
that

v(x) = c1v1 + c2v2 +Av1 +Bv2,

where

A(x) = −
∫ x

0

1

W
v2(t)g(t)dt, B(x) =

∫ x

0

1

W
v1(t)g(t)dt.

We calculate that the unique solution of the initial value problem v′′ + λv = g,
v(0) = a, v′(0) = b, is

v(x) = av1(x) + bλ−1/2v2(x)

− λ−1/2v1(x)

∫ x

0

v2(t)g(t)dt+ λ−1/2v2(x)

∫ x

0

v1(t)g(t)dt

= a cos(λ1/2x) + bλ−1/2 sin(λ1/2x)

+ λ−1/2

∫ x

0

(cos(λ1/2t) sin(λ1/2x)− sin(λ1/2t) cos(λ1/2x))g(t)dt

= a cos(λ1/2x) + bλ−1/2 sin(λ1/2x) + λ−1/2

∫ x

0

sin(λ1/2(x− t))g(t)dt.

Therefore the unique solution of the initial value problem (9) is

v(x) = Hn(0) cos((2n+ 1)1/2x) +H ′
n(0)(2n+ 1)−1/2 sin((2n+ 1)1/2x)

+ (2n+ 1)−1/2

∫ x

0

sin((2n+ 1)1/2(x− t)) · t2u(t)dt,

where u(x) = e−x2/2Hn(x). If n = 2k then

v(x) = (−1)k
(2k)!

k!
cos((4k + 1)1/2x)

+ (4k + 1)−1/2

∫ x

0

sin((4k + 1)1/2(x− t)) · t2u(t)dt

= (−1)k
(2k)!

k!
cos((4k + 1)1/2x) + (4k + 1)−1/2r2k(x).

We calculate

|r2k(x)|2 ≤

(∫ |x|

0

t4dt

)(∫ |x|

0

|u(t)|2dt

)

≤ |x|5

10
·
∫
R
e−t2 |H2k(t)|2dt

=
|x|5

10
· 22k(2k)!

√
π,

i.e.

|r2k(x)| ≤ π1/4 |x|5/2√
10

2k
√
(2k)!.
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By Stirling’s approximation,

2k
√

(2k)!
(2k)!
k!

=
2kk!√
(2k)!

∼ 2k(2πk)1/2kke−k

((4πk)1/2(2k)2ke−2k)1/2
= π1/4k1/4.

Thus for α2k = (2k)!
k! ,

|r2k(x)|
α2k

= O(|x|5/2 · k1/4 · k−1/2) = O(|x|5/2k−1/4).

Thangavelu states the following inequality and asymptotics without proof,
and refers to Szegő and Muckenhoupt.11

Lemma 3. There are γ,C, ϵ > 0 such that for N = 2n+ 1,

|hn(x)| ≤ C(N1/3 + |x2 −N |)−1/4, x2 ≤ 2N

≤ Ce−γx2

, x2 > 2N,

and
|hn(x)| ≤ N−1/8(x−N1/2)−1/4e−ϵN1/4(x−N1/2)3/2

for N1/2 +N−1/6 ≤ x ≤ (2N)1/2.

Lemma 4. For N = 2n+ 1, 0 ≤ x ≤ N
1
2 −N− 1

6 , and θ = arccos(xN− 1
2 ),

hn(x) =

(
2

π

)1/2

(N−x2)−1/4 cos

(
N(2θ − sin θ)− π

4

)
+O(N1/2(N−x2)−7/4).

Theorem 5. 1. ∥hn∥p ≍ n
1
2p−

1
4 for 1 ≤ p < 4.

2. ∥hn∥p ≍ n−
1
8 log n for p = 4.

3. ∥hn∥p ≍ n−
1
6p−

1
12 for 4 < p ≤ ∞.

Rather than taking the pth power of hn, one can instead take the pth power
of Hn and integrate this with respect to Gaussian measure. Writing dγ(x) =

(2π)−1/2e−x2/2dx and taking Hn to be the Hermite polynomial that is monic,
now write

∥Hn∥pp =

∫
R
|Hn|pdγ.

Larsson-Cohn12 proves that for 0 < p < 2 there is an explicit c(p) such that

∥Hn∥p =
c(p)

n1/4

√
n!(1 +O(n−1)),

11Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, pp. 26–27, Lemma
1.5.1 and Lemma 1.5.2; Gábor Szegő, Orthogonal Polynomials; Benjamin Muckenhoupt, Mean
convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433–
470, Lemma 15.

12Lars Larsson-Cohn, Lp-norms of Hermite polynomials and an extremal problem on
Wiener chaos, Ark. Mat. 40 (2002), 134–144.
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and for 2 < p <∞ there is an explicit c(p) such that

∥Hn∥p =
c(p)

n1/4

√
n!(p− 1)n/2(1 +O(n−1)).

This uses the asymptotic expansion of Plancherel and Rotach.13

13M. Plancherel and W. Rotach, Sur les valeurs asymptotiques des polynomes d’Hermite,
Commentarii mathematici Helvetici 1 (1929), 227–254.
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