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1 Locally convex spaces

If V is a vector space and {p, : @ € A} is a separating family of seminorms on
V', then there is a unique topology with which V is a locally convex space and
such that the collection of finite intersections of sets of the form

{v eV :py(v) <e}, a€Ad, €>0

is a local base at 0.! We call this the topology induced by the family of
seminorms. If {p, : n > 0} is a separating family of seminorms, then

22” Pn(v = w) , v,w eV,
1+pnv_ )

is a metric on V that induces the same topology as the family of seminorms. If
d is a complete metric, then V is called a Fréchet space.

2 Schwartz functions
For ¢ € C*(R,C) and n > 0, let

Pu(@) = sup sup(l +u?)"/2p™ (u)].
0<k<n u€R

We define .7 to be the set of those ¢ € C°(R,C) such that p,(¢) < oo for all
n > 0. . is a complex vector space and each p, is a norm, and because each
Pr, is a norm, a fortiori {p, : n > 0} is a separating family of seminorms. With
the topology induced by this family of seminorms, .7 is a Fréchet space.? As
well, D : & — . defined by

(Dg)(z) =¢'(z), xz€R
and M : ¥ — . defined by
(M¢)(z) = xg(x), zeR

are continuous linear maps.

Thttp://individual.utoronto.ca/jordanbell/notes/holomorphic.pdf, Theorem 1 and
Theorem 4.
2Walter Rudin, Functional Analysis, second ed., p. 184, Theorem 7.4.



3 Hermite functions

Let A be Lebesgue measure on R and let

(f.9)2 = /R fgdA.

With this inner product, L?()) is a separable Hilbert space. We write

2= (. Pz = / 2N,
R
For n > 0, define H,, : R — R by
Hy(z) = (-1)"e” D"e™™",

which is a polynomial of degree n. H,, are called Hermite polynomials. It
can be shown that

exp(2zx — 2°%) = Z —H, (x)2", zeC. (1)

n=0
For m,n > 0,
/ Hy () Hy (2)e™ " dA(z) = 2"nI/T 0 .
R
For n > 0, define h,, : R — R by
ha(z) = (2"0lv/T) 2" 2 H, (z) = (—=1)"(2"nly/m) /2™ /2Dre"

h,, are called Hermite functions. Then for m,n > 0,
(R, hp) 2 = / B () B, (2)dN(2) = Oy .-
R

One proves that {h,, : n > 0} is an orthonormal basis for (L?(\), (+,-)z2).3
We remind ourselves that for z € R,*

€7x2 — 2717r71/2/ 67y2/4677,'xydy’
R
and by the dominated convergence theorem this yields

Dne—m2 — 2—171_—1/2/(_iy)ne—y2/4e—ixydy,
R

and so

22 _ _ . a2 i
ho(z) = (2"nly/m) "2 /2 . 27 1n 1ﬂ/(zy)"e v/ teTimy gy, (2)
R
Shttp://individual.utoronto.ca/jordanbell/notes/gaussian.pdf, Theorem 8.
4http://individual.utoronto.ca/jordanbell/notes/completelymonotone.pdf, Lemma

5.



4 Mehler’s formula

We now prove Mehler’s formula for the Hermite functions.’

Theorem 1 (Mehler’s formula). For z € C with |z| < 1 and for z,y € R,

. 11 2
5 hnllhal)s" = 7212 e (- T ) 4 ).

Proof. Using (2),

:Z f 6(a: +y )/2 n (/ (27m'£)n67r2£26277ia:§d£) </ (27Ti<)n67r2(262m'y§dc>
= 21nn! R R

—fe(iﬂ +y° /2// —m2e2—n2¢? 2mizt— QTrzCUZ( 27T fCZ) dfdc

n=0

_ \/;Te(x%ry?)/z/ / e—7r2£2—7r2C2—27rixf—27ri(ye—27r 542d§d§.
R JR
Now, writing a = % + &z, we calculate

/ w2¢% —2miCy—2n? ECZdC / —72(¢+a)*+n%a? dC
R
1 2 2

— eﬂ'a

N

1
= F exp (—y2 + 2miyéz + 7T2§222) .

5Sundaram Thangavelu, An Introduction to the Uncertainty Principle: Hardy’s Theorem
on Lie Groups, p. 8, Proposition 1.2.1.



Then, for a = (1 — 22)72,

> hn(z)h
n=0

2, 2 2.2 . 2 . 2.2 2
:e(z +y )/2/67w &8 2mizé—y 2miylz+mEi d§
R

:e(IQ*yQ)/Q/€7a§2727ri(mfyz)fd§
R

72
=™y )/2’ | —exp (—(sc - yz)2>
a o

N2
:F—I/Qe(xz—y2)/2(1 _ 22)—1/2 exp <_ (1'1 7?{:2) )
2

9 2,2 2
:ﬂ—1/2(1 _22)—1/2 exp (_1 x —+ TYyz Yz i Y )

1—22 1—22

2
—r12(1 = 222 expy (_; 1 + 22 (2% + 1) 2z )
-2z

5 The Hermite operator
We define A : .¥ — % by
(A9)(2) = =" (x) + (2 + D)g(x),  z€R,

i.e.
A=-D?+ M?+1,

which is a continuous linear map . — ., which we call the Hermite opera-
tor. .7 is a dense linear subspace of the Hilbert space L?()\), and A : .¥ — .%¥
is a linear map, so A is a densely defined operator in L?()\). For ¢,¢ € .7,
integrating by parts,

(A, )12 = / (6" (x) + (22 + 1)(2))D(@)dA(z)

/ ¢ (@) @dAN(z) + / (22 + 1)) p@)dA(z)
/ —$(a) (@A (@) + / (22 + 1)) p@)dA(z)
¢7A¢)

showing that A : .¥ — ¢ is symmetric. Furthermore, also integrating by parts,

(A, )12 = / (¢ (@) F@) + (@2 + Do(@)d@)dA(x) > 0



so A is a positive operator.
It is straightforward to check that each h, belongs to .. For n > 0, we
calculate that
R (x) 4 (2n 4+ 1 — 2)h,(z) = 0,

and hence
(Ahp)(z) = (2n + 1 — 2H)h,(2) + 22hp (2) + hp(2) = (20 + 2)hp (),
- Ahp, = (20 + 2)h.

Therefore, for each h,, A~th, = hy, and it follows that there is a unique

2n+2
bounded linear operator T': L?(\) — L?(\) such that®
Thy, =A"h, =2n+2)"th,, n>0. (3)
The operator norm of T is
1
T = —.
7] = sup o2 = 5

The Hermite functions are an orthonormal basis for L2()), so for f € L?()),

f= Zf, )12hn-

For f,g € L*(\)

Mx

(Tf.9)

LQThna Z gv Lghn>
n:O L2
Zf7 ’rLL2 27’l+2 1hnazgy 7LL2h>
n=0

T
8

L2
Z 2TL+2 hn)L2(97 hn)Lza
n=0
from which it is immediate that T is self-adjoint.
For p > 0,
‘Tphn|2L2 =|(2n+ 2)7phn|%2 = (2n + 2)72p|hn|%2 = (2n + 2)7217
Therefore for p > 1,

Do ITPhaffs = (20 +2)7 =27 37 = 27%((2p).
n=0 n=0 m=1

This means that for p > 1, T? is a Hilbert-Schmidt operator with Hilbert-
Schmidt norm”
[T"[lgs = 277/ <(2p)-
Shttp://individual .utoronto.ca/jordanbell/notes/traceclass.pdf, Theorem 11.
"http://individual.utoronto.ca/jordanbell/notes/traceclass.pdf, §7.




6 Creation and annihilation operators

Taking the derivative of (1) with respect to x gives

2 ZO EH»@(I’)Z +1 = ZO EH.:L([L’)Z s
so Hy =0 and for n > 1, L H (2) = ﬁQHn,l(:c), ie.
H) =2nH, 1,
and so
B () = (20) Y21 (2) — 2o (),
i.e.

Dhy, = (2n)?hy_1 — Mh,,.
Furthermore, from its definition we calculate
Rl (x) = xhy(z) — (20 + 2)Y 2 by (2),
ie.
Dhy = Mhy, — (20 +2)Y 2R,
We define B : .¥ — ., called the annihilation operator, by

(Bo)(z) = ¢'(z) +z¢(z),  z€R,
ie.
B=D+ M,
which is a continuous linear map . — .. For n > 1, we calculate
Bh,, = (2n)Y?h,,_4,

and ho(z) = 7~ Y4e=%"/2 so Bhy = 0.
We define C': .¥ — .7, called the creation operator, by
(C(b)(.%') = —¢/(.’L') + xd)(m)? z R,
ie.
C=-D+ M,
which is a continuous linear map . — .. For n > 0, we calculate
Chy, = (2n+2)Y2hp 1.
Thus,
hn = (270)) Y20 hg = 74 (20nl) Y20 (e /).
For ¢ € .7,
B—-C=2D.
Furthermore,

BC=-D*+M?*+1=A

and
CB=-D*+M*—-1=A-2.



7 The Fourier transform
Define . : ¥ — ., for ¢ € &, by
dx

(PO =00 = [ ome S cer

For ¢ € R, by the dominated convergence theorem we have

o+ h) =) . —ign o
tin ZEEE0E) [ ipota)e

i.e.

—

26(z)(§) = —i ' DG(€) = iDP(¢),

in other words,
F(M¢) = iD(F ).

Also, by the dominated convergence theorem we obtain

Do(€) = i€ €),
in other words,
F(D¢) = iM(F ).

For ¢ € .7,

_ n ix d§
(b(x) - /R¢(£)e ¢ (271')1/27 zeR.

(6)

(7)

¢ — ¢ is an isomorphism of locally convex spaces . — .#.8 Using (7) and the

Cauchy-Schwarz inequality

dg

Joll < [[(+€20+ €720 557

< (forera)” ([oseriora)

R 1/2
P ( [a +52>|¢<§>|2d5) ,
R
and using (6) and the fact that |¢|.2 = |@|Lz,
l6]2 <2t /R B(E)Pde + 27! /}R 210(6)Pde
_ o1 n 2d —1 a ! 2d
2 /R|<z><s>| €42 /R'(”‘Wf)' ¢

= 27" gl7. + 27|12,

8Walter Rudin, Functional Analysis, second ed., p. 186, Theorem 7.7.




and therefore
9]l <272(16]22 +[¢'] 2)- (8)

‘We remind ourselves that

A=-D?4+ M? 41, B=D+ M, C=—-D+ M.

Using
1
FD=iM%, DF =-%M,
i
we get
FA=F(-D*+ M +1)
=—-(iMZ)D+ (iDF)M +.F
=—iIM(iMZ)+iD(iDF)+ F
=M% -D*7 +F
= AZ,
and
FB=%(D+M)=iMF +iDF =iBF
and

FC=F(-D+M)=—-iMF +iDF = —iCF.
We now determine the Fourier transform of the Hermite functions.

Theorem 2. For n > 0,
Fhy, = (—1)"hy,.

Proof. For n > 0, by induction, from .#C = —iC.% we get
FC" = (—iC)"F.

F
rom (4), .
hy, = W71/4(2nn!)71/2cn(671 /2)

Writing g(z) = e~"/2 it is a fact that
Fg9=4,
and using this with the above yields
Fhy, =n V4@ "V2.20my

— (=) .



There is a unique Hilbert space isomorphism .# : L2(\) — L?()\) such that
Ff=fforall fe.”? For f e L*(\),

F= (f ) 2P,
n=0

and then - 0
Ff= Z(f, hn)p2F hy = Z(f’ )2 (=0)" .
n=0

n=0

8 Asymptotics

For z =0, (1) reads

= 1 n 2 - (_22)71

S L H 02" = exp(—2) = S

n=0 " n=0 '
thus o]

Hon(0) = (_1)”%, Hon1(0) = 0.

Similarly, taking the derivative of (1) with respect to = yields

(2n+1)!

For u(z) = e~*"/2H, (x),1°

u'(z) = —xu—!—e‘zz/QH,’l(a:), u'(z) = —u—xu’—xe_xz/QH,’l(x)+e‘m2/2H,'l’(x).

Using
H! (z) = 2zH,(z) — Hy41(x), H! (z) =2nH,_1(x)
we get
H!(z) — 2z H],(x) + 2nH,(z) = 0,
and thence

u'= —u+ 2%u — 2nu.

Thus, writing f(x) = z?u(x), u satisfies the initial value problem
v+ (2n+ 1)v = f, v(0) = H,(0), v'(0) = H(0). (9)

Now, for A > 0, two linearly independent solutions of v"+Av = 0 are vy (z) =
cos(AY/2z) and vy (x) = sin(A/2z). The Wronskian of (vi,vs) is W = A'/2, and

9Walter Rudin, Functional Analysis, second ed., p. 188, Theorem 7.9.
10N. N. Lebedev, Special Functions and Their Applications, p. 66, §4.14.



using variation of parameters, if v satisfies v/ + v = g then there are ¢, ¢ such
that
v(x) = c1v1 + covz + Avy + Buy,
where
1 1

Aw) =~ [ e, B@ = | pu@ear

We calculate that the unique solution of the initial value problem v" + Mv = g,
v(0) = a, v'(0) = b, is
v(z) = avy (x) + DA™ 2uy(x)

A2 (0) [ g+ X ua(a) [ o0t
0 0
= acos(\/2z) + bA"/ 2 sin(\/2x)

+ A2 / (cos(AY2t) sin(AY2x) — sin(AY/2t) cos(AY/2z))g(t)dt
0
xz
= acos(A2x) + DAV 2 sin(A/2z) + A7Y/2 / sin(AY2(z — t))g(t)dt.
0
Therefore the unique solution of the initial value problem (9) is
v(z) = H,(0) cos((2n + 1)Y2z) + H' (0)(2n + 1)"Y/2sin((2n + 1)1/2z)

+(2n+1)71/2 /x sin((2n + 1)Y2(z — 1)) - Pu(t)dt,
0

where u(z) = e*"”2/2Hn(:E). If n = 2k then

o(z) = (—1)F (2:!)! cos((4k + 1)1/2z)

+ (4k +1)"1/? /m sin((4k + 1)Y2(x — t)) - t2u(t)dt
0

= (fl)k% cos((4k + 1)1/2x) + (4k + 1)71/2r2k(x).

We calculate

i.e.



By Stirling’s approximation,

V@R 2MR  RQrk) PRt
% (2K)! ((47k)1/2(2k)2ke—2k)1/2
Thus for ag, = %,

T2k — —
| ( )| _ O(|.T|5/2 . k1/4 -k 1/2) — O(|$|5/2k’ 1/4)-

Q2

Thangavelu states the following inequality and asymptotics without proof,
and refers to Szegé and Muckenhoupt.!!

Lemma 3. There are v, C, e > 0 such that for N = 2n + 1,
|hn(z)| < C(NY? + |22 — N)7V4, 22 <2N
<Ce™, 22 > 2N,

and
ha(z)] < N—I/S(m_N1/2)—1/46—6N1/4($—N1/2)3/2

for NY/2 4 N=1/6 <z < (2N)1/2.

Lemma 4. For N=2n+1,0<z< N2 — N6, and § = arccos(xN’%),

() = (i) N )1 e (N(ze - Z‘m b) - ”) FO(NY2(N —g2)~T/).

Theorem 5. 1. |[hy|, < n# 1 for 1 < p < 4.
2. [|hnll, =< n~s logn for p = 4.

3. [lhnll, < n~% T for 4 < p < oo.

Rather than taking the pth power of h,,, one can instead take the pth power
of H,, and integrate this with respect to Gaussian measure. Writing dy(z) =
(27)1/2¢=**/2dz and taking H,, to be the Hermite polynomial that is monic,
now write

|| = / \H, [P dy.

Larsson-Cohn'? proves that for 0 < p < 2 there is an explicit ¢(p) such that

1, = S i1+ 0(n ),

/4

1 Sundaram Thangavelu, Lectures on Hermite and Laguerre Expansions, pp. 26-27, Lemma,
1.5.1 and Lemma 1.5.2; Gabor Szegd, Orthogonal Polynomials; Benjamin Muckenhoupt, Mean
convergence of Hermite and Laguerre series. II, Trans. Amer. Math. Soc. 147 (1970), 433—
470, Lemma 15.

12Lars Larsson-Cohn, LP-norms of Hermite polynomials and an extremal problem on
Wiener chaos, Ark. Mat. 40 (2002), 134-144.

11



and for 2 < p < oo there is an explicit ¢(p) such that

Il = St — 1721+ O ).

/4

This uses the asymptotic expansion of Plancherel and Rotach.'3

13M. Plancherel and W. Rotach, Sur les valeurs asymptotiques des polynomes d’Hermite,
Commentarit mathematici Helvetici 1 (1929), 227-254.

12



