The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Jordan Bell

January 22, 2015

1 BV[a,b]

Let a < b. For $f : [a, b] \to \mathbb{R}$, we define¹

$$\|f\|_{\infty} = \sup_{t \in [a,b]} |f(t)|,$$

and if $||f||_{\infty} < \infty$ we say that f is **bounded**. We define B[a, b] to be the set of bounded functions $[a, b] \to \mathbb{R}$, which with the norm $||\cdot||_{\infty}$ is a Banach algebra.

A partition of [a, b] is a set $P = \{t_0, \ldots, t_n\}$ such that $a = t_0 < \cdots < t_n = b$. For example, $P = \{a, b\}$ is a partition of [a, b]. If Q is a partition of [a, b] and $P \subset Q$, we say that Q is a **refinement** of P. For $f : [a, b] \to \mathbb{R}$, we define

$$V(f, P) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|.$$

It is straightforward to show using the triangle inequality that if Q is a refinement of P then

$$V(f, P) \le V(f, Q).$$

In particular, any partition P is a refinement of $\{a, b\}$, so

$$|f(b) - f(a)| \le V(f, P).$$

The **total variation** of $f : [a, b] \to \mathbb{R}$ is

 $V_a^b f = \sup\{V(f, P) : P \text{ is a partition of } [a, b]\},\$

and if $V_a^b f < \infty$ we say that f is of **bounded variation**. We denote by BV[a, b] the set of functions $[a, b] \to \mathbb{R}$ of bounded variation. For a function $f \in BV[a, b]$, we define $v : [a, b] \to \mathbb{R}$ by $v(x) = V_a^x f$ for $x \in [a, b]$, called the **variation of** f.

¹In this note we speak about functions that take values in \mathbb{R} , because this makes it simpler to talk about monotone functions. Once the machinery is established we can then apply it to the real and imaginary parts of a function that takes values in \mathbb{C} .

If $f : [a,b] \to \mathbb{R}$ is monotone, it is straightforward to check that $V_a^b f = |f(b) - f(a)|$, hence that f is of bounded variation. We first show that $BV[a,b] \subset B[a,b]$.

Lemma 1. If $f : [a, b] \to \mathbb{R}$ is of bounded variation, then

$$\|f\|_{\infty} \le |f(a)| + V_a^b f$$

Proof. Let $x \in [a, b]$ If x = a the result is immediate. If x = b, then

 $|f(b)| \le |f(a)| + |f(b) - f(a)| \le |f(a)| + V_a^b f.$

Otherwise, $P = \{a, x, b\}$ is a partition of [a, b] and

$$|f(x) - f(a)| \le V(f, P) \le V_a^b f.$$

The total variation of functions has several properties. The following lemma and that fact that functions of bounded variation are bounded imply that BV[a, b] is an algebra.²

Lemma 2. If $f, g \in BV[a, b]$ and $c \in \mathbb{R}$, then the following statements are true.

- 1. $V_a^b f = 0$ if and only if f is constant.
- 2. $V_a^b(cf) = |c|V_a^b(f)$.
- 3. $V_a^b(f+g) \le V_a^b f + V_a^b g$.
- 4. $V_a^b(fg) \le ||f||_{\infty} V_a^b g + ||g||_{\infty} V_a^b f.$
- 5. $V_a^b |f| \le V_a^b f$.
- 6. $V_a^b f = V_a^x f + V_x^b$ for $a \le x \le b$.

Lemma 3. If $f:[a,b] \to \mathbb{R}$ is differentiable on (a,b) and $\|f'\|_{\infty} < \infty$, then

$$V_a^b f \le \|f'\|_\infty (b-a).$$

Proof. Suppose that $P = \{a = t_0 < \cdots < t_n = b\}$ is a partition of [a, b]. By the mean value theorem, for each $j = 1, \ldots, n$ there is some $x_j \in (t_{j-1}, t_j)$ at which

$$f'(x_j) = \frac{f(t_j) - f(t_{j-1})}{t_j - t_{j-1}}.$$

²N. L. Carothers, *Real Analysis*, p. 204, Lemma 13.3.

Then

$$V(f, P) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|$$

= $\sum_{j=1}^{n} (t_j - t_{j-1}) |f'(x_j)|$
 $\leq ||f'||_{\infty} \sum_{j=1}^{n} (t_j - t_{j-1})$
= $||f'||_{\infty} (b-a).$

Lemma 4. If $f \in C^1[a, b]$, then

$$V_a^b f \le \int_a^b |f'(t)| dt.$$

Proof. Let $P = \{t_0, \ldots, t_n\}$ be a partition of [a, b]. Then, by the fundamental theorem of calculus,

$$V(f, P) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|$$

$$\leq \sum_{j=1}^{n} \left| \int_{t_{j-1}}^{t_j} f'(t) \right|$$

$$\leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_j} |f'(t)| dt$$

$$= \int_{a}^{b} |f'(t)| dt.$$

Therefore

$$V_a^b f = \sup_P V(f, P) \le \int_a^b |f'(t)| dt.$$

Lemma 5. If $f : [a, b] \to \mathbb{R}$ is a polynomial, then

$$V_a^b f = \int_a^b |f'(t)| dt.$$

Proof. Because f is a polynomial, f is also, so f' is piecewise monotone, say $f' = c_j |f'|$ on (t_{j-1}, t_j) for j = 1, ..., n, for some $c_j \in \{+1, -1\}$ and $a = t_0 < \cdots < t_n = b$. Then

$$\int_{t_{j-1}}^{t_j} |f'(t)| dt = c_j \int_{t_{j-1}}^{t_j} f'(t) dt = c_j (f(t_j) - f(t_{j-1})),$$

giving, because $t_0 < \cdots < t_n$ is a partition of [a, b],

$$\int_{a}^{b} |f'(t)| dt = \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}} |f'(t)| dt$$
$$= \sum_{j=1}^{n} c_{j}(f(t_{j}) - f(t_{j-1}))$$
$$\leq \sum_{j=1}^{n} |f(t_{j}) - f(t_{j-1})|$$
$$\leq V_{a}^{b} f.$$

-	_	
	_	

Lemma 6. If f_m is a sequence of functions $[a, b] \to \mathbb{R}$ that converges pointwise to some $f : [a, b] \to \mathbb{R}$ and P is some partition of [a, b], then

$$V(f_m, P) \to V(f, P).$$

If f_m is a sequence in BV[a, b] that converges pointwise to some $f : [a, b] \to \mathbb{R}$, then

$$V_a^b f \le \liminf_{m \to \infty} V_a^b f_m.$$

Proof. Say $P = \{t_0, \ldots, t_n\}$. Then, because taking the limit of convergent sequences is linear,

$$\lim_{m \to \infty} V(f_m, P) = \lim_{m \to \infty} \sum_{j=1}^n |f_m(t_j) - f_m(t_{j-1})|$$
$$= \sum_{j=1}^n \lim_{m \to \infty} |f_m(t_j) - f_m(t_{j-1})|$$
$$= \sum_{j=1}^n |f(t_j) - f(t_{j-1})|$$
$$= V(f, P).$$

Let $P = \{t_0, \ldots, t_n\}$ be a partition of [a, b]. Then

$$V(f,P) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})|$$

=
$$\sum_{j=1}^{n} \lim_{m \to \infty} |f_m(t_j) - f_m(t_{j-1})|$$

=
$$\lim_{m \to \infty} V(f_m, P)$$

$$\leq \liminf_{m \to \infty} V_a^b f_m.$$

This is true for any partition P of [a, b], which yields

$$V_a^b f \le \liminf_{m \to \infty} V_a^b f_m.$$

_ 1				
1				
- 1	_	_	_	

We now prove that BV[a, b] is a Banach space.³

Theorem 7. With the norm

$$||f||_{BV} = |f(a)| + V_a^b f.$$

BV[a,b] is a Banach space.

Proof. Using Lemma 2, it is straightforward to check that BV[a, b] is a normed linear space. Suppose that f_m is a Cauchy sequence in BV[a, b]. By Lemma 1 it follows that f_m is a Cauchy sequence in B[a, b], and thus converges in B[a, b] to some $f \in B[a, b]$.

Let P be a partition of [a, b] and let $\epsilon > 0$. Because f_n is a Cauchy sequence in BV[a, b], there is some N such that if $n, m \ge N$ then $||f_m - f_n||_{BV} < \epsilon$. For $n \ge N$, Lemma 6 yields

$$\begin{split} \|f - f_n\|_{BV} &\leq |f(a) - f_n(a)| + V(f - f_n, P) \\ &= \lim_{m \to \infty} \left(|f_m(a) - f_n(a)| + V(f_m - f_n, P) \right) \\ &\leq \sup_{m \geq N} \left(|f_m(a) - f_n(a)| + V(f_m - f_n, P) \right) \\ &= \sup_{m \geq N} \|f_m - f_n\|_{BV} \\ &\leq \epsilon. \end{split}$$

Because $f - f_N \in BV[a, b]$ and $f_N \in BV[a, b]$ and BV[a, b] is an algebra, $f = (f - f_N) + f_N \in BV[a, b]$. That is, the Cauchy sequence f_n converges in BV[a, b] to $f \in BV[a, b]$, showing that BV[a, b] is a complete metric space and thus a Banach space.

³N. L. Carothers, *Real Analysis*, p. 206, Theorem 13.4.

The following theorem shows that a function of bounded of variation can be written as the difference of nondecreasing functions.⁴

Theorem 8. Let $f \in BV[a, b]$ and let v be the variation of f. Then v - f and v are nondecreasing.

Proof. If $x, y \in [a, b]$, x < y, then, using Lemma 2,

$$\begin{aligned} v(y) - v(x) &= V_a^y f - V_a^x f \\ &= V_x^y f \\ &\geq |f(y) - f(x)| \\ &\geq f(y) - f(x). \end{aligned}$$

That is, $v(y) - f(y) \ge v(x) - f(x)$, showing that v - f is nondecreasing, and because f is nondecreasing we have $f(y) - f(x) \ge 0$ and so $v(y) - v(x) \ge 0$. \Box

The following theorem tells us that a function of bounded variation is right or left continuous at a point if and only if its variation is respectively right or left continuous at the point.⁵

Theorem 9. Let $f \in BV[a, b]$ and let v be the variation of f. For $x \in [a, b]$, f is right (respectively left) continuous at x if and only if v is right (respectively left) continuous at x.

Proof. Assume that v is right continuous at x. If $\epsilon > 0$, there is some $\delta > 0$ such that $x \leq y < x + \delta$ implies that $v(y) - v(x) = |v(y) - v(x)| < \epsilon$. If $x \leq y < x + \delta$, then

$$|f(y) - f(x)| \le v(y) - v(x) < \epsilon,$$

showing that f is right continuous at x.

Assume that f is right continuous at x, with $a \leq x < b$. Let $\epsilon > 0$. There is some $\delta > 0$ such that $x \leq y < x + \delta$ implies that $|f(y) - f(x)| < \frac{\epsilon}{2}$. Because $V_x^b f$ is a supremum over partitions of [x, b], there is some partition $P = \{t_0, t_1, \ldots, t_n\}$ of [x, b] such that $V_x^b f - \frac{\epsilon}{2} \leq V(f, P)$. Let $x \leq y < \min\{\delta, t_1 - x\}$. Then $Q = \{t_0, y, t_1, \ldots, t_n\}$ is a refinement of P, so

$$\begin{aligned} V_x^b f &- \frac{\epsilon}{2} \leq V(f, P) \\ &\leq V(f, Q) \\ &= |f(y) - f(t_0)| + V(f, \{y, t_1, \dots, t_n\}) \\ &< \frac{\epsilon}{2} + V_y^b f. \end{aligned}$$

Hence

$$\epsilon > V_x^b f - V_y^b f = V_x^y f = v(y) - v(x) = |v(y) - v(x)|$$

showing that v is right continuous at x.

 $^{^4\}mathrm{N.}$ L. Carothers, Real Analysis, p. 207, Theorem 13.5.

⁵N. L. Carothers, *Real Analysis*, p. 207, Theorem 13.9.

For $f \in BV[a, b]$ and for v the variation of f, we define the **positive variation of** f as

$$p(x) = \frac{v(x) + f(x) - f(a)}{2}, \qquad x \in [a, b],$$

and the **negative variation of** f as

$$n(x) = \frac{v(x) - f(x) + f(a)}{2}, \qquad x \in [a, b]$$

We can write the variation as v = p + n. We now establish properties of the positive and negative variations.⁶

Theorem 10. Let $f \in BV[a, b]$, let v be its variation, let p be its positive variation, and let n be its negative variation. Then $0 \le p \le v$ and $0 \le n \le v$, and p and n are nondecreasing.

Proof. For $x \in [a,b]$, $v(x) = V_a^x f \ge |f(x) - f(a)|$. Because $v(x) \ge -(f(x) - f(a))$, we have $p(x) \ge 0$, and because $v(x) \ge f(x) - f(a)$ we have $n(x) \ge 0$. And then v = p + n implies that $p \le v$ and $n \le v$.

For x < y,

$$p(y) - p(x) = \frac{v(y) + f(y) - v(x) - f(x)}{2}$$

= $\frac{1}{2} (V_x^y f + (f(y) - f(x)))$
 $\ge \frac{1}{2} (|f(y) - f(x)| + (f(y) - f(x)))$
 ≥ 0

and

$$n(y) - n(x) = \frac{v(y) - f(y) - v(x) + f(x)}{2}$$

= $\frac{1}{2} (V_x^y f - (f(y) - f(x)))$
 $\ge \frac{1}{2} (|f(y) - f(x)| - (f(y) - f(x)))$
 $\ge 0.$

We now prove that BV[a, b] is a Banach algebra.⁷

Theorem 11. BV[a, b] is a Banach algebra.

⁶N. L. Carothers, *Real Analysis*, p. 209, Proposition 13.11.

⁷N. L. Carothers, *Real Analysis*, p. 209, Proposition 13.12.

Proof. For $f_1, f_2 \in BV[a, b]$, let $v_1, v_2, p_1, p_2, n_1, n_2$ be their variations, positive variations, and negative variations, respectively. Then

$$f_1 f_2 = (f_1(a) + p_1 - n_1)(f_2(a) + p_2 - n_2)$$

= $f_1(a) f_2(a) + p_1 p_2 + n_1 n_2 - n_1 p_2 - n_2 p_1$
+ $f_1(a) p_2 + f_2(a) p_1 - f_1(a) n_2 - f_2(a) n_1.$

Using this and the fact that if f is nondecreasing then $V_a^b f = f(b) - f(a)$,

$$\begin{split} \|f_{1}f_{2}\|_{BV} &= |f_{1}(a)||f_{2}(a)| + V_{a}^{b}(f_{1}f_{2}) \\ &\leq |f_{1}(a)||f_{2}(a)| + V_{a}^{b}(p_{1}p_{2}) + V_{a}^{b}(n_{1}n_{2}) + V_{a}^{b}(n_{1}p_{2}) + V_{a}^{b}(n_{2}p_{1}) \\ &+ |f_{1}(a)|V_{a}^{b}p_{2} + |f_{2}(a)|V_{a}^{b}p_{1} + |f_{1}(a)|V_{a}^{b}n_{2} + |f_{2}(a)|V_{a}^{b}n_{1} \\ &= |f_{1}(a)||f_{2}(a)| + p_{1}(b)p_{2}(b) + n_{1}(b)n_{2}(b) + n_{1}(b)p_{2}(b) + n_{2}(b)p_{1}(b) \\ &+ |f_{1}(a)|p_{2}(b) + |f_{2}(a)|p_{1}(b) + |f_{1}(a)|n_{2}(b) + |f_{2}(a)|n_{1}(b) \\ &= (|f_{1}(a)| + p_{1}(b) + n_{1}(b))(|f_{2}(a)| + p_{2}(b) + n_{2}(b)) \\ &= (|f_{1}(a) + v_{1}(b))(|f_{2}(a)| + v_{2}(b)) \\ &= \|f_{1}\|_{BV} \|f_{2}\|_{BV} \,, \end{split}$$

which shows that BV[a, b] is a normed algebra. And BV[a, b] is a Banach space, so BV[a, b] is a Banach algebra.

Theorem 12. If $f \in C^1[a, b]$, then

$$V_a^b f = \int_a^b |f'(t)| dt.$$

Let $(f')^+$ and $(f')^-$ be the positive and negative parts of f' and let p and n be the positive and negative variations of f. Then, for $x \in [a, b]$,

$$p(x) = \int_{a}^{x} (f')^{+}(t)dt, \qquad n(x) = \int_{a}^{x} (f')^{-}(t)dt.$$

Proof. Lemma 4 states that $V_a^b \leq \int_a^b |f'(t)| dt$. Because f' is continuous it is Riemann integrable, hence for any $\epsilon > 0$ there is some partition $P = \{t_0, \ldots, t_n\}$ of [a, b] such that if $x_j \in [t_{j-1}, t_j]$ for $j = 1, \ldots, n$ then

$$\left| \int_{a}^{b} |f'(t)| dt - \sum_{j=1}^{n} |f'(x_j)| (t_j - t_{j-1}) \right| < \epsilon.$$

By the mean value theorem, for each j = 1, ..., n there is some $x_j \in (t_{j-1}, t_j)$ such that $f'(x_j) = \frac{f(t_j) - f(t_{j-1})}{t_j - t_{j-1}}$. Then

$$V(f,P) = \sum_{j=1}^{n} |f(t_j) - f(t_{j-1})| = \sum_{j=1}^{n} |f'(x_j)|(t_j - t_{j-1}),$$

 \mathbf{SO}

$$\left|\int_{a}^{b} |f'(t)| dt - V(f, P)\right| < \epsilon,$$

and thus

$$\int_{a}^{b} |f'(t)| dt < V(f, P) + \epsilon \le V_{a}^{b} f + \epsilon.$$

This is true for all $\epsilon > 0$, therefore

$$\int_{a}^{b} |f'(t)| dt \le V_{a}^{b} f,$$

which is what we wanted to show.

Write

$$g(t) = (f')^+(t) = \max\{f'(t), 0\}, \qquad h(t) = (f')^-(t) = -\min\{f'(t), 0\}.$$

These satisfy g + h = |f'| and g - h = f'. Using the fundamental theorem of calculus,

$$p(x) = \frac{1}{2} (v(x) + f(x) - f(a))$$
$$= \frac{1}{2} \left(V_a^x f + \int_a^x f'(t) dt \right)$$
$$= \frac{1}{2} \left(\int_a^b |f'(t)| dt + \int_a^b f'(t) dt \right)$$
$$= \int_a^b g(t) dt$$

and

$$n(x) = \frac{1}{2} (v(x) - f(x) + f(a))$$

= $\frac{1}{2} \left(V_a^x f - \int_a^x f'(t) dt \right)$
= $\frac{1}{2} \left(\int_a^x |f'(t)| dt - \int_a^x f'(t) dt \right)$
= $\int_a^x h(t) dt.$

2 Helly's selection theorem

We will use the following lemmas in the proof of the Helly selection theorem.⁸

 $^{^{\}rm 8}$ N. L. Carothers, *Real Analysis*, p. 210, Theorem 13.13; p. 211, Lemma 13.14; p. 211, Lemma 13.15.

Lemma 13. Suppose that X is a set, that $f_n : X \to \mathbb{R}$ is a sequence of functions, and that there is some K such that $||f_n||_{\infty} \leq K$ for all n. If D is a countable subset of X, then there is a subsequence of f_n that converges pointwise on D to some $\phi : D \to \mathbb{R}$, which satisfies $||\phi||_{\infty} \leq K$.

Proof. Say $D = \{x_k : k \ge 1\}$. Write $f_n^0 = f_n$. The sequence of real numbers $f_n^0(x_1)$ satisfies $f_n^0(x_1) \in [-K, K]$ for all n, and since the set [-K, K] is compact there is a subsequence $f_n^1(x_1)$ of $f_n^0(x_1)$ that converges, say to $\phi(x_1) \in [-K, K]$. Suppose that $f_n^m(x_m)$ is a subsequence of $f_n^{m-1}(x_m)$ that converges to $\phi(x_m) \in [-K, K]$. Then the sequence of real numbers $f_n^m(x_{m+1})$ satisfies $f_n^m(x_{m+1}) \in [-K, K]$ for all n, and so there is a subsequence $f_n^{m+1}(x_{m+1})$ of $f_n^m(x_{m+1}) \in [-K, K]$ for all n, and so there is a subsequence $f_n^{m+1}(x_{m+1})$ of $f_n^m(x_{m+1})$ that converges, say to $\phi(x_{m+1}) \in [-K, K]$. Let $k \ge 1$. Then one checks that $f_n^n(x_k) \to \phi(x_k)$ as $n \to \infty$, namely, f_n^n is a subsequence of f_n that converges pointwise on D to ϕ , and for each k we have $\phi(x_k) \in [-K, K]$.

Lemma 14. Let $D \subset [a,b]$ with $a \in D$ and $b = \sup D$. If $\phi : D \to \mathbb{R}$ is nondecreasing, then $\Phi : [a,b] \to \mathbb{R}$ defined by

$$\Phi(x) = \sup\{\phi(t) : t \in [a, x] \cap D\}$$

is nondecreasing and the restriction of Φ to D is equal to ϕ .

Lemma 15. If $f_n : [a,b] \to \mathbb{R}$ is a sequence of nondecreasing functions and there is some K such that $||f_n||_{\infty} \leq K$ for all n, then there is a nondecreasing function $f : [a,b] \to \mathbb{R}$, satisfying $||f||_{\infty} \leq K$, and a subsequence of f_n that converges pointwise to f.

Proof. Let $D = (\mathbb{Q} \cap [a, b]) \cup \{a\}$. By Lemma 13, there is a function $\phi : D \to \mathbb{R}$ and a subsequence f_{a_n} of f_n that converges pointwise on D to ϕ , and $\|\phi\|_{\infty} \leq K$. Because each f_n is nondecreasing, if $x, y \in D$ and x < y then

$$\phi(x) = \lim_{n \to \infty} f_{a_n}(x) \le \lim_{n \to \infty} f_{a_n}(y) = \phi(y),$$

namely, ϕ is nondecreasing. D is a dense subset of [a, b] and $a \in D$, so applying Lemma 14, there is a nondecreasing function $\Phi : [a, b] \to \mathbb{R}$ such that for $x \in D$,

$$\Phi(x) = \phi(x) = \lim_{n \to \infty} f_{a_n}(x).$$

Suppose that Φ is continuous at $x \in [a, b]$ and let $\epsilon > 0$. Using the fact that Φ is continuous at x, there are $p, q \in \mathbb{Q} \cap [a, b]$ such that p < x < q and $\Phi(q) - \Phi(p) = |\Phi(q) - \Phi(p)| < \frac{\epsilon}{2}$. Because $p, q \in D$, $f_{a_n}(p) \to \Phi(p)$ and $f_{a_n}(q) \to \Phi(q)$, so there is some N such that $n \geq N$ implies that both $|f_{a_n}(p) - \Phi(p)| < \frac{\epsilon}{2}$ and $|f_{a_n}(q) - \Phi(q)| < \frac{\epsilon}{2}$. Then for $n \geq N$, because each function f_{a_n} is nondecreasing,

$$f_{a_n}(x) \ge f_{a_n}(p)$$

$$\ge \Phi(p) - \frac{\epsilon}{2}$$

$$\ge \Phi(q) - \epsilon$$

$$\ge \Phi(x) - \epsilon.$$

Likewise, for $n \ge N$,

$$f_{a_n}(x) \le f_{a_n}(q)$$

$$\le \Phi(q) + \frac{\epsilon}{2}$$

$$< \Phi(p) + \epsilon$$

$$\le \Phi(x) + \epsilon.$$

This shows that if Φ is continuous at $x \in [a, b]$ then $f_{a_n}(x) \to \Phi(x)$.

Let $D(\Phi)$ be the collection of those $x \in [a, b]$ such that Φ is not continuous at x. Because Φ is monotone, $D(\Phi)$ is countable. So we have established that if $x \in [a, b] \setminus D(\Phi)$ then $f_{a_n}(x) \to \Phi(x)$. Because $f_{a_n} : [a, b] \to \mathbb{R}$ satisfies $\|f_{a_n}\|_{\infty} \leq K$ and $D(\Phi)$ is countable, Lemma 13 tells us that there is a function $F: D \to \mathbb{R}$ and a subsequence f_{b_n} of f_{a_n} such that f_{b_n} converges pointwise on D to F, and $\|F\|_{\infty} \leq K$. We define $f: [a, b] \to \mathbb{R}$ by $f(x) = \Phi(x)$ for $x \notin D(\Phi)$ and f(x) = F(x) for $x \in D(\Phi)$. $\|f\|_{\infty} \leq K$. For $x \notin D(\Phi)$, $f_{a_n}(x)$ converges to $\Phi(x) = f(x)$, and $f_{b_n}(x)$ is a subsequence of $f_{a_n}(x)$ so $f_{b_n}(x)$ converges to f(x). For $x \in D(\Phi)$, $f_{b_n}(x)$ converges to F(x) = f(x). Therefore, for any $x \in [a, b]$ we have that $f_{b_n}(x) \to f(x)$, namely, f_{b_n} converges pointwise to f. Because each function f_{b_n} is nondecreasing, it follows that f is nondecreasing. \Box

Finally we prove the **pointwise Helly selection theorem**.⁹

Theorem 16. Let f_n be a sequence in BV[a, b] and suppose there is some K with $||f_n||_{BV} \leq K$ for all n. There is some subsequence of f_n that converges pointwise to some $f \in BV[a, b]$, satisfying $||f||_{BV} \leq K$.

Proof. Let v_n be the variation of f_n . This satisfies, for any n,

$$\left\|v_n\right\|_{\infty} = V_a^b f_n \le K$$

and

$$||v_n - f_n||_{\infty} \le ||v_n||_{\infty} + ||f_n||_{\infty} \le K + ||f_n||_{BV} \le 2K$$

Theorem 8 tells us that $v_n - f_n$ and v_n are nondecreasing, so we can apply Lemma 15 to get that there is a nondecreasing function $g : [a, b] \to \mathbb{R}$ and a subsequence $v_{a_n} - f_{a_n}$ of $v_n - f_n$ that converges pointwise to g. Then we use Lemma 15 again to get that there is a nondecreasing function $h : [a, b] \to \mathbb{R}$ and a subsequence v_{b_n} of v_{a_n} that converges pointwise to h. Because g and h are pointwise limits of nondecreasing functions, they are each nondecreasing and so belong to BV[a, b]. We define $f = h - g \in BV[a, b]$. For $x \in [a, b]$,

$$\lim_{n \to \infty} f_{b_n}(x) = \lim_{n \to \infty} v_{b_n}(x) - \lim_{n \to \infty} (v_{b_n}(x) - f_{b_n}(x))$$
$$= h(x) - g(x)$$
$$= f(x),$$

⁹N. L. Carothers, *Real Analysis*, p. 212, Theorem 13.16.

namely the subsequence f_{b_n} of f_n converges pointwise to f. By Lemma 6, because f_{b_n} is a sequence in BV[a, b] that converges pointwise to f we have

$$\begin{split} \|f\|_{BV} &= |f(a)| + V_a^b f\\ &\leq |f(a)| + \liminf_{n \to \infty} V_a^b f_{b_n}\\ &= \liminf_{n \to \infty} \left(|f_{b_n}(a)| + V_a^b f_{b_n} \right)\\ &= \liminf_{n \to \infty} \|f_{b_n}\|_{BV}\\ &\leq K, \end{split}$$

completing the proof.