The Banach algebra of functions of bounded variation and the pointwise Helly selection

 theoremJordan Bell

January 22, 2015
$1 B V[a, b]$
Let $a<b$. For $f:[a, b] \rightarrow \mathbb{R}$, we define ${ }^{1}$

$$
\|f\|_{\infty}=\sup _{t \in[a, b]}|f(t)|
$$

and if $\|f\|_{\infty}<\infty$ we say that f is bounded. We define $B[a, b]$ to be the set of bounded functions $[a, b] \rightarrow \mathbb{R}$, which with the norm $\|\cdot\|_{\infty}$ is a Banach algebra.

A partition of $[a, b]$ is a set $P=\left\{t_{0}, \ldots, t_{n}\right\}$ such that $a=t_{0}<\cdots<t_{n}=b$. For example, $P=\{a, b\}$ is a partition of $[a, b]$. If Q is a partition of $[a, b]$ and $P \subset Q$, we say that Q is a refinement of P. For $f:[a, b] \rightarrow \mathbb{R}$, we define

$$
V(f, P)=\sum_{i=1}^{n}\left|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right|
$$

It is straightforward to show using the triangle inequality that if Q is a refinement of P then

$$
V(f, P) \leq V(f, Q)
$$

In particular, any partition P is a refinement of $\{a, b\}$, so

$$
|f(b)-f(a)| \leq V(f, P)
$$

The total variation of $f:[a, b] \rightarrow \mathbb{R}$ is

$$
V_{a}^{b} f=\sup \{V(f, P): P \text { is a partition of }[a, b]\}
$$

and if $V_{a}^{b} f<\infty$ we say that f is of bounded variation. We denote by $B V[a, b]$ the set of functions $[a, b] \rightarrow \mathbb{R}$ of bounded variation. For a function $f \in B V[a, b]$, we define $v:[a, b] \rightarrow \mathbb{R}$ by $v(x)=V_{a}^{x} f$ for $x \in[a, b]$, called the variation of f.

[^0]If $f:[a, b] \rightarrow \mathbb{R}$ is monotone, it is straightforward to check that $V_{a}^{b} f=$ $|f(b)-f(a)|$, hence that f is of bounded variation.

We first show that $B V[a, b] \subset B[a, b]$.
Lemma 1. If $f:[a, b] \rightarrow \mathbb{R}$ is of bounded variation, then

$$
\|f\|_{\infty} \leq|f(a)|+V_{a}^{b} f
$$

Proof. Let $x \in[a, b]$ If $x=a$ the result is immediate. If $x=b$, then

$$
|f(b)| \leq|f(a)|+|f(b)-f(a)| \leq|f(a)|+V_{a}^{b} f
$$

Otherwise, $P=\{a, x, b\}$ is a partition of $[a, b]$ and

$$
|f(x)-f(a)| \leq V(f, P) \leq V_{a}^{b} f
$$

The total variation of functions has several properties. The following lemma and that fact that functions of bounded variation are bounded imply that $B V[a, b]$ is an algebra. ${ }^{2}$

Lemma 2. If $f, g \in B V[a, b]$ and $c \in \mathbb{R}$, then the following statements are true.

1. $V_{a}^{b} f=0$ if and only if f is constant.
2. $V_{a}^{b}(c f)=|c| V_{a}^{b}(f)$.
3. $V_{a}^{b}(f+g) \leq V_{a}^{b} f+V_{a}^{b} g$.
4. $V_{a}^{b}(f g) \leq\|f\|_{\infty} V_{a}^{b} g+\|g\|_{\infty} V_{a}^{b} f$.
5. $V_{a}^{b}|f| \leq V_{a}^{b} f$.
6. $V_{a}^{b} f=V_{a}^{x} f+V_{x}^{b}$ for $a \leq x \leq b$.

Lemma 3. If $f:[a, b] \rightarrow \mathbb{R}$ is differentiable on (a, b) and $\left\|f^{\prime}\right\|_{\infty}<\infty$, then

$$
V_{a}^{b} f \leq\left\|f^{\prime}\right\|_{\infty}(b-a)
$$

Proof. Suppose that $P=\left\{a=t_{0}<\cdots<t_{n}=b\right\}$ is a partition of $[a, b]$. By the mean value theorem, for each $j=1, \ldots, n$ there is some $x_{j} \in\left(t_{j-1}, t_{j}\right)$ at which

$$
f^{\prime}\left(x_{j}\right)=\frac{f\left(t_{j}\right)-f\left(t_{j-1}\right)}{t_{j}-t_{j-1}} .
$$

[^1]Then

$$
\begin{aligned}
V(f, P) & =\sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \\
& =\sum_{j=1}^{n}\left(t_{j}-t_{j-1}\right)\left|f^{\prime}\left(x_{j}\right)\right| \\
& \leq\left\|f^{\prime}\right\|_{\infty} \sum_{j=1}^{n}\left(t_{j}-t_{j-1}\right) \\
& =\left\|f^{\prime}\right\|_{\infty}(b-a) .
\end{aligned}
$$

Lemma 4. If $f \in C^{1}[a, b]$, then

$$
V_{a}^{b} f \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

Proof. Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. Then, by the fundamental theorem of calculus,

$$
\begin{aligned}
V(f, P) & =\sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \\
& \leq \sum_{j=1}^{n}\left|\int_{t_{j-1}}^{t_{j}} f^{\prime}(t)\right| \\
& \leq \sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}}\left|f^{\prime}(t)\right| d t \\
& =\int_{a}^{b}\left|f^{\prime}(t)\right| d t
\end{aligned}
$$

Therefore

$$
V_{a}^{b} f=\sup _{P} V(f, P) \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

Lemma 5. If $f:[a, b] \rightarrow \mathbb{R}$ is a polynomial, then

$$
V_{a}^{b} f=\int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

Proof. Because f is a polynomial, f is also, so f^{\prime} is piecewise monotone, say $f^{\prime}=c_{j}\left|f^{\prime}\right|$ on $\left(t_{j-1}, t_{j}\right)$ for $j=1, \ldots, n$, for some $c_{j} \in\{+1,-1\}$ and $a=t_{0}<$ $\cdots<t_{n}=b$. Then

$$
\int_{t_{j-1}}^{t_{j}}\left|f^{\prime}(t)\right| d t=c_{j} \int_{t_{j-1}}^{t_{j}} f^{\prime}(t) d t=c_{j}\left(f\left(t_{j}\right)-f\left(t_{j-1}\right)\right)
$$

giving, because $t_{0}<\cdots<t_{n}$ is a partition of $[a, b]$,

$$
\begin{aligned}
\int_{a}^{b}\left|f^{\prime}(t)\right| d t & =\sum_{j=1}^{n} \int_{t_{j-1}}^{t_{j}}\left|f^{\prime}(t)\right| d t \\
& =\sum_{j=1}^{n} c_{j}\left(f\left(t_{j}\right)-f\left(t_{j-1}\right)\right) \\
& \leq \sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \\
& \leq V_{a}^{b} f
\end{aligned}
$$

Lemma 6. If f_{m} is a sequence of functions $[a, b] \rightarrow \mathbb{R}$ that converges pointwise to some $f:[a, b] \rightarrow \mathbb{R}$ and P is some partition of $[a, b]$, then

$$
V\left(f_{m}, P\right) \rightarrow V(f, P)
$$

If f_{m} is a sequence in $B V[a, b]$ that converges pointwise to some $f:[a, b] \rightarrow$ \mathbb{R}, then

$$
V_{a}^{b} f \leq \liminf _{m \rightarrow \infty} V_{a}^{b} f_{m}
$$

Proof. Say $P=\left\{t_{0}, \ldots, t_{n}\right\}$. Then, because taking the limit of convergent sequences is linear,

$$
\begin{aligned}
\lim _{m \rightarrow \infty} V\left(f_{m}, P\right) & =\lim _{m \rightarrow \infty} \sum_{j=1}^{n}\left|f_{m}\left(t_{j}\right)-f_{m}\left(t_{j-1}\right)\right| \\
& =\sum_{j=1}^{n} \lim _{m \rightarrow \infty}\left|f_{m}\left(t_{j}\right)-f_{m}\left(t_{j-1}\right)\right| \\
& =\sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \\
& =V(f, P)
\end{aligned}
$$

Let $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$. Then

$$
\begin{aligned}
V(f, P) & =\sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right| \\
& =\sum_{j=1}^{n} \lim _{m \rightarrow \infty}\left|f_{m}\left(t_{j}\right)-f_{m}\left(t_{j-1}\right)\right| \\
& =\lim _{m \rightarrow \infty} V\left(f_{m}, P\right) \\
& \leq \liminf _{m \rightarrow \infty} V_{a}^{b} f_{m} .
\end{aligned}
$$

This is true for any partition P of $[a, b]$, which yields

$$
V_{a}^{b} f \leq \liminf _{m \rightarrow \infty} V_{a}^{b} f_{m}
$$

We now prove that $B V[a, b]$ is a Banach space. ${ }^{3}$
Theorem 7. With the norm

$$
\|f\|_{B V}=|f(a)|+V_{a}^{b} f
$$

$B V[a, b]$ is a Banach space.
Proof. Using Lemma 2, it is straightforward to check that $B V[a, b]$ is a normed linear space. Suppose that f_{m} is a Cauchy sequence in $B V[a, b]$. By Lemma 1 it follows that f_{m} is a Cauchy sequence in $B[a, b]$, and thus converges in $B[a, b]$ to some $f \in B[a, b]$.

Let P be a partition of $[a, b]$ and let $\epsilon>0$. Because f_{n} is a Cauchy sequence in $B V[a, b]$, there is some N such that if $n, m \geq N$ then $\left\|f_{m}-f_{n}\right\|_{B V}<\epsilon$. For $n \geq N$, Lemma 6 yields

$$
\begin{aligned}
\left\|f-f_{n}\right\|_{B V} & \leq\left|f(a)-f_{n}(a)\right|+V\left(f-f_{n}, P\right) \\
& =\lim _{m \rightarrow \infty}\left(\left|f_{m}(a)-f_{n}(a)\right|+V\left(f_{m}-f_{n}, P\right)\right) \\
& \leq \sup _{m \geq N}\left(\left|f_{m}(a)-f_{n}(a)\right|+V\left(f_{m}-f_{n}, P\right)\right) \\
& =\sup _{m \geq N}\left\|f_{m}-f_{n}\right\|_{B V} \\
& \leq \epsilon .
\end{aligned}
$$

Because $f-f_{N} \in B V[a, b]$ and $f_{N} \in B V[a, b]$ and $B V[a, b]$ is an algebra, $f=\left(f-f_{N}\right)+f_{N} \in B V[a, b]$. That is, the Cauchy sequence f_{n} converges in $B V[a, b]$ to $f \in B V[a, b]$, showing that $B V[a, b]$ is a complete metric space and thus a Banach space.

[^2]The following theorem shows that a function of bounded of variation can be written as the difference of nondecreasing functions. ${ }^{4}$

Theorem 8. Let $f \in B V[a, b]$ and let v be the variation of f. Then $v-f$ and v are nondecreasing.

Proof. If $x, y \in[a, b], x<y$, then, using Lemma 2,

$$
\begin{aligned}
v(y)-v(x) & =V_{a}^{y} f-V_{a}^{x} f \\
& =V_{x}^{y} f \\
& \geq|f(y)-f(x)| \\
& \geq f(y)-f(x) .
\end{aligned}
$$

That is, $v(y)-f(y) \geq v(x)-f(x)$, showing that $v-f$ is nondecreasing, and because f is nondecreasing we have $f(y)-f(x) \geq 0$ and so $v(y)-v(x) \geq 0$.

The following theorem tells us that a function of bounded variation is right or left continuous at a point if and only if its variation is respectively right or left continuous at the point. ${ }^{5}$

Theorem 9. Let $f \in B V[a, b]$ and let v be the variation of f. For $x \in[a, b], f$ is right (respectively left) continuous at x if and only if v is right (respectively left) continuous at x.

Proof. Assume that v is right continuous at x. If $\epsilon>0$, there is some $\delta>0$ such that $x \leq y<x+\delta$ implies that $v(y)-v(x)=|v(y)-v(x)|<\epsilon$. If $x \leq y<x+\delta$, then

$$
|f(y)-f(x)| \leq v(y)-v(x)<\epsilon,
$$

showing that f is right continuous at x.
Assume that f is right continuous at x, with $a \leq x<b$. Let $\epsilon>0$. There is some $\delta>0$ such that $x \leq y<x+\delta$ implies that $|f(y)-f(x)|<\frac{\epsilon}{2}$. Because $V_{x}^{b} f$ is a supremum over partitions of $[x, b]$, there is some partition $P \stackrel{2}{=}$ $\left\{t_{0}, t_{1}, \ldots, t_{n}\right\}$ of $[x, b]$ such that $V_{x}^{b} f-\frac{\epsilon}{2} \leq V(f, P)$. Let $x \leq y<\min \left\{\delta, t_{1}-x\right\}$. Then $Q=\left\{t_{0}, y, t_{1}, \ldots, t_{n}\right\}$ is a refinement of P, so

$$
\begin{aligned}
V_{x}^{b} f-\frac{\epsilon}{2} & \leq V(f, P) \\
& \leq V(f, Q) \\
& =\left|f(y)-f\left(t_{0}\right)\right|+V\left(f,\left\{y, t_{1}, \ldots, t_{n}\right\}\right) \\
& <\frac{\epsilon}{2}+V_{y}^{b} f
\end{aligned}
$$

Hence

$$
\epsilon>V_{x}^{b} f-V_{y}^{b} f=V_{x}^{y} f=v(y)-v(x)=|v(y)-v(x)|,
$$

showing that v is right continuous at x.

[^3]For $f \in B V[a, b]$ and for v the variation of f, we define the positive variation of f as

$$
p(x)=\frac{v(x)+f(x)-f(a)}{2}, \quad x \in[a, b],
$$

and the negative variation of f as

$$
n(x)=\frac{v(x)-f(x)+f(a)}{2}, \quad x \in[a, b] .
$$

We can write the variation as $v=p+n$. We now establish properties of the positive and negative variations. ${ }^{6}$

Theorem 10. Let $f \in B V[a, b]$, let v be its variation, let p be its positive variation, and let n be its negative variation. Then $0 \leq p \leq v$ and $0 \leq n \leq v$, and p and n are nondecreasing.

Proof. For $x \in[a, b], v(x)=V_{a}^{x} f \geq|f(x)-f(a)|$. Because $v(x) \geq-(f(x)-$ $f(a)$), we have $p(x) \geq 0$, and because $v(x) \geq f(x)-f(a)$ we have $n(x) \geq 0$. And then $v=p+n$ implies that $p \leq v$ and $n \leq v$.

For $x<y$,

$$
\begin{aligned}
p(y)-p(x) & =\frac{v(y)+f(y)-v(x)-f(x)}{2} \\
& =\frac{1}{2}\left(V_{x}^{y} f+(f(y)-f(x))\right) \\
& \geq \frac{1}{2}(|f(y)-f(x)|+(f(y)-f(x))) \\
& \geq 0
\end{aligned}
$$

and

$$
\begin{aligned}
n(y)-n(x) & =\frac{v(y)-f(y)-v(x)+f(x)}{2} \\
& =\frac{1}{2}\left(V_{x}^{y} f-(f(y)-f(x))\right) \\
& \geq \frac{1}{2}(|f(y)-f(x)|-(f(y)-f(x))) \\
& \geq 0
\end{aligned}
$$

We now prove that $B V[a, b]$ is a Banach algebra. ${ }^{7}$
Theorem 11. $B V[a, b]$ is a Banach algebra.

[^4]Proof. For $f_{1}, f_{2} \in B V[a, b]$, let $v_{1}, v_{2}, p_{1}, p_{2}, n_{1}, n_{2}$ be their variations, positive variations, and negative variations, respectively. Then

$$
\begin{aligned}
f_{1} f_{2} & =\left(f_{1}(a)+p_{1}-n_{1}\right)\left(f_{2}(a)+p_{2}-n_{2}\right) \\
& =f_{1}(a) f_{2}(a)+p_{1} p_{2}+n_{1} n_{2}-n_{1} p_{2}-n_{2} p_{1} \\
& +f_{1}(a) p_{2}+f_{2}(a) p_{1}-f_{1}(a) n_{2}-f_{2}(a) n_{1}
\end{aligned}
$$

Using this and the fact that if f is nondecreasing then $V_{a}^{b} f=f(b)-f(a)$,

$$
\begin{aligned}
\left\|f_{1} f_{2}\right\|_{B V} & =\left|f_{1}(a)\right|\left|f_{2}(a)\right|+V_{a}^{b}\left(f_{1} f_{2}\right) \\
& \leq\left|f_{1}(a)\right|\left|f_{2}(a)\right|+V_{a}^{b}\left(p_{1} p_{2}\right)+V_{a}^{b}\left(n_{1} n_{2}\right)+V_{a}^{b}\left(n_{1} p_{2}\right)+V_{a}^{b}\left(n_{2} p_{1}\right) \\
& +\left|f_{1}(a)\right| V_{a}^{b} p_{2}+\left|f_{2}(a)\right| V_{a}^{b} p_{1}+\left|f_{1}(a)\right| V_{a}^{b} n_{2}+\left|f_{2}(a)\right| V_{a}^{b} n_{1} \\
& =\left|f_{1}(a)\right|\left|f_{2}(a)\right|+p_{1}(b) p_{2}(b)+n_{1}(b) n_{2}(b)+n_{1}(b) p_{2}(b)+n_{2}(b) p_{1}(b) \\
& +\left|f_{1}(a)\right| p_{2}(b)+\left|f_{2}(a)\right| p_{1}(b)+\left|f_{1}(a)\right| n_{2}(b)+\left|f_{2}(a)\right| n_{1}(b) \\
& =\left(\left|f_{1}(a)\right|+p_{1}(b)+n_{1}(b)\right)\left(\left|f_{2}(a)\right|+p_{2}(b)+n_{2}(b)\right) \\
& =\left(\mid f_{1}(a)+v_{1}(b)\right)\left(\left|f_{2}(a)\right|+v_{2}(b)\right) \\
& =\left\|f_{1}\right\|_{B V}\left\|f_{2}\right\|_{B V},
\end{aligned}
$$

which shows that $B V[a, b]$ is a normed algebra. And $B V[a, b]$ is a Banach space, so $B V[a, b]$ is a Banach algebra.

Theorem 12. If $f \in C^{1}[a, b]$, then

$$
V_{a}^{b} f=\int_{a}^{b}\left|f^{\prime}(t)\right| d t
$$

Let $\left(f^{\prime}\right)^{+}$and $\left(f^{\prime}\right)^{-}$be the positive and negative parts of f^{\prime} and let p and n be the positive and negative variations of f. Then, for $x \in[a, b]$,

$$
p(x)=\int_{a}^{x}\left(f^{\prime}\right)^{+}(t) d t, \quad n(x)=\int_{a}^{x}\left(f^{\prime}\right)^{-}(t) d t
$$

Proof. Lemma 4 states that $V_{a}^{b} \leq \int_{a}^{b}\left|f^{\prime}(t)\right| d t$. Because f^{\prime} is continuous it is Riemann integrable, hence for any $\epsilon>0$ there is some partition $P=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[a, b]$ such that if $x_{j} \in\left[t_{j-1}, t_{j}\right]$ for $j=1, \ldots, n$ then

$$
\left|\int_{a}^{b}\right| f^{\prime}(t)\left|d t-\sum_{j=1}^{n}\right| f^{\prime}\left(x_{j}\right)\left|\left(t_{j}-t_{j-1}\right)\right|<\epsilon
$$

By the mean value theorem, for each $j=1, \ldots, n$ there is some $x_{j} \in\left(t_{j-1}, t_{j}\right)$ such that $f^{\prime}\left(x_{j}\right)=\frac{f\left(t_{j}\right)-f\left(t_{j-1}\right)}{t_{j}-t_{j-1}}$. Then

$$
V(f, P)=\sum_{j=1}^{n}\left|f\left(t_{j}\right)-f\left(t_{j-1}\right)\right|=\sum_{j=1}^{n}\left|f^{\prime}\left(x_{j}\right)\right|\left(t_{j}-t_{j-1}\right),
$$

so

$$
\left|\int_{a}^{b}\right| f^{\prime}(t)|d t-V(f, P)|<\epsilon,
$$

and thus

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t<V(f, P)+\epsilon \leq V_{a}^{b} f+\epsilon
$$

This is true for all $\epsilon>0$, therefore

$$
\int_{a}^{b}\left|f^{\prime}(t)\right| d t \leq V_{a}^{b} f
$$

which is what we wanted to show.
Write

$$
g(t)=\left(f^{\prime}\right)^{+}(t)=\max \left\{f^{\prime}(t), 0\right\}, \quad h(t)=\left(f^{\prime}\right)^{-}(t)=-\min \left\{f^{\prime}(t), 0\right\} .
$$

These satisfy $g+h=\left|f^{\prime}\right|$ and $g-h=f^{\prime}$. Using the fundamental theorem of calculus,

$$
\begin{aligned}
p(x) & =\frac{1}{2}(v(x)+f(x)-f(a)) \\
& =\frac{1}{2}\left(V_{a}^{x} f+\int_{a}^{x} f^{\prime}(t) d t\right) \\
& =\frac{1}{2}\left(\int_{a}^{b}\left|f^{\prime}(t)\right| d t+\int_{a}^{b} f^{\prime}(t) d t\right) \\
& =\int_{a}^{b} g(t) d t
\end{aligned}
$$

and

$$
\begin{aligned}
n(x) & =\frac{1}{2}(v(x)-f(x)+f(a)) \\
& =\frac{1}{2}\left(V_{a}^{x} f-\int_{a}^{x} f^{\prime}(t) d t\right) \\
& =\frac{1}{2}\left(\int_{a}^{x}\left|f^{\prime}(t)\right| d t-\int_{a}^{x} f^{\prime}(t) d t\right) \\
& =\int_{a}^{x} h(t) d t .
\end{aligned}
$$

2 Helly's selection theorem

We will use the following lemmas in the proof of the Helly selection theorem. ${ }^{8}$

[^5]Lemma 13. Suppose that X is a set, that $f_{n}: X \rightarrow \mathbb{R}$ is a sequence of functions, and that there is some K such that $\left\|f_{n}\right\|_{\infty} \leq K$ for all n. If D is a countable subset of X, then there is a subsequence of f_{n} that converges pointwise on D to some $\phi: D \rightarrow \mathbb{R}$, which satisfies $\|\phi\|_{\infty} \leq K$.
Proof. Say $D=\left\{x_{k}: k \geq 1\right\}$. Write $f_{n}^{0}=f_{n}$. The sequence of real numbers $f_{n}^{0}\left(x_{1}\right)$ satisfies $f_{n}^{0}\left(x_{1}\right) \in[-K, K]$ for all n, and since the set $[-K, K]$ is compact there is a subsequence $f_{n}^{1}\left(x_{1}\right)$ of $f_{n}^{0}\left(x_{1}\right)$ that converges, say to $\phi\left(x_{1}\right) \in[-K, K]$. Suppose that $f_{n}^{m}\left(x_{m}\right)$ is a subsequence of $f_{n}^{m-1}\left(x_{m}\right)$ that converges to $\phi\left(x_{m}\right) \in$ $[-K, K]$. Then the sequence of real numbers $f_{n}^{m}\left(x_{m+1}\right)$ satisfies $f_{n}^{m}\left(x_{m+1}\right) \in$ $[-K, K]$ for all n, and so there is a subsequence $f_{n}^{m+1}\left(x_{m+1}\right)$ of $f_{n}^{m}\left(x_{m+1}\right)$ that converges, say to $\phi\left(x_{m+1}\right) \in[-K, K]$. Let $k \geq 1$. Then one checks that $f_{n}^{n}\left(x_{k}\right) \rightarrow \phi\left(x_{k}\right)$ as $n \rightarrow \infty$, namely, f_{n}^{n} is a subsequence of f_{n} that converges pointwise on D to ϕ, and for each k we have $\phi\left(x_{k}\right) \in[-K, K]$.

Lemma 14. Let $D \subset[a, b]$ with $a \in D$ and $b=\sup D$. If $\phi: D \rightarrow \mathbb{R}$ is nondecreasing, then $\Phi:[a, b] \rightarrow \mathbb{R}$ defined by

$$
\Phi(x)=\sup \{\phi(t): t \in[a, x] \cap D\}
$$

is nondecreasing and the restriction of Φ to D is equal to ϕ.
Lemma 15. If $f_{n}:[a, b] \rightarrow \mathbb{R}$ is a sequence of nondecreasing functions and there is some K such that $\left\|f_{n}\right\|_{\infty} \leq K$ for all n, then there is a nondecreasing function $f:[a, b] \rightarrow \mathbb{R}$, satisfying $\|f\|_{\infty} \leq K$, and a subsequence of f_{n} that converges pointwise to f.
Proof. Let $D=(\mathbb{Q} \cap[a, b]) \cup\{a\}$. By Lemma 13, there is a function $\phi: D \rightarrow \mathbb{R}$ and a subsequence $f_{a_{n}}$ of f_{n} that converges pointwise on D to ϕ, and $\|\phi\|_{\infty} \leq K$. Because each f_{n} is nondecreasing, if $x, y \in D$ and $x<y$ then

$$
\phi(x)=\lim _{n \rightarrow \infty} f_{a_{n}}(x) \leq \lim _{n \rightarrow \infty} f_{a_{n}}(y)=\phi(y)
$$

namely, ϕ is nondecreasing. D is a dense subset of $[a, b]$ and $a \in D$, so applying Lemma 14 , there is a nondecreasing function $\Phi:[a, b] \rightarrow \mathbb{R}$ such that for $x \in D$,

$$
\Phi(x)=\phi(x)=\lim _{n \rightarrow \infty} f_{a_{n}}(x) .
$$

Suppose that Φ is continuous at $x \in[a, b]$ and let $\epsilon>0$. Using the fact that Φ is continuous at x, there are $p, q \in \mathbb{Q} \cap[a, b]$ such that $p<x<q$ and $\Phi(q)-\Phi(p)=|\Phi(q)-\Phi(p)|<\frac{\epsilon}{2}$. Because $p, q \in D, f_{a_{n}}(p) \rightarrow \Phi(p)$ and $f_{a_{n}}(q) \rightarrow \Phi(q)$, so there is some N such that $n \geq N$ implies that both $\left|f_{a_{n}}(p)-\Phi(p)\right|<\frac{\epsilon}{2}$ and $\left|f_{a_{n}}(q)-\Phi(q)\right|<\frac{\epsilon}{2}$. Then for $n \geq N$, because each function $f_{a_{n}}$ is nondecreasing,

$$
\begin{aligned}
f_{a_{n}}(x) & \geq f_{a_{n}}(p) \\
& \geq \Phi(p)-\frac{\epsilon}{2} \\
& \geq \Phi(q)-\epsilon \\
& \geq \Phi(x)-\epsilon .
\end{aligned}
$$

Likewise, for $n \geq N$,

$$
\begin{aligned}
f_{a_{n}}(x) & \leq f_{a_{n}}(q) \\
& \leq \Phi(q)+\frac{\epsilon}{2} \\
& <\Phi(p)+\epsilon \\
& \leq \Phi(x)+\epsilon .
\end{aligned}
$$

This shows that if Φ is continuous at $x \in[a, b]$ then $f_{a_{n}}(x) \rightarrow \Phi(x)$.
Let $D(\Phi)$ be the collection of those $x \in[a, b]$ such that Φ is not continuous at x. Because Φ is monotone, $D(\Phi)$ is countable. So we have established that if $x \in[a, b] \backslash D(\Phi)$ then $f_{a_{n}}(x) \rightarrow \Phi(x)$. Because $f_{a_{n}}:[a, b] \rightarrow \mathbb{R}$ satisfies $\left\|f_{a_{n}}\right\|_{\infty} \leq K$ and $D(\Phi)$ is countable, Lemma 13 tells us that there is a function $F: D \rightarrow \mathbb{R}$ and a subsequence $f_{b_{n}}$ of $f_{a_{n}}$ such that $f_{b_{n}}$ converges pointwise on D to F, and $\|F\|_{\infty} \leq K$. We define $f:[a, b] \rightarrow \mathbb{R}$ by $f(x)=\Phi(x)$ for $x \notin D(\Phi)$ and $f(x)=F(x)$ for $x \in D(\Phi)$. $\|f\|_{\infty} \leq K$. For $x \notin D(\Phi), f_{a_{n}}(x)$ converges to $\Phi(x)=f(x)$, and $f_{b_{n}}(x)$ is a subsequence of $f_{a_{n}}(x)$ so $f_{b_{n}}(x)$ converges to $f(x)$. For $x \in D(\Phi), f_{b_{n}}(x)$ converges to $F(x)=f(x)$. Therefore, for any $x \in[a, b]$ we have that $f_{b_{n}}(x) \rightarrow f(x)$, namely, $f_{b_{n}}$ converges pointwise to f. Because each function $f_{b_{n}}$ is nondecreasing, it follows that f is nondecreasing.

Finally we prove the pointwise Helly selection theorem. ${ }^{9}$
Theorem 16. Let f_{n} be a sequence in $B V[a, b]$ and suppose there is some K with $\left\|f_{n}\right\|_{B V} \leq K$ for all n. There is some subsequence of f_{n} that converges pointwise to some $f \in B V[a, b]$, satisfying $\|f\|_{B V} \leq K$.

Proof. Let v_{n} be the variation of f_{n}. This satisfies, for any n,

$$
\left\|v_{n}\right\|_{\infty}=V_{a}^{b} f_{n} \leq K
$$

and

$$
\left\|v_{n}-f_{n}\right\|_{\infty} \leq\left\|v_{n}\right\|_{\infty}+\left\|f_{n}\right\|_{\infty} \leq K+\left\|f_{n}\right\|_{B V} \leq 2 K .
$$

Theorem 8 tells us that $v_{n}-f_{n}$ and v_{n} are nondecreasing, so we can apply Lemma 15 to get that there is a nondecreasing function $g:[a, b] \rightarrow \mathbb{R}$ and a subsequence $v_{a_{n}}-f_{a_{n}}$ of $v_{n}-f_{n}$ that converges pointwise to g. Then we use Lemma 15 again to get that there is a nondecreasing function $h:[a, b] \rightarrow \mathbb{R}$ and a subsequence $v_{b_{n}}$ of $v_{a_{n}}$ that converges pointwise to h. Because g and h are pointwise limits of nondecreasing functions, they are each nondecreasing and so belong to $B V[a, b]$. We define $f=h-g \in B V[a, b]$. For $x \in[a, b]$,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f_{b_{n}}(x) & =\lim _{n \rightarrow \infty} v_{b_{n}}(x)-\lim _{n \rightarrow \infty}\left(v_{b_{n}}(x)-f_{b_{n}}(x)\right) \\
& =h(x)-g(x) \\
& =f(x),
\end{aligned}
$$

[^6]namely the subsequence $f_{b_{n}}$ of f_{n} converges pointwise to f. By Lemma 6, because $f_{b_{n}}$ is a sequence in $B V[a, b]$ that converges pointwise to f we have
\[

$$
\begin{aligned}
\|f\|_{B V} & =|f(a)|+V_{a}^{b} f \\
& \leq|f(a)|+\liminf _{n \rightarrow \infty} V_{a}^{b} f_{b_{n}} \\
& =\liminf _{n \rightarrow \infty}\left(\left|f_{b_{n}}(a)\right|+V_{a}^{b} f_{b_{n}}\right) \\
& =\liminf _{n \rightarrow \infty}\left\|f_{b_{n}}\right\|_{B V} \\
& \leq K,
\end{aligned}
$$
\]

completing the proof.

[^0]: ${ }^{1}$ In this note we speak about functions that take values in \mathbb{R}, because this makes it simpler to talk about monotone functions. Once the machinery is established we can then apply it to the real and imaginary parts of a function that takes values in \mathbb{C}.

[^1]: ${ }^{2}$ N. L. Carothers, Real Analysis, p. 204, Lemma 13.3.

[^2]: ${ }^{3}$ N. L. Carothers, Real Analysis, p. 206, Theorem 13.4.

[^3]: ${ }^{4}$ N. L. Carothers, Real Analysis, p. 207, Theorem 13.5.
 ${ }^{5}$ N. L. Carothers, Real Analysis, p. 207, Theorem 13.9.

[^4]: ${ }^{6}$ N. L. Carothers, Real Analysis, p. 209, Proposition 13.11.
 ${ }^{7}$ N. L. Carothers, Real Analysis, p. 209, Proposition 13.12.

[^5]: ${ }^{8}$ N. L. Carothers, Real Analysis, p. 210, Theorem 13.13; p. 211, Lemma 13.14; p. 211, Lemma 13.15.

[^6]: ${ }^{9}$ N. L. Carothers, Real Analysis, p. 212, Theorem 13.16.

