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1 BV [a, b]

Let a < b. For f : [a, b] → R, we define1

∥f∥∞ = sup
t∈[a,b]

|f(t)|,

and if ∥f∥∞ < ∞ we say that f is bounded. We define B[a, b] to be the set of
bounded functions [a, b] → R, which with the norm ∥·∥∞ is a Banach algebra.

A partition of [a, b] is a set P = {t0, . . . , tn} such that a = t0 < · · · < tn = b.
For example, P = {a, b} is a partition of [a, b]. If Q is a partition of [a, b] and
P ⊂ Q, we say that Q is a refinement of P . For f : [a, b] → R, we define

V (f, P ) =

n∑
i=1

|f(ti)− f(ti−1)|.

It is straightforward to show using the triangle inequality that if Q is a refine-
ment of P then

V (f, P ) ≤ V (f,Q).

In particular, any partition P is a refinement of {a, b}, so

|f(b)− f(a)| ≤ V (f, P ).

The total variation of f : [a, b] → R is

V b
a f = sup{V (f, P ) : P is a partition of [a, b]},

and if V b
a f < ∞ we say that f is of bounded variation. We denote by BV [a, b]

the set of functions [a, b] → R of bounded variation. For a function f ∈ BV [a, b],
we define v : [a, b] → R by v(x) = V x

a f for x ∈ [a, b], called the variation of f .

1In this note we speak about functions that take values in R, because this makes it simpler
to talk about monotone functions. Once the machinery is established we can then apply it to
the real and imaginary parts of a function that takes values in C.
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If f : [a, b] → R is monotone, it is straightforward to check that V b
a f =

|f(b)− f(a)|, hence that f is of bounded variation.
We first show that BV [a, b] ⊂ B[a, b].

Lemma 1. If f : [a, b] → R is of bounded variation, then

∥f∥∞ ≤ |f(a)|+ V b
a f.

Proof. Let x ∈ [a, b] If x = a the result is immediate. If x = b, then

|f(b)| ≤ |f(a)|+ |f(b)− f(a)| ≤ |f(a)|+ V b
a f.

Otherwise, P = {a, x, b} is a partition of [a, b] and

|f(x)− f(a)| ≤ V (f, P ) ≤ V b
a f.

The total variation of functions has several properties. The following lemma
and that fact that functions of bounded variation are bounded imply that
BV [a, b] is an algebra.2

Lemma 2. If f, g ∈ BV [a, b] and c ∈ R, then the following statements are true.

1. V b
a f = 0 if and only if f is constant.

2. V b
a (cf) = |c|V b

a (f).

3. V b
a (f + g) ≤ V b

a f + V b
a g.

4. V b
a (fg) ≤ ∥f∥∞ V b

a g + ∥g∥∞ V b
a f .

5. V b
a |f | ≤ V b

a f .

6. V b
a f = V x

a f + V b
x for a ≤ x ≤ b.

Lemma 3. If f : [a, b] → R is differentiable on (a, b) and ∥f ′∥∞ < ∞, then

V b
a f ≤ ∥f ′∥∞ (b− a).

Proof. Suppose that P = {a = t0 < · · · < tn = b} is a partition of [a, b]. By the
mean value theorem, for each j = 1, . . . , n there is some xj ∈ (tj−1, tj) at which

f ′(xj) =
f(tj)− f(tj−1)

tj − tj−1
.

2N. L. Carothers, Real Analysis, p. 204, Lemma 13.3.
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Then

V (f, P ) =

n∑
j=1

|f(tj)− f(tj−1)|

=

n∑
j=1

(tj − tj−1)|f ′(xj)|

≤ ∥f ′∥∞
n∑

j=1

(tj − tj−1)

= ∥f ′∥∞ (b− a).

Lemma 4. If f ∈ C1[a, b], then

V b
a f ≤

∫ b

a

|f ′(t)|dt.

Proof. Let P = {t0, . . . , tn} be a partition of [a, b]. Then, by the fundamental
theorem of calculus,

V (f, P ) =

n∑
j=1

|f(tj)− f(tj−1)|

≤
n∑

j=1

∣∣∣∣∣
∫ tj

tj−1

f ′(t)

∣∣∣∣∣
≤

n∑
j=1

∫ tj

tj−1

|f ′(t)|dt

=

∫ b

a

|f ′(t)|dt.

Therefore

V b
a f = sup

P
V (f, P ) ≤

∫ b

a

|f ′(t)|dt.

Lemma 5. If f : [a, b] → R is a polynomial, then

V b
a f =

∫ b

a

|f ′(t)|dt.
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Proof. Because f is a polynomial, f is also, so f ′ is piecewise monotone, say
f ′ = cj |f ′| on (tj−1, tj) for j = 1, . . . , n, for some cj ∈ {+1,−1} and a = t0 <
· · · < tn = b. Then∫ tj

tj−1

|f ′(t)|dt = cj

∫ tj

tj−1

f ′(t)dt = cj(f(tj)− f(tj−1)),

giving, because t0 < · · · < tn is a partition of [a, b],∫ b

a

|f ′(t)|dt =
n∑

j=1

∫ tj

tj−1

|f ′(t)|dt

=

n∑
j=1

cj(f(tj)− f(tj−1))

≤
n∑

j=1

|f(tj)− f(tj−1)|

≤ V b
a f.

Lemma 6. If fm is a sequence of functions [a, b] → R that converges pointwise
to some f : [a, b] → R and P is some partition of [a, b], then

V (fm, P ) → V (f, P ).

If fm is a sequence in BV [a, b] that converges pointwise to some f : [a, b] →
R, then

V b
a f ≤ lim inf

m→∞
V b
a fm.

Proof. Say P = {t0, . . . , tn}. Then, because taking the limit of convergent
sequences is linear,

lim
m→∞

V (fm, P ) = lim
m→∞

n∑
j=1

|fm(tj)− fm(tj−1)|

=

n∑
j=1

lim
m→∞

|fm(tj)− fm(tj−1)|

=

n∑
j=1

|f(tj)− f(tj−1)|

= V (f, P ).
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Let P = {t0, . . . , tn} be a partition of [a, b]. Then

V (f, P ) =

n∑
j=1

|f(tj)− f(tj−1)|

=

n∑
j=1

lim
m→∞

|fm(tj)− fm(tj−1)|

= lim
m→∞

V (fm, P )

≤ lim inf
m→∞

V b
a fm.

This is true for any partition P of [a, b], which yields

V b
a f ≤ lim inf

m→∞
V b
a fm.

We now prove that BV [a, b] is a Banach space.3

Theorem 7. With the norm

∥f∥BV = |f(a)|+ V b
a f.

BV [a, b] is a Banach space.

Proof. Using Lemma 2, it is straightforward to check that BV [a, b] is a normed
linear space. Suppose that fm is a Cauchy sequence in BV [a, b]. By Lemma 1
it follows that fm is a Cauchy sequence in B[a, b], and thus converges in B[a, b]
to some f ∈ B[a, b].

Let P be a partition of [a, b] and let ϵ > 0. Because fn is a Cauchy sequence
in BV [a, b], there is some N such that if n,m ≥ N then ∥fm − fn∥BV < ϵ. For
n ≥ N , Lemma 6 yields

∥f − fn∥BV ≤ |f(a)− fn(a)|+ V (f − fn, P )

= lim
m→∞

(|fm(a)− fn(a)|+ V (fm − fn, P ))

≤ sup
m≥N

(|fm(a)− fn(a)|+ V (fm − fn, P ))

= sup
m≥N

∥fm − fn∥BV

≤ ϵ.

Because f − fN ∈ BV [a, b] and fN ∈ BV [a, b] and BV [a, b] is an algebra,
f = (f − fN ) + fN ∈ BV [a, b]. That is, the Cauchy sequence fn converges in
BV [a, b] to f ∈ BV [a, b], showing that BV [a, b] is a complete metric space and
thus a Banach space.

3N. L. Carothers, Real Analysis, p. 206, Theorem 13.4.
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The following theorem shows that a function of bounded of variation can be
written as the difference of nondecreasing functions.4

Theorem 8. Let f ∈ BV [a, b] and let v be the variation of f . Then v − f and
v are nondecreasing.

Proof. If x, y ∈ [a, b], x < y, then, using Lemma 2,

v(y)− v(x) = V y
a f − V x

a f

= V y
x f

≥ |f(y)− f(x)|
≥ f(y)− f(x).

That is, v(y) − f(y) ≥ v(x) − f(x), showing that v − f is nondecreasing, and
because f is nondecreasing we have f(y)− f(x) ≥ 0 and so v(y)− v(x) ≥ 0.

The following theorem tells us that a function of bounded variation is right
or left continuous at a point if and only if its variation is respectively right or
left continuous at the point.5

Theorem 9. Let f ∈ BV [a, b] and let v be the variation of f . For x ∈ [a, b], f
is right (respectively left) continuous at x if and only if v is right (respectively
left) continuous at x.

Proof. Assume that v is right continuous at x. If ϵ > 0, there is some δ > 0 such
that x ≤ y < x+δ implies that v(y)−v(x) = |v(y)−v(x)| < ϵ. If x ≤ y < x+δ,
then

|f(y)− f(x)| ≤ v(y)− v(x) < ϵ,

showing that f is right continuous at x.
Assume that f is right continuous at x, with a ≤ x < b. Let ϵ > 0.

There is some δ > 0 such that x ≤ y < x + δ implies that |f(y) − f(x)| < ϵ
2 .

Because V b
x f is a supremum over partitions of [x, b], there is some partition P =

{t0, t1, . . . , tn} of [x, b] such that V b
x f− ϵ

2 ≤ V (f, P ). Let x ≤ y < min{δ, t1−x}.
Then Q = {t0, y, t1, . . . , tn} is a refinement of P , so

V b
x f − ϵ

2
≤ V (f, P )

≤ V (f,Q)

= |f(y)− f(t0)|+ V (f, {y, t1, . . . , tn})

<
ϵ

2
+ V b

y f.

Hence
ϵ > V b

x f − V b
y f = V y

x f = v(y)− v(x) = |v(y)− v(x)|,

showing that v is right continuous at x.

4N. L. Carothers, Real Analysis, p. 207, Theorem 13.5.
5N. L. Carothers, Real Analysis, p. 207, Theorem 13.9.
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For f ∈ BV [a, b] and for v the variation of f , we define the positive vari-
ation of f as

p(x) =
v(x) + f(x)− f(a)

2
, x ∈ [a, b],

and the negative variation of f as

n(x) =
v(x)− f(x) + f(a)

2
, x ∈ [a, b].

We can write the variation as v = p + n. We now establish properties of the
positive and negative variations.6

Theorem 10. Let f ∈ BV [a, b], let v be its variation, let p be its positive
variation, and let n be its negative variation. Then 0 ≤ p ≤ v and 0 ≤ n ≤ v,
and p and n are nondecreasing.

Proof. For x ∈ [a, b], v(x) = V x
a f ≥ |f(x) − f(a)|. Because v(x) ≥ −(f(x) −

f(a)), we have p(x) ≥ 0, and because v(x) ≥ f(x) − f(a) we have n(x) ≥ 0.
And then v = p+ n implies that p ≤ v and n ≤ v.

For x < y,

p(y)− p(x) =
v(y) + f(y)− v(x)− f(x)

2

=
1

2
(V y

x f + (f(y)− f(x)))

≥ 1

2
(|f(y)− f(x)|+ (f(y)− f(x)))

≥ 0

and

n(y)− n(x) =
v(y)− f(y)− v(x) + f(x)

2

=
1

2
(V y

x f − (f(y)− f(x)))

≥ 1

2
(|f(y)− f(x)| − (f(y)− f(x)))

≥ 0.

We now prove that BV [a, b] is a Banach algebra.7

Theorem 11. BV [a, b] is a Banach algebra.

6N. L. Carothers, Real Analysis, p. 209, Proposition 13.11.
7N. L. Carothers, Real Analysis, p. 209, Proposition 13.12.
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Proof. For f1, f2 ∈ BV [a, b], let v1, v2, p1, p2, n1, n2 be their variations, positive
variations, and negative variations, respectively. Then

f1f2 = (f1(a) + p1 − n1)(f2(a) + p2 − n2)

= f1(a)f2(a) + p1p2 + n1n2 − n1p2 − n2p1

+ f1(a)p2 + f2(a)p1 − f1(a)n2 − f2(a)n1.

Using this and the fact that if f is nondecreasing then V b
a f = f(b)− f(a),

∥f1f2∥BV = |f1(a)||f2(a)|+ V b
a (f1f2)

≤ |f1(a)||f2(a)|+ V b
a (p1p2) + V b

a (n1n2) + V b
a (n1p2) + V b

a (n2p1)

+ |f1(a)|V b
a p2 + |f2(a)|V b

a p1 + |f1(a)|V b
a n2 + |f2(a)|V b

a n1

= |f1(a)||f2(a)|+ p1(b)p2(b) + n1(b)n2(b) + n1(b)p2(b) + n2(b)p1(b)

+ |f1(a)|p2(b) + |f2(a)|p1(b) + |f1(a)|n2(b) + |f2(a)|n1(b)

= (|f1(a)|+ p1(b) + n1(b))(|f2(a)|+ p2(b) + n2(b))

= (|f1(a) + v1(b))(|f2(a)|+ v2(b))

= ∥f1∥BV ∥f2∥BV ,

which shows that BV [a, b] is a normed algebra. And BV [a, b] is a Banach space,
so BV [a, b] is a Banach algebra.

Theorem 12. If f ∈ C1[a, b], then

V b
a f =

∫ b

a

|f ′(t)|dt.

Let (f ′)+ and (f ′)− be the positive and negative parts of f ′ and let p and n
be the positive and negative variations of f . Then, for x ∈ [a, b],

p(x) =

∫ x

a

(f ′)+(t)dt, n(x) =

∫ x

a

(f ′)−(t)dt.

Proof. Lemma 4 states that V b
a ≤

∫ b

a
|f ′(t)|dt. Because f ′ is continuous it is

Riemann integrable, hence for any ϵ > 0 there is some partition P = {t0, . . . , tn}
of [a, b] such that if xj ∈ [tj−1, tj ] for j = 1, . . . , n then∣∣∣∣∣∣

∫ b

a

|f ′(t)|dt−
n∑

j=1

|f ′(xj)|(tj − tj−1)

∣∣∣∣∣∣ < ϵ.

By the mean value theorem, for each j = 1, . . . , n there is some xj ∈ (tj−1, tj)

such that f ′(xj) =
f(tj)−f(tj−1)

tj−tj−1
. Then

V (f, P ) =

n∑
j=1

|f(tj)− f(tj−1)| =
n∑

j=1

|f ′(xj)|(tj − tj−1),
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so ∣∣∣∣∣
∫ b

a

|f ′(t)|dt− V (f, P )

∣∣∣∣∣ < ϵ,

and thus ∫ b

a

|f ′(t)|dt < V (f, P ) + ϵ ≤ V b
a f + ϵ.

This is true for all ϵ > 0, therefore∫ b

a

|f ′(t)|dt ≤ V b
a f,

which is what we wanted to show.
Write

g(t) = (f ′)+(t) = max{f ′(t), 0}, h(t) = (f ′)−(t) = −min{f ′(t), 0}.

These satisfy g + h = |f ′| and g − h = f ′. Using the fundamental theorem of
calculus,

p(x) =
1

2
(v(x) + f(x)− f(a))

=
1

2

(
V x
a f +

∫ x

a

f ′(t)dt

)
=

1

2

(∫ b

a

|f ′(t)|dt+
∫ b

a

f ′(t)dt

)

=

∫ b

a

g(t)dt

and

n(x) =
1

2
(v(x)− f(x) + f(a))

=
1

2

(
V x
a f −

∫ x

a

f ′(t)dt

)
=

1

2

(∫ x

a

|f ′(t)|dt−
∫ x

a

f ′(t)dt

)
=

∫ x

a

h(t)dt.

2 Helly’s selection theorem

We will use the following lemmas in the proof of the Helly selection theorem.8

8N. L. Carothers, Real Analysis, p. 210, Theorem 13.13; p. 211, Lemma 13.14; p. 211,
Lemma 13.15.
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Lemma 13. Suppose that X is a set, that fn : X → R is a sequence of functions,
and that there is some K such that ∥fn∥∞ ≤ K for all n. If D is a countable
subset of X, then there is a subsequence of fn that converges pointwise on D to
some ϕ : D → R, which satisfies ∥ϕ∥∞ ≤ K.

Proof. Say D = {xk : k ≥ 1}. Write f0
n = fn. The sequence of real numbers

f0
n(x1) satisfies f

0
n(x1) ∈ [−K,K] for all n, and since the set [−K,K] is compact

there is a subsequence f1
n(x1) of f

0
n(x1) that converges, say to ϕ(x1) ∈ [−K,K].

Suppose that fm
n (xm) is a subsequence of fm−1

n (xm) that converges to ϕ(xm) ∈
[−K,K]. Then the sequence of real numbers fm

n (xm+1) satisfies fm
n (xm+1) ∈

[−K,K] for all n, and so there is a subsequence fm+1
n (xm+1) of fm

n (xm+1)
that converges, say to ϕ(xm+1) ∈ [−K,K]. Let k ≥ 1. Then one checks that
fn
n (xk) → ϕ(xk) as n → ∞, namely, fn

n is a subsequence of fn that converges
pointwise on D to ϕ, and for each k we have ϕ(xk) ∈ [−K,K].

Lemma 14. Let D ⊂ [a, b] with a ∈ D and b = supD. If ϕ : D → R is
nondecreasing, then Φ : [a, b] → R defined by

Φ(x) = sup{ϕ(t) : t ∈ [a, x] ∩D}

is nondecreasing and the restriction of Φ to D is equal to ϕ.

Lemma 15. If fn : [a, b] → R is a sequence of nondecreasing functions and
there is some K such that ∥fn∥∞ ≤ K for all n, then there is a nondecreasing
function f : [a, b] → R, satisfying ∥f∥∞ ≤ K, and a subsequence of fn that
converges pointwise to f .

Proof. Let D = (Q∩ [a, b])∪ {a}. By Lemma 13, there is a function ϕ : D → R
and a subsequence fan

of fn that converges pointwise onD to ϕ, and ∥ϕ∥∞ ≤ K.
Because each fn is nondecreasing, if x, y ∈ D and x < y then

ϕ(x) = lim
n→∞

fan
(x) ≤ lim

n→∞
fan

(y) = ϕ(y),

namely, ϕ is nondecreasing. D is a dense subset of [a, b] and a ∈ D, so applying
Lemma 14, there is a nondecreasing function Φ : [a, b] → R such that for x ∈ D,

Φ(x) = ϕ(x) = lim
n→∞

fan(x).

Suppose that Φ is continuous at x ∈ [a, b] and let ϵ > 0. Using the fact
that Φ is continuous at x, there are p, q ∈ Q ∩ [a, b] such that p < x < q
and Φ(q) − Φ(p) = |Φ(q) − Φ(p)| < ϵ

2 . Because p, q ∈ D, fan(p) → Φ(p)
and fan

(q) → Φ(q), so there is some N such that n ≥ N implies that both
|fan

(p) − Φ(p)| < ϵ
2 and |fan

(q) − Φ(q)| < ϵ
2 . Then for n ≥ N , because each

function fan
is nondecreasing,

fan
(x) ≥ fan

(p)

≥ Φ(p)− ϵ

2
≥ Φ(q)− ϵ

≥ Φ(x)− ϵ.
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Likewise, for n ≥ N ,

fan(x) ≤ fan(q)

≤ Φ(q) +
ϵ

2
< Φ(p) + ϵ

≤ Φ(x) + ϵ.

This shows that if Φ is continuous at x ∈ [a, b] then fan
(x) → Φ(x).

Let D(Φ) be the collection of those x ∈ [a, b] such that Φ is not continuous
at x. Because Φ is monotone, D(Φ) is countable. So we have established that
if x ∈ [a, b] \ D(Φ) then fan

(x) → Φ(x). Because fan
: [a, b] → R satisfies

∥fan∥∞ ≤ K and D(Φ) is countable, Lemma 13 tells us that there is a function
F : D → R and a subsequence fbn of fan such that fbn converges pointwise on
D to F , and ∥F∥∞ ≤ K. We define f : [a, b] → R by f(x) = Φ(x) for x ̸∈ D(Φ)
and f(x) = F (x) for x ∈ D(Φ). ∥f∥∞ ≤ K. For x ̸∈ D(Φ), fan

(x) converges to
Φ(x) = f(x), and fbn(x) is a subsequence of fan

(x) so fbn(x) converges to f(x).
For x ∈ D(Φ), fbn(x) converges to F (x) = f(x). Therefore, for any x ∈ [a, b] we
have that fbn(x) → f(x), namely, fbn converges pointwise to f . Because each
function fbn is nondecreasing, it follows that f is nondecreasing.

Finally we prove the pointwise Helly selection theorem.9

Theorem 16. Let fn be a sequence in BV [a, b] and suppose there is some K
with ∥fn∥BV ≤ K for all n. There is some subsequence of fn that converges
pointwise to some f ∈ BV [a, b], satisfying ∥f∥BV ≤ K.

Proof. Let vn be the variation of fn. This satisfies, for any n,

∥vn∥∞ = V b
a fn ≤ K

and
∥vn − fn∥∞ ≤ ∥vn∥∞ + ∥fn∥∞ ≤ K + ∥fn∥BV ≤ 2K.

Theorem 8 tells us that vn − fn and vn are nondecreasing, so we can apply
Lemma 15 to get that there is a nondecreasing function g : [a, b] → R and a
subsequence van

− fan
of vn − fn that converges pointwise to g. Then we use

Lemma 15 again to get that there is a nondecreasing function h : [a, b] → R and
a subsequence vbn of van

that converges pointwise to h. Because g and h are
pointwise limits of nondecreasing functions, they are each nondecreasing and so
belong to BV [a, b]. We define f = h− g ∈ BV [a, b]. For x ∈ [a, b],

lim
n→∞

fbn(x) = lim
n→∞

vbn(x)− lim
n→∞

(vbn(x)− fbn(x))

= h(x)− g(x)

= f(x),

9N. L. Carothers, Real Analysis, p. 212, Theorem 13.16.
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namely the subsequence fbn of fn converges pointwise to f . By Lemma 6,
because fbn is a sequence in BV [a, b] that converges pointwise to f we have

∥f∥BV = |f(a)|+ V b
a f

≤ |f(a)|+ lim inf
n→∞

V b
a fbn

= lim inf
n→∞

(
|fbn(a)|+ V b

a fbn
)

= lim inf
n→∞

∥fbn∥BV

≤ K,

completing the proof.
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