The heat kernel on the torus

Jordan Bell

October 7, 2014

1 Heat kernel on \mathbb{T}

For $t>0$, define $k_{t}: \mathbb{R} \rightarrow(0, \infty)$ by ${ }^{1}$

$$
k_{t}(x)=(4 \pi t)^{-1 / 2} \exp \left(-\frac{x^{2}}{4 t}\right), \quad x \in \mathbb{R}
$$

For $t>0$, define $g_{t}: \mathbb{R} \rightarrow(0, \infty)$ by

$$
g_{t}(x)=2 \pi \sum_{k \in \mathbb{Z}} k_{t}(x+2 \pi k), \quad x \in \mathbb{R}
$$

which one checks indeed converges for all $x \in \mathbb{R}$. Of course, $g_{t}(x+2 \pi k)=g_{t}(x)$ for any $k \in \mathbb{Z}$, so we can interpret g_{t} as a function on \mathbb{T}, where $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$.

Let m be Haar measure on \mathbb{T} : $d m(x)=(2 \pi)^{-1} d x$, and so $m(\mathbb{T})=1$. With $\|f\|_{1}=\int_{\mathbb{T}}|f| d m$ for $f: \mathbb{T} \rightarrow \mathbb{C}$, we have, because $g_{t}>0$,

$$
\left\|g_{t}\right\|_{1}=\sum_{k \in \mathbb{Z}} \int_{\mathbb{T}} k_{t}(x+2 \pi k) d x=\int_{\mathbb{R}} k_{t}(x) d x=1
$$

Hence $g_{t} \in L^{1}(\mathbb{T})$. For $\xi \in \mathbb{Z}$, we compute

$$
\begin{aligned}
\hat{g}_{t}(\xi) & =\int_{\mathbb{T}} g_{t}(x) e^{-i \xi x} d m(x) \\
& =\sum_{k \in \mathbb{Z}} \int_{\mathbb{T}} k_{t}(x+2 \pi k) e^{-i \xi x} d x \\
& =\sum_{k \in \mathbb{Z}} \int_{\mathbb{T}} k_{t}(x+2 \pi k) e^{-i \xi(x+2 \pi k)} d x \\
& =\int_{\mathbb{R}} k_{t}(x) e^{-i \xi x} d x \\
& =\hat{k}_{t}\left(\frac{\xi}{2 \pi}\right) \\
& =e^{-\xi^{2} t}
\end{aligned}
$$

[^0]Lemma 1. For $t>0$ and $x \in \mathbb{R}$,

$$
g_{t}(x)=\sqrt{\frac{\pi}{t}} \exp \left(-\frac{x^{2}}{4 t}\right)\left(1+2 \sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right) \cosh \left(\frac{\pi k x}{t}\right)\right)
$$

Proof. Using the definition of g_{t},

$$
\begin{aligned}
g_{t}(x)= & 2 \pi \sum_{k \in \mathbb{Z}} k_{t}(x+2 \pi k) \\
= & 2 \pi \sum_{k \in \mathbb{Z}}(4 \pi t)^{-1 / 2} \exp \left(-\frac{(x+2 \pi k)^{2}}{4 t}\right) \\
= & \sqrt{\frac{\pi}{t}} \exp \left(-\frac{x^{2}}{4 t}\right) \sum_{k \in \mathbb{Z}} \exp \left(-\frac{\pi k x}{t}\right) \exp \left(-\frac{\pi^{2} k^{2}}{t}\right) \\
= & \sqrt{\frac{\pi}{t}} \exp \left(-\frac{x^{2}}{4 t}\right) \\
& \left(1+\sum_{k \geq 1}\left(\exp \left(\frac{\pi k x}{t}\right)+\exp \left(-\frac{\pi k x}{t}\right)\right) \exp \left(-\frac{\pi^{2} k^{2}}{t}\right)\right)
\end{aligned}
$$

which gives the claim, using $\cosh y=\frac{e^{y}+e^{-y}}{2}$.
Definition 2. For $x \in \mathbb{R}$, let $\|x\|=\inf \{|x-2 \pi k|: k \in \mathbb{Z}\}$.
For $k \in \mathbb{Z},\|x+2 \pi k\|=\|x\|$, so it makes sense to talk about $\|x\|$ for $x \in \mathbb{T}$.
Theorem 3. For $t>0$ and $x \in \mathbb{R}$,

$$
\exp \left(-\frac{\|x\|^{2}}{4 t}\right) g_{t}(0) \leq g_{t}(x) \leq \exp \left(-\frac{\|x\|^{2}}{4 t}\right)\left(\sqrt{\frac{\pi}{t}}+g_{t}(0)\right)
$$

Proof. Let $x=2 \pi m+\theta$ with $|\theta| \leq \pi$, so that $\|x\|=\|\theta\|=|\theta|$, and $g_{t}(x)=g_{t}(\theta)$. Using Lemma 1 and the fact that $\cosh y \geq 1$, we get

$$
g_{t}(\theta) \geq \exp \left(-\frac{\theta^{2}}{4 t}\right) \sqrt{\frac{\pi}{t}}\left(1+2 \sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right)\right)=\exp \left(-\frac{\theta^{2}}{4 t}\right) g_{t}(0)
$$

hence

$$
g_{t}(x) \geq \exp \left(-\frac{\|x\|^{2}}{4 t}\right) g_{t}(0)
$$

the lower bound we wanted to prove.
Write

$$
S=1+2 \sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right) \cosh \left(\frac{\pi k \theta}{t}\right)
$$

For any $k \geq 1$, using $|\theta| \leq \pi$,
$2 \cosh \left(\frac{\pi k \theta}{t}\right) \leq 2 \cosh \left(\frac{\pi^{2} k}{t}\right)=\exp \left(\frac{\pi^{2} k}{t}\right)+\exp \left(-\frac{\pi^{2} k}{t}\right) \leq 1+\exp \left(\frac{\pi^{2} k}{t}\right)$.
Hence

$$
\begin{aligned}
S & \leq 1+\sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right)\left(1+\exp \left(\frac{\pi^{2} k}{t}\right)\right) \\
& =1+\sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right)+\exp \left(-\frac{\pi^{2} k(k-1)}{t}\right) \\
& \leq 1+\sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right)+\exp \left(-\frac{\pi^{2}(k-1)^{2}}{t}\right) \\
& =2+2 \sum_{k \geq 1} \exp \left(-\frac{\pi^{2} k^{2}}{t}\right) \\
& =1+\sqrt{\frac{t}{\pi}} g_{t}(0)
\end{aligned}
$$

But $g_{t}(\theta)=\sqrt{\frac{\pi}{t}} \exp \left(-\frac{\theta^{2}}{4 t}\right) S$, so

$$
g_{t}(\theta) \leq \exp \left(-\frac{\theta^{2}}{4 t}\right)\left(\sqrt{\frac{\pi}{t}}+g_{t}(0)\right)=\exp \left(-\frac{\|x\|^{2}}{4 t}\right)\left(\sqrt{\frac{\pi}{t}}+g_{t}(0)\right)
$$

the upper bound we wanted to prove.
Applying Lemma 1 with $x=0$ gives $g_{t}(0) \geq \sqrt{\frac{\pi}{t}}$, and using this with the above theorem we obtain

$$
\begin{equation*}
g_{t}(x) \leq 2 \exp \left(-\frac{\|x\|^{2}}{4 t}\right) g_{t}(0) \tag{1}
\end{equation*}
$$

Theorem 4. For $t>0$,

$$
\sqrt{\frac{\pi}{t}} \leq g_{t}(0) \leq 1+\sqrt{\frac{\pi}{t}}
$$

and

$$
2 e^{-t} \leq g_{t}(0)-1 \leq \frac{2 e^{-t}}{1-e^{-t}}
$$

Proof. Using Lemma 1 we have

$$
g_{t}(0) \geq \sqrt{\frac{\pi}{t}}
$$

For each $x \in \mathbb{R}$ we have

$$
g_{t}(x)=\sum_{k \in \mathbb{Z}} \hat{g}_{t}(k) e^{i k x}=\sum_{k \in \mathbb{Z}} e^{-k^{2} t} e^{i k x}=1+2 \sum_{k \geq 1} e^{-k^{2} t} \cos (k x) .
$$

Writing $\phi(t)=\sum_{k \geq 1} e^{-k^{2} t}$, we then have

$$
g_{t}(0)=1+2 \phi(t)
$$

But as $e^{-x^{2} t}$ is positive and decreasing, bounding a sum by an integral we get

$$
\phi(t) \leq \int_{0}^{\infty} e^{-x^{2} t} d x=\frac{1}{\sqrt{t}} \int_{0}^{\infty} e^{-x^{2}} d x=\frac{1}{2} \sqrt{\frac{\pi}{t}}
$$

hence

$$
g_{t}(0)=1+2 \phi(t) \leq 1+\sqrt{\frac{\pi}{t}}
$$

Moreover, because $\phi(t) \geq e^{-t}$ (lower bounding the sum by the first term), we have

$$
g_{t}(0)=1+2 \phi(t) \geq 1+2 e^{-t}
$$

Finally, because $e^{-t k^{2}} \leq e^{-t k}$ for $k \geq 1$,

$$
\phi(t) \leq \sum_{k \geq 1} e^{-t k}=e^{-t} \frac{1}{1-e^{-t}}
$$

thus

$$
g_{t}(0) \leq 1+\frac{2 e^{-t}}{1-e^{-t}}
$$

Taking $t \rightarrow 0$ and $t \rightarrow \infty$ in the above theorem gives the following asymptotics.

Corollary 5.

$$
g_{t}(0) \sim \sqrt{\frac{\pi}{t}}, \quad t \rightarrow 0
$$

and

$$
g_{t}(0)-1 \sim 2 e^{-t}, \quad t \rightarrow \infty
$$

2 Heat kernel on \mathbb{T}^{n}

Fix $n \geq 1$, and let $\mathscr{A}=\left(a_{1}, \ldots, a_{n}\right)$, a_{i} positive real numbers. We define $g_{t}^{\mathscr{A}}: \mathbb{R}^{n} \rightarrow(0, \infty)$ by

$$
g_{t}^{\mathscr{A}}(x)=\prod_{k=1}^{n} g_{a_{k} t}\left(x_{k}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

For $x \in \mathbb{R}^{n}$ and $\xi \in \mathbb{Z}^{n}$ we have

$$
g_{t}^{\mathscr{A}}(x+2 \pi \xi)=\prod_{k=1}^{n} g_{a_{k} t}\left(x_{k}+2 \pi \xi_{k}\right)=\prod_{k=1}^{n} g_{a_{k} t}\left(x_{k}\right)=g_{t}^{\mathscr{A}}(x)
$$

so $g_{t}^{\mathscr{A}}$ can be interpreted as a function on \mathbb{T}^{n}.
Let m_{n} be Haar measure on \mathbb{T}^{n} :

$$
d m_{n}(x)=\prod_{k=1}^{n} d m\left(x_{k}\right)=\prod_{k=1}^{n}(2 \pi)^{-1} d x_{k}=(2 \pi)^{-n} d x
$$

which satisfies $m_{n}\left(\mathbb{T}^{n}\right)=1$. Define $\mu_{t}^{\mathscr{A}}$ to be the measure on \mathbb{T}^{n} whose density with respect to m_{n} is $g_{t}^{\mathscr{A}}$:

$$
d \mu_{t}^{\mathscr{A}}=g_{t}^{\mathscr{A}} d m_{n}
$$

We now calculate the Fourier coefficients of $g_{t}^{\mathscr{A}}$. For $\xi \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
\mathscr{F}\left(g_{t}^{\mathscr{A}}\right)(\xi) & =\int_{\mathbb{T}^{n}} g_{t}^{\mathscr{A}}(x) e^{-i \xi \cdot x} d m_{n}(x) \\
& =\int_{\mathbb{T}^{n}} \prod_{k=1}^{n} g_{a_{k} t}\left(x_{k}\right) e^{-i \xi_{1} x_{1}-\cdots-i \xi_{n} x_{n}} d m_{n}(x) \\
& =\prod_{k=1}^{n} \int_{\mathbb{T}} g_{a_{k} t}\left(x_{k}\right) e^{-i \xi_{k} x_{k}} d m\left(x_{k}\right) \\
& =\prod_{k=1}^{n} \hat{g}_{a_{k} t}\left(\xi_{k}\right) \\
& =\prod_{k=1}^{n} e^{-\xi_{k}^{2} a_{k} t} \\
& =e^{-t q(\xi)}
\end{aligned}
$$

where

$$
q(\xi)=\sum_{k=1}^{n} a_{k} \xi_{k}^{2}, \quad \xi \in \mathbb{Z}^{n}
$$

Definition 6. For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ we define

$$
\|x\|_{\mathscr{A}}^{2}=\frac{1}{a_{1}}\left\|x_{1}\right\|^{2}+\cdots+\frac{1}{a_{n}}\left\|x_{n}\right\|^{2}
$$

with $\mathscr{A}=\left(a_{1}, \ldots, a_{n}\right)$.
For $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbb{Z}^{n}$, because $\left\|x_{k}+2 \pi \xi_{k}\right\|=\left\|x_{k}\right\|$, we have $\| x+$ $2 \pi \xi\left\|_{\mathscr{A}}=\right\| x \|_{\mathscr{A}}$, so it makes sense to talk about $\|\cdot\|_{\mathscr{A}}$ on \mathbb{T}^{n}.

Using Theorem 3 and (1) we get the following.

Theorem 7. For $t>0$ and $x \in \mathbb{R}^{n}$,

$$
\exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) g_{t}^{\mathscr{A}}(0) \leq g_{t}^{\mathscr{A}}(x) \leq 2^{n} \exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) g_{t}^{\mathscr{A}}(0)
$$

Combining this with Theorem 4 we obtain the following. The first inequality is appropriate for $t \rightarrow 0^{+}$and the second inequality for $t \rightarrow \infty$.
Theorem 8. For $t>0$ and $x \in \mathbb{R}^{n}$,

$$
\exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) \prod_{k=1}^{n} \sqrt{\frac{\pi}{a_{k} t}} \leq g_{t}^{\mathscr{A}}(x) \leq 2^{n} \exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) \prod_{k=1}^{n}\left(1+\sqrt{\frac{\pi}{a_{k} t}}\right)
$$

and
$\exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) \prod_{k=1}^{n}\left(1+2 e^{-a_{k} t}\right) \leq g_{t}^{\mathscr{A}}(x) \leq 2^{n} \exp \left(-\frac{\|x\|_{\mathscr{A}}^{2}}{4 t}\right) \prod_{k=1}^{n}\left(1+\frac{2 e^{-a_{k} t}}{1-e^{-a_{k} t}}\right)$.

3 The infinite-dimensional torus

\mathbb{T}^{∞} with the product topology is a compact abelian group. Let m_{∞} be Haar measure on \mathbb{T}^{∞} :

$$
d m_{\infty}(x)=\prod_{k=1}^{\infty} d m\left(x_{k}\right), \quad x=\left(x_{1}, x_{2}, \ldots\right) \in \mathbb{T}^{\infty}
$$

where m is Haar measure on \mathbb{T}.
For $t>0$, let μ_{t} be the measure on \mathbb{T} whose density with respect to Haar measure m is g_{t} :

$$
d \mu_{t}=g_{t} d m
$$

This is a probability measure on \mathbb{T}.
Let $\mathscr{A}=\left(a_{1}, a_{2}, \ldots\right) \in \mathbb{N}^{\infty}$. For $t>0$ we define

$$
\mu_{t}^{\mathscr{A}}=\prod_{k=1}^{\infty} \mu_{a_{k} t}
$$

This is a probability measure on $\mathbb{T}^{\infty} .{ }^{2}$
The Pontryagin dual of \mathbb{T}^{∞} is the direct sum $\bigoplus_{k=1}^{\infty} \mathbb{Z}$, which we denote by $\mathbb{Z}^{(\infty)}$, which is a discrete abelian group. For $\xi \in \mathbb{Z}^{(\infty)}$ and $x \in \mathbb{T}^{\infty}$, we write

$$
e_{\xi}(x)=\exp \left(i \sum_{k=1}^{\infty} \xi_{k} x_{k}\right)
$$

[^1]The Fourier transform of $\mu_{t}^{\mathscr{A}}$ is $\mathscr{F}\left(\mu_{t}^{\mathscr{A}}\right): \mathbb{Z}^{(\infty)} \rightarrow \mathbb{C}$ defined by

$$
\mathscr{F}\left(\mu_{t}^{\mathscr{A}}\right)(\xi)=\int_{\mathbb{T}_{\infty}} e_{-\xi}(x) d m_{\infty}(x), \quad \xi \in \mathbb{Z}^{(\infty)}
$$

which is

$$
\begin{aligned}
\int_{\mathbb{T}^{\infty}} e_{-\xi}(x) d m_{\infty}(x) & =\int_{\mathbb{T}^{\infty}} \exp \left(-i \sum_{k=1}^{\infty} \xi_{k} x_{k}\right) d \mu_{t}^{\mathscr{A}}(x) \\
& =\int_{\mathbb{T}^{\infty}} \prod_{k=1}^{\infty} \exp \left(-i \xi_{k} x_{k}\right) d \mu_{t}^{\mathscr{A}}(x) \\
& =\prod_{k=1}^{\infty} \int_{\mathbb{T}} \exp \left(-i \xi_{k} x_{k}\right) g_{a_{k} t}\left(x_{k}\right) d m\left(x_{k}\right) \\
& =\prod_{k=1}^{\infty} \hat{g}_{a_{k} t}\left(\xi_{k}\right) \\
& =\prod_{k=1}^{\infty} \exp \left(-\xi_{k}^{2} a_{k} t\right) \\
& =\exp \left(-t \sum_{k=1}^{\infty} a_{k} \xi_{k}^{2}\right) .
\end{aligned}
$$

4 Convergence of infinite products

If $c_{k} \geq 0$, then for any n,

$$
1+\sum_{k=1}^{n} c_{k} \leq \prod_{k=1}^{n}\left(1+c_{k}\right) \leq \exp \left(\sum_{k=1}^{n} c_{k}\right)
$$

Thus, the limit of $\prod_{k=1}^{n}\left(1+c_{k}\right)$ as $n \rightarrow \infty$ exists if and only if

$$
\sum_{k=1}^{\infty} c_{k}<\infty
$$

For the second inequality in Theorem 8 , the limit of $\prod_{k=1}^{n}\left(1+2 e^{-a_{k} t}\right)$ as $n \rightarrow \infty$ exists if and only if

$$
\sum_{k=1}^{\infty} 2 e^{-a_{k} t}<\infty
$$

[^0]: ${ }^{1}$ Most of this note is my working through of notes by Patrick Maheux. http://www. univ-orleans.fr/mapmo/membres/maheux/InfiniteTorusV2.pdf

[^1]: ${ }^{2}$ Christian Berg determines conditions on \mathscr{A} and t so that $\mu_{t}^{\mathscr{A}}$ is absolutely continuous with respect to Haar measure m_{∞} on \mathbb{T}^{∞} : Potential theory on the infinite dimensional torus, Invent. Math. 32 (1976), no. 1, 49-100.

