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1 Heat kernel on T
For t > 0, define kt : R → (0,∞) by1

kt(x) = (4πt)−1/2 exp

(
−x2

4t

)
, x ∈ R.

For t > 0, define gt : R → (0,∞) by

gt(x) = 2π
∑
k∈Z

kt(x+ 2πk), x ∈ R,

which one checks indeed converges for all x ∈ R. Of course, gt(x+2πk) = gt(x)
for any k ∈ Z, so we can interpret gt as a function on T, where T = R/2πZ.

Let m be Haar measure on T: dm(x) = (2π)−1dx, and so m(T) = 1. With
∥f∥1 =

∫
T |f |dm for f : T → C, we have, because gt > 0,

∥gt∥1 =
∑
k∈Z

∫
T
kt(x+ 2πk)dx =

∫
R
kt(x)dx = 1.

Hence gt ∈ L1(T). For ξ ∈ Z, we compute

ĝt(ξ) =

∫
T
gt(x)e

−iξxdm(x)

=
∑
k∈Z

∫
T
kt(x+ 2πk)e−iξxdx

=
∑
k∈Z

∫
T
kt(x+ 2πk)e−iξ(x+2πk)dx

=

∫
R
kt(x)e

−iξxdx

= k̂t

(
ξ

2π

)
= e−ξ2t.

1Most of this note is my working through of notes by Patrick Maheux. http://www.

univ-orleans.fr/mapmo/membres/maheux/InfiniteTorusV2.pdf
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Lemma 1. For t > 0 and x ∈ R,

gt(x) =

√
π

t
exp

(
−x2

4t

)1 + 2
∑
k≥1

exp

(
−π2k2

t

)
cosh

(
πkx

t

) .

Proof. Using the definition of gt,

gt(x) = 2π
∑
k∈Z

kt(x+ 2πk)

= 2π
∑
k∈Z

(4πt)−1/2 exp

(
− (x+ 2πk)2

4t

)

=

√
π

t
exp

(
−x2

4t

)∑
k∈Z

exp

(
−πkx

t

)
exp

(
−π2k2

t

)

=

√
π

t
exp

(
−x2

4t

)
1 +

∑
k≥1

(
exp

(
πkx

t

)
+ exp

(
−πkx

t

))
exp

(
−π2k2

t

) ,

which gives the claim, using cosh y = ey+e−y

2 .

Definition 2. For x ∈ R, let ∥x∥ = inf{|x− 2πk| : k ∈ Z}.

For k ∈ Z, ∥x+ 2πk∥ = ∥x∥, so it makes sense to talk about ∥x∥ for x ∈ T.

Theorem 3. For t > 0 and x ∈ R,

exp

(
−∥x∥2

4t

)
gt(0) ≤ gt(x) ≤ exp

(
−∥x∥2

4t

)(√
π

t
+ gt(0)

)
.

Proof. Let x = 2πm+θ with |θ| ≤ π, so that ∥x∥ = ∥θ∥ = |θ|, and gt(x) = gt(θ).
Using Lemma 1 and the fact that cosh y ≥ 1, we get

gt(θ) ≥ exp

(
−θ2

4t

)√
π

t

1 + 2
∑
k≥1

exp

(
−π2k2

t

) = exp

(
−θ2

4t

)
gt(0),

hence

gt(x) ≥ exp

(
−∥x∥2

4t

)
gt(0),

the lower bound we wanted to prove.
Write

S = 1 + 2
∑
k≥1

exp

(
−π2k2

t

)
cosh

(
πkθ

t

)
.
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For any k ≥ 1, using |θ| ≤ π,

2 cosh

(
πkθ

t

)
≤ 2 cosh

(
π2k

t

)
= exp

(
π2k

t

)
+exp

(
−π2k

t

)
≤ 1+exp

(
π2k

t

)
.

Hence

S ≤ 1 +
∑
k≥1

exp

(
−π2k2

t

)(
1 + exp

(
π2k

t

))

= 1 +
∑
k≥1

exp

(
−π2k2

t

)
+ exp

(
−π2k(k − 1)

t

)

≤ 1 +
∑
k≥1

exp

(
−π2k2

t

)
+ exp

(
−π2(k − 1)2

t

)

= 2 + 2
∑
k≥1

exp

(
−π2k2

t

)

= 1 +

√
t

π
gt(0).

But gt(θ) =
√

π
t exp

(
− θ2

4t

)
S, so

gt(θ) ≤ exp

(
−θ2

4t

)(√
π

t
+ gt(0)

)
= exp

(
−∥x∥2

4t

)(√
π

t
+ gt(0)

)
,

the upper bound we wanted to prove.

Applying Lemma 1 with x = 0 gives gt(0) ≥
√

π
t , and using this with the

above theorem we obtain

gt(x) ≤ 2 exp

(
−∥x∥2

4t

)
gt(0). (1)

Theorem 4. For t > 0, √
π

t
≤ gt(0) ≤ 1 +

√
π

t

and

2e−t ≤ gt(0)− 1 ≤ 2e−t

1− e−t
.

Proof. Using Lemma 1 we have

gt(0) ≥
√

π

t
.
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For each x ∈ R we have

gt(x) =
∑
k∈Z

ĝt(k)e
ikx =

∑
k∈Z

e−k2teikx = 1 + 2
∑
k≥1

e−k2t cos(kx).

Writing ϕ(t) =
∑

k≥1 e
−k2t, we then have

gt(0) = 1 + 2ϕ(t).

But as e−x2t is positive and decreasing, bounding a sum by an integral we get

ϕ(t) ≤
∫ ∞

0

e−x2tdx =
1√
t

∫ ∞

0

e−x2

dx =
1

2

√
π

t
,

hence

gt(0) = 1 + 2ϕ(t) ≤ 1 +

√
π

t
.

Moreover, because ϕ(t) ≥ e−t (lower bounding the sum by the first term), we
have

gt(0) = 1 + 2ϕ(t) ≥ 1 + 2e−t.

Finally, because e−tk2 ≤ e−tk for k ≥ 1,

ϕ(t) ≤
∑
k≥1

e−tk = e−t 1

1− e−t
,

thus

gt(0) ≤ 1 +
2e−t

1− e−t
.

Taking t → 0 and t → ∞ in the above theorem gives the following asymp-
totics.

Corollary 5.

gt(0) ∼
√

π

t
, t → 0

and
gt(0)− 1 ∼ 2e−t, t → ∞.

2 Heat kernel on Tn

Fix n ≥ 1, and let A = (a1, . . . , an), ai positive real numbers. We define
gA
t : Rn → (0,∞) by

gA
t (x) =

n∏
k=1

gakt(xk), x = (x1, . . . , xn) ∈ Rn.

4



For x ∈ Rn and ξ ∈ Zn we have

gA
t (x+ 2πξ) =

n∏
k=1

gakt(xk + 2πξk) =

n∏
k=1

gakt(xk) = gA
t (x),

so gA
t can be interpreted as a function on Tn.
Let mn be Haar measure on Tn:

dmn(x) =

n∏
k=1

dm(xk) =

n∏
k=1

(2π)−1dxk = (2π)−ndx,

which satisfies mn(Tn) = 1. Define µA
t to be the measure on Tn whose density

with respect to mn is gA
t :

dµA
t = gA

t dmn.

We now calculate the Fourier coefficients of gA
t . For ξ ∈ Zn,

F (gA
t )(ξ) =

∫
Tn

gA
t (x)e−iξ·xdmn(x)

=

∫
Tn

n∏
k=1

gakt(xk)e
−iξ1x1−···−iξnxndmn(x)

=

n∏
k=1

∫
T
gakt(xk)e

−iξkxkdm(xk)

=

n∏
k=1

ĝakt(ξk)

=

n∏
k=1

e−ξ2kakt

= e−tq(ξ),

where

q(ξ) =

n∑
k=1

akξ
2
k, ξ ∈ Zn.

Definition 6. For x = (x1, . . . , xn) ∈ Rn we define

∥x∥2A =
1

a1
∥x1∥2 + · · ·+ 1

an
∥xn∥2,

with A = (a1, . . . , an).

For ξ = (ξ1, . . . , ξn) ∈ Zn, because ∥xk + 2πξk∥ = ∥xk∥, we have ∥x +
2πξ∥A = ∥x∥A , so it makes sense to talk about ∥ · ∥A on Tn.

Using Theorem 3 and (1) we get the following.
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Theorem 7. For t > 0 and x ∈ Rn,

exp

(
−∥x∥2A

4t

)
gA
t (0) ≤ gA

t (x) ≤ 2n exp

(
−∥x∥2A

4t

)
gA
t (0).

Combining this with Theorem 4 we obtain the following. The first inequality
is appropriate for t → 0+ and the second inequality for t → ∞.

Theorem 8. For t > 0 and x ∈ Rn,

exp

(
−∥x∥2A

4t

) n∏
k=1

√
π

akt
≤ gA

t (x) ≤ 2n exp

(
−∥x∥2A

4t

) n∏
k=1

(
1 +

√
π

akt

)
and

exp

(
−∥x∥2A

4t

) n∏
k=1

(
1 + 2e−akt

)
≤ gA

t (x) ≤ 2n exp

(
−∥x∥2A

4t

) n∏
k=1

(
1 +

2e−akt

1− e−akt

)
.

3 The infinite-dimensional torus

T∞ with the product topology is a compact abelian group. Let m∞ be Haar
measure on T∞:

dm∞(x) =

∞∏
k=1

dm(xk), x = (x1, x2, . . .) ∈ T∞,

where m is Haar measure on T.
For t > 0, let µt be the measure on T whose density with respect to Haar

measure m is gt:
dµt = gtdm.

This is a probability measure on T.
Let A = (a1, a2, . . .) ∈ N∞. For t > 0 we define

µA
t =

∞∏
k=1

µakt.

This is a probability measure on T∞.2

The Pontryagin dual of T∞ is the direct sum
⊕∞

k=1 Z, which we denote by
Z(∞), which is a discrete abelian group. For ξ ∈ Z(∞) and x ∈ T∞, we write

eξ(x) = exp

(
i

∞∑
k=1

ξkxk

)
.

2Christian Berg determines conditions on A and t so that µA
t is absolutely continuous

with respect to Haar measure m∞ on T∞: Potential theory on the infinite dimensional torus,
Invent. Math. 32 (1976), no. 1, 49–100.
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The Fourier transform of µA
t is F (µA

t ) : Z(∞) → C defined by

F (µA
t )(ξ) =

∫
T∞

e−ξ(x)dm∞(x), ξ ∈ Z(∞),

which is ∫
T∞

e−ξ(x)dm∞(x) =

∫
T∞

exp

(
−i

∞∑
k=1

ξkxk

)
dµA

t (x)

=

∫
T∞

∞∏
k=1

exp(−iξkxk)dµ
A
t (x)

=

∞∏
k=1

∫
T
exp(−iξkxk)gakt(xk)dm(xk)

=

∞∏
k=1

ĝakt(ξk)

=

∞∏
k=1

exp(−ξ2kakt)

= exp

(
−t

∞∑
k=1

akξ
2
k

)
.

4 Convergence of infinite products

If ck ≥ 0, then for any n,

1 +

n∑
k=1

ck ≤
n∏

k=1

(1 + ck) ≤ exp

(
n∑

k=1

ck

)
.

Thus, the limit of
∏n

k=1(1 + ck) as n → ∞ exists if and only if

∞∑
k=1

ck < ∞.

For the second inequality in Theorem 8, the limit of
∏n

k=1 (1 + 2e−akt) as n → ∞
exists if and only if

∞∑
k=1

2e−akt < ∞.
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