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1 Notation

For f ∈ L1(Rn), we define f̂ : Rn → C by

f̂(ξ) = (Ff)(ξ) =

∫
Rn

f(x)e−2πiξxdx, ξ ∈ Rn.

The statement of the Riemann-Lebesgue lemma is that f̂ ∈ C0(Rn).
We denote by Sn the Fréchet space of Schwartz functions Rn → C.
If α is a multi-index, we define

Dα = Dα1
1 · · ·Dαn

n ,

Dα = i−|α|Dα =

(
1

i
D1

)α1

· · ·
(
1

i
Dn

)αn

,

and
∆ = D2

1 + · · ·+D2
n.

2 The heat equation

Fix n, and for t > 0, x ∈ Rn, define

kt(x) = k(t, x) = (4πt)−n/2 exp

(
−|x|2

4t

)
.

We call k the heat kernel. It is straightforward to check for any t > 0 that
kt ∈ Sn. The heat kernel satisfies

kt(x) = (t−1/2)nk1(t
−1/2x), t > 0, x ∈ Rn.

For a > 0 and f(x) = e−πa|x|
2

, it is a fact that f̂(ξ) = a−n/2e−π|ξ|
2/a. Using

this, for any t > 0 we get

k̂t(ξ) = e−4π2|ξ|2t, ξ ∈ Rn.

1



Thus for any t > 0, ∫
Rn

kt(x)dx = k̂t(0) = 1.

Then the heat kernel is an approximate identity: if f ∈ Lp(Rn), 1 ≤ p <∞,
then ∥f ∗ kt − f∥p → 0 as t → 0, and if f is a function on Rn that is bounded
and continuous, then for every x ∈ Rn, f ∗ kt(x) → f(x) as t → 0.1 For each
t > 0, because kt ∈ Sn we have f ∗ kt ∈ C∞(Rn), and Dα(f ∗ kt) = f ∗Dαkt
for any multi-index α.2

The heat operator is Dt −∆ and the heat equation is (Dt −∆)u = 0.
It is straightforward to check that

(Dt −∆)k(t, x) = 0, t > 0, x ∈ Rn,

that is, the heat kernel is a solution of the heat equation.
To get some practice proving things about solutions of the heat equation,

we work out the following theorem from Folland.3 In Folland’s proof it is not
apparent how the hypotheses on u and Dx are used, and we make this explicit.

Theorem 1. Suppose that u : [0,∞)× Rn → C is continuous, that u is C2 on
(0,∞)× Rn, that

(Dt −∆)u(t, x) = 0, t > 0, x ∈ Rn,

and that u(0, x) = 0 for x ∈ Rn. If for every ϵ > 0 there is some C such that

|u(t, x)| ≤ Ceϵ|x|
2

, |Dxu(t, x)| ≤ Ceϵ|x|
2

, t > 0, x ∈ Rn,

then u = 0.

Proof. If f and g are C2 functions on some open set in R×Rn, such as (0,∞)×
Rn, then

g(∂tf −∆f) + f(∂tg +∆g) = ∂t(fg)− g

n∑
j=1

∂2j f + f

n∑
j=1

∂2j g

= ∂t(fg) +

n∑
j=1

∂j(f∂jg − g∂jf)

= divt,xF,

where
F = (fg, f∂1g − g∂1f, . . . , f∂ng − g∂nf).

1k1, and any kt, belong merely to Sn and not to D(Rn), which is demanded in the definition
of an approximate identity in Rudin’s Functional Analysis, second ed.

2Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 11, The-
orem 0.14.

3Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 144,
Theorem 4.4.
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Take t0 > 0, x0 ∈ Rn, and let f(t, x) = u(t, x) and g(t, x) = k(t0 − t, x− x0)
for t > 0, x ∈ Rn. Let 0 < a < b < t0 and r > 0, and define

Ω = {(t, x) : |x| < r, a < t < b}.

In Ω we check that (∂t − ∆)f = 0 and (∂t + ∆)g = 0, so by the divergence
theorem,∫
∂Ω

F · ν =

∫
Ω

divt,xF =

∫
Ω

g(∂tf −∆f) + f(∂tg +∆g) =

∫
Ω

g · 0 + f · 0 = 0.

On the other hand, as

∂Ω = {(b, x) : |x| ≤ r} ∪ {(a, x) : |x| ≤ r} ∪ {(t, x) : a < t < b, |x| = r},

we have∫
∂Ω

F · ν =

∫
|x|≤r

F (b, x) · (1, 0, . . . , 0)dx+

∫
|x|≤r

F (a, x) · (−1, 0, . . . , 0)dx

+

∫ b

a

∫
|x|=r

F (t, x) · x
r
dσ(x)tn−1dt

=

∫
|x|≤r

f(b, x)g(b, x)dx−
∫
|x|≤r

f(a, x)g(a, x)dx

+

∫ b

a

∫
|x|=r

n∑
j=1

(f∂jg − g∂jf)(t, x)
xj
r
dσ(x)tn−1dt

=

∫
|x|≤r

u(b, x)k(t0 − b, x− x0)dx−
∫
|x|≤r

u(a, x)k(t0 − a, x− x0)dx

+

∫ b

a

∫
|x|=r

n∑
j=1

(
u(t, x)∂jk(t0 − t, x− x0)

−k(t0 − t, x− x0)∂ju(t, x)
)xj
r
dσ(x)tn−1dt,

where σ is surface measure on {|x| = r} = rSn−1. As r → ∞, the first two
terms tend to∫

Rn

u(b, x)kt0−b(x− x0)dx =

∫
Rn

u(b, x)kt0−b(x0 − x)dx = u(b, ·) ∗ kt0−b(x0)

and∫
Rn

u(a, x)kt0−a(x− x0)dx =

∫
Rn

u(a, x)kt0−a(x0 − x)dx = u(a, ·) ∗ kt0−a(x0)

respectively. Let ϵ < 1
4(t0−a) , and let C be as given in the statement of the

theorem. Using ∂jk(t, x) = −xj

2t k(t, x), for any r > 0 the third term is bounded
by

n

∫ b

a

∫
|x|=r

(
Ceϵr

2 |x− x0|
2t

k(t0− t, x−x0)+k(t0− t, x−x0)Ceϵr
2
)
dσ(x)tn−1dt,
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which is bounded by

n

∫ b

a

∫
|x|=r

Ceϵr
2

(
|x0|+ r

2a
+ 1

)
(4π(t0−b))−n/2 exp

(
− r2

4(t0 − a)

)
dσ(x)tn−1dt,

and writing η = 1
4(t0−a) − ϵ and ωn = 2πn/2

Γ(n/2) , the surface area of the sphere of

radius 1 in Rn, this is equal to

(b− a)nrn−1ωnCe
−ηr2

(
|x0|+ r

2a
+ 1

)
(4π(t0 − b))−n/2,

which tends to 0 as r → ∞. Therefore,

u(b, ·) ∗ kt0−b(x0) = u(a, ·) ∗ kt0−a(x0).

One checks that as b → t0, the left-hand side tends to u(t0, x0), and that as
a→ 0, the right-hand side tends to u(0, x0) = 0. Therefore,

u(t0, x0) = 0.

This is true for any t0 > 0, x0 ∈ Rn, and as u : [0,∞)× Rn → C is continuous,
it follows that u is identically 0.

3 Fundamental solutions

We extend k to R× Rn as

k(t, x) =

{
(4πt)−n/2 exp

(
− |x|2

4t

)
t > 0, x ∈ Rn

0 t ≤ 0, x ∈ Rn.

This function is locally integrable in R × Rn, so it makes sense to define Λk ∈
D ′(R× Rn) by

Λkϕ =

∫
R

∫
Rn

ϕ(t, x)k(t, x)dxdt, ϕ ∈ D(R× Rn).

Suppose that P is a polynomial in n variables:

P (ξ) =
∑

cαξ
α =

∑
cαξ

α1
1 · · · ξαn

n .

We say that E ∈ D ′(Rn) is a fundamental solution of the differential operator

P (D) =
∑

cαDα =
∑

cαi
−|α|Dα

if P (D)E = δ. If E = Λf for some locally integrable f , Λfϕ =
∫
Rn ϕ(x)f(x)dx,

we also say that the function f is a fundamental solution of the differential
operator P (D). We now prove that the heat kernel extended to R× Rn in the
above way is a fundamental solution of the heat operator.4

4Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 146,
Theorem 4.6.
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Theorem 2. Λk is a fundamental solution of Dt −∆.

Proof. For ϵ > 0, define Kϵ(t, x) = k(t, x) if t > ϵ and Kϵ(t, x) = 0 otherwise.
For any ϕ ∈ D(R× Rn),∣∣∣∣∫

R

∫
Rn

(k(t, x)−Kϵ(t, x))ϕ(t, x)dxdt

∣∣∣∣ =

∣∣∣∣∫ ϵ

0

∫
Rn

k(t, x)ϕ(t, x)dxdt

∣∣∣∣
≤ ∥ϕ∥∞

∫ ϵ

0

∫
Rn

k(t, x)dxdt

= ∥ϕ∥∞
∫ ϵ

0

dt

= ∥ϕ∥∞ϵ.

This shows that ΛKϵ → Λk in D ′(R×Rn), with the weak-* topology. It is a fact
that for any multi-index, E 7→ DαE is continuous D ′(R × Rn) → D ′(R × Rn),
and hence (Dt −∆)ΛKϵ

→ (Dt −∆)Λk in D ′(R×Rn). Therefore, to prove the
theorem it suffices to prove that (Dt −∆)ΛKϵ

→ δ (because D ′(R × Rn) with
the weak-* topology is Hausdorff).

Let ϕ ∈ D(R× Rn). Doing integration by parts,

(Dt −∆)ΛKϵ
(ϕ) = ΛKϵ

((Dt −∆)ϕ)

=

∫
R

∫
Rn

Kϵ(t, x)(Dtϕ(t, x)−∆ϕ(t, x))dxtx

=

∫ ∞

ϵ

∫
Rn

k(t, x)Dtϕ(t, x)− k(t, x)∆ϕ(t, x)dxtx

=

∫
Rn

(
k(ϵ, x)ϕ(ϵ, x)−

∫ ∞

ϵ

ϕ(t, x)Dtk(t, x)dt

)
dx

+

∫ ∞

ϵ

∫
Rn

ϕ(t, x)∆k(t, x)dxdt

=

∫
Rn

k(ϵ, x)ϕ(ϵ, x)dx

−
∫ ∞

ϵ

∫
Rn

ϕ(t, x)(Dt −∆)k(t, x)dtdx

=

∫
Rn

k(ϵ, x)ϕ(ϵ, x)dx.

So, using kt(x) = kt(−x) and writing ϕt(x) = ϕ(t, x),

(Dt −∆)ΛKϵ
(ϕ) =

∫
Rn

kϵ(−x)ϕϵ(x)dx

= kϵ ∗ ϕϵ(0)
= kϵ ∗ ϕ0(0) + kϵ ∗ (ϕϵ − ϕ0)(0).

Using the definition of convolution, the second term is bounded by

sup
x∈Rn

|ϕϵ(x)− ϕ0(x)|∥kϵ∥1 = sup
x∈Rn

|ϕϵ(x)− ϕ0(x)|,
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which tends to 0 as ϵ → 0. Because k is an approximate identity, kϵ ∗ ϕ0(0) →
ϕ0(0) as ϵ→ 0. That is,

(Dt −∆)ΛKϵ
(ϕ) → ϕ0(0) = δ(ϕ)

as ϵ → 0, showing that (Dt − ∆)ΛKϵ
→ δ in D ′(R × Rn) and completing the

proof.

4 Functions of the Laplacian

This section is my working through of material in Folland.5 For f ∈ Sn and
for any nonnegative integer k, doing integration by parts we get

F ((−∆)kf)(ξ) =

∫
Rn

((−∆)kf)(x)e−2πiξxdx = (4π2|ξ|2)k(Ff)(ξ), ξ ∈ Rn.

Suppose that P is a polynomial in one variable: P (x) =
∑
ckx

k. Then, writing
P (−∆) =

∑
ck(−∆)k, we have

F (P (−∆)f)(ξ) =
∑

ckF ((−∆)kf)(ξ)

=
∑

ck(4π
2|ξ|2)k(Ff)(ξ)

= (Ff)(ξ)P (4π2|ξ|2).

We remind ourselves that tempered distributions are elements of S ′
n,

i.e. continuous linear maps Sn → C. The Fourier transform of a tempered
distribution Λ is defined by Λ̂f = (FΛ)f = Λf̂ , f ∈ Sn. It is a fact that the
Fourier transform is an isomorphism of locally convex spaces S ′

n → S ′
n.

6

Suppose that ψ : (0,∞) → C is a function such that

Λf =

∫
Rn

f(ξ)ψ(4π2|ξ|2)dξ, f ∈ Sn,

is a tempered distribution. We define ψ(−∆) : Sn → S ′
n by

ψ(−∆)f = F−1(f̂Λ), f ∈ Sn.

Define f̌(x) = f(−x); this is not the inverse Fourier transform of f , which
we denote by F−1. As well, write τxf(y) = f(y − x). For u ∈ S ′

n and ϕ ∈ Sn,
we define the convolution u ∗ ϕ : Rn → C by

(u ∗ ϕ)(x) = u(τxϕ̌), x ∈ Rn.

One proves that u ∗ ϕ ∈ C∞(Rn), that

Dα(u ∗ ϕ) = (Dαu) ∗ ϕ = u ∗ (Dαϕ)

5Gerald B. Folland, Introduction to Partial Differential Equations, second ed., pp. 149–152,
§4B.

6Walter Rudin, Functional Analysis, second ed., p. 192, Theorem 7.15.
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for any multi-index, that u ∗ ϕ is a tempered distribution, that F (u ∗ ϕ) = ϕ̂û,

and that û ∗ ϕ̂ = F (ϕu).7

We can also write ψ(−∆) in the following way. There is a unique κψ ∈ S ′
n

such that
Fκψ = Λ.

For f ∈ Sn, we have F (κψ ∗f) = f̂ κ̂ψ = f̂Λ, but, using the definition of ψ(−∆)

we also have F (ψ(−∆)f) = FF−1(f̂Λ) = f̂Λ, so

κψ ∗ f = ψ(−∆)f.

Moreover, κψ ∗ f ∈ C∞(Rn); this shows that ψ(−∆)f can be interpreted as a
tempered distribution or as a function. We call κψ the convolution kernel of
ψ(−∆).

For a fixed t > 0, define ψ(s) = e−ts. Then Λ : Sn → C defined by

Λf =

∫
Rn

f(ξ)ψ(4π2|ξ|2)dξ =
∫
Rn

f(ξ) exp
(
−4π2|ξ|2t

)
dξ =

∫
Rn

f(ξ)k̂t(ξ)dξ

is a tempered distribution. Using the Plancherel theorem, we have

Λf =

∫
Rn

f̂(ξ)kt(ξ)dξ.

With κψ ∈ S ′
n such that Fκψ = Λ, we have

Λf = (Fκψ)(f) = κψ(f̂).

Because f 7→ f̂ is a bijection Sn → Sn, this shows that for any f ∈ Sn we
have

κψ(f) =

∫
Rn

f(ξ)kt(ξ)dξ.

Hence,
et∆f = κψ ∗ f = kt ∗ f, t > 0, f ∈ Sn. (1)

Suppose that ϕ : (0,∞) → C and ω : (0,∞) → (0,∞) are functions and that

ψ(s) =

∫ ∞

0

ϕ(τ)e−sω(τ)dτ, s > 0.

Manipulating symbols suggests that it may be true that

ψ(−∆) =

∫ ∞

0

ϕ(τ)eω(τ)∆dτ,

and then, for f ∈ Sn,

ψ(−∆)f =

∫ ∞

0

ϕ(τ)eω(τ)∆fdτ =

∫ ∞

0

ϕ(τ)(kω(τ) ∗ f)dτ,

7Walter Rudin, Functional Analysis, second ed., p. 195, Theorem 7.19.
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and hence

κψ(x) =

∫ ∞

0

ϕ(τ)kω(τ)(x)dτ, x ∈ Rn. (2)

Take ψ(s) = s−β with 0 < Reβ < n
2 . Because Reβ < n

2 , one checks that

Λf =

∫
Rn

f(ξ)(4π2|ξ|2)−βdξ

is a tempered distribution. As Reβ > 0, we have

s−β =
1

Γ(β)

∫ ∞

0

τβ−1e−sτdτ

and writing ϕ(τ) = τβ−1

Γ(β) and ω(τ) = τ , we suspect from (2) that the convolution

kernel of (−∆)−β is

κψ(x) =

∫ ∞

0

τβ−1

Γ(β)
kτ (x)dτ,

which one calculates is equal to

Γ
(
n
2 − β

)
Γ(β)4βπn/2|x|n−2β

. (3)

What we have written so far does not prove that this is the convolution kernel
of (−∆)−β because it used (2), but it is straightforward to calculate that indeed
the convolution kernel of (−∆)−β is (3). This calculation is explained in an
exercise in Folland.8

Taking α = 2β and defining

Rα(x) =
Γ
(
n−α
2

)
Γ
(
α
2

)
2απn/2|x|n−α

, 0 < Reα < n, x ∈ Rn,

we call Rα the Riesz potential of order α. Taking as granted that (3) is the
convolution kernel of (−∆)−β , we have

(−∆)−α/2f = Rα ∗ f, f ∈ Sn.

Then, if n > 2 and α = 2 satisfies 0 < Reα < n, we work out that

R2(x) =
1

(n− 2)ωn|x|n−2
,

where ωn = 2πn/2

Γ(n/2) , and hence

(−∆)−1f = R2 ∗ f, f ∈ Sn,

8Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 154,
Exercise 1.
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and applying −∆ we obtain

f = −∆(R2 ∗ f) = (−∆R2) ∗ f,

hence −∆R2 = δ. That is, R2 is the fundamental solution for −∆.
Suppose that Reβ > 0. Then, using the definition of Γ(β) as an integral,

with ψ(s) = (1 + s)−β , we have

ψ(s) =
1

Γ(β)

∫ ∞

0

τβ−1e−(1+s)τdτ, s > 0.

Manipulating symbols suggests that

ψ(−∆) =
1

Γ(β)

∫ ∞

0

τβ−1e−τeτ∆dτ,

and using (1), assuming the above is true we would have for all f ∈ Sn,

ψ(−∆)f =
1

Γ(β)

∫ ∞

0

τβ−1e−τeτ∆fdτ =
1

Γ(β)

∫ ∞

0

τβ−1e−τ (kτ ∗ f)dτ,

whose convolution kernel is

1

Γ(β)

∫ ∞

0

τβ−1e−τkτdτ.

We write α = 2β and define, for Reα > 0,

Bα(x) =
1

Γ
(
α
2

)
(4π)n/2

∫ ∞

0

τ
α−n

2 −1e−τ−
|x|2
4τ dτ, x ̸= 0.

We call Bα the Bessel potential of order α. It is straightforward to show, and
shown in Folland, that ∥Bα∥1 < ∞, so Bα ∈ L1(Rn). Therefore we can take
the Fourier transform of Bα, and one calculates that it is

B̂α(ξ) = (1 + 4π2|ξ|2)−α/2, ξ ∈ Rn,

and then
ψ(−∆) = (1−∆)−α/2f = Bα ∗ f, f ∈ Sn.

5 Gaussian measure

If µ is a measure on Rn and f : Rn → C is a function such that for every
x ∈ Rn the integral

∫
Rn f(x − y)dµ(y) converges, we define the convolution

µ ∗ f : Rn → C by

(µ∗f)(x) = µ(τxf̌) =

∫
Rn

(τxf̌)(y)dµ(y) =

∫
Rn

f̌(y−x)dµ(y) =
∫
Rn

f(x−y)dµ(y).

Let νt be the measure on Rn with density kt. We call νt Gaussian measure.
It satisfies

νt ∗ f(x) =
∫
Rn

f(x− y)dνt(y) =

∫
Rn

f(x− y)kt(y)dy = f ∗ kt(x), x ∈ Rn.
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