The heat kernel on \mathbb{R}^{n}

Jordan Bell

March 28, 2014

1 Notation

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we define $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by

$$
\hat{f}(\xi)=(\mathscr{F} f)(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i \xi x} d x, \quad \xi \in \mathbb{R}^{n}
$$

The statement of the Riemann-Lebesgue lemma is that $\hat{f} \in C_{0}\left(\mathbb{R}^{n}\right)$.
We denote by \mathscr{S}_{n} the Fréchet space of Schwartz functions $\mathbb{R}^{n} \rightarrow \mathbb{C}$.
If α is a multi-index, we define

$$
\begin{aligned}
D^{\alpha} & =D_{1}^{\alpha_{1}} \cdots D_{n}^{\alpha_{n}} \\
D_{\alpha}=i^{-|\alpha|} D^{\alpha} & =\left(\frac{1}{i} D_{1}\right)^{\alpha_{1}} \cdots\left(\frac{1}{i} D_{n}\right)^{\alpha_{n}}
\end{aligned}
$$

and

$$
\Delta=D_{1}^{2}+\cdots+D_{n}^{2} .
$$

2 The heat equation

Fix n, and for $t>0, x \in \mathbb{R}^{n}$, define

$$
k_{t}(x)=k(t, x)=(4 \pi t)^{-n / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right)
$$

We call k the heat kernel. It is straightforward to check for any $t>0$ that $k_{t} \in \mathscr{S}_{n}$. The heat kernel satisfies

$$
k_{t}(x)=\left(t^{-1 / 2}\right)^{n} k_{1}\left(t^{-1 / 2} x\right), \quad t>0, x \in \mathbb{R}^{n}
$$

For $a>0$ and $f(x)=e^{-\pi a|x|^{2}}$, it is a fact that $\hat{f}(\xi)=a^{-n / 2} e^{-\pi|\xi|^{2} / a}$. Using this, for any $t>0$ we get

$$
\hat{k}_{t}(\xi)=e^{-4 \pi^{2}|\xi|^{2} t}, \quad \xi \in \mathbb{R}^{n}
$$

Thus for any $t>0$,

$$
\int_{\mathbb{R}^{n}} k_{t}(x) d x=\hat{k}_{t}(0)=1
$$

Then the heat kernel is an approximate identity: if $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, then $\left\|f * k_{t}-f\right\|_{p} \rightarrow 0$ as $t \rightarrow 0$, and if f is a function on \mathbb{R}^{n} that is bounded and continuous, then for every $x \in \mathbb{R}^{n}, f * k_{t}(x) \rightarrow f(x)$ as $t \rightarrow 0 .{ }^{1}$ For each $t>0$, because $k_{t} \in \mathscr{S}_{n}$ we have $f * k_{t} \in C^{\infty}\left(\mathbb{R}^{n}\right)$, and $D^{\alpha}\left(f * k_{t}\right)=f * D^{\alpha} k_{t}$ for any multi-index $\alpha .^{2}$

The heat operator is $D_{t}-\Delta$ and the heat equation is $\left(D_{t}-\Delta\right) u=0$. It is straightforward to check that

$$
\left(D_{t}-\Delta\right) k(t, x)=0, \quad t>0, x \in \mathbb{R}^{n}
$$

that is, the heat kernel is a solution of the heat equation.
To get some practice proving things about solutions of the heat equation, we work out the following theorem from Folland. ${ }^{3}$ In Folland's proof it is not apparent how the hypotheses on u and D_{x} are used, and we make this explicit.

Theorem 1. Suppose that $u:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is continuous, that u is C^{2} on $(0, \infty) \times \mathbb{R}^{n}$, that

$$
\left(D_{t}-\Delta\right) u(t, x)=0, \quad t>0, x \in \mathbb{R}^{n}
$$

and that $u(0, x)=0$ for $x \in \mathbb{R}^{n}$. If for every $\epsilon>0$ there is some C such that

$$
|u(t, x)| \leq C e^{\epsilon|x|^{2}}, \quad\left|D_{x} u(t, x)\right| \leq C e^{\epsilon|x|^{2}}, \quad t>0, x \in \mathbb{R}^{n}
$$

then $u=0$.
Proof. If f and g are C^{2} functions on some open set in $\mathbb{R} \times \mathbb{R}^{n}$, such as $(0, \infty) \times$ \mathbb{R}^{n}, then

$$
\begin{aligned}
g\left(\partial_{t} f-\Delta f\right)+f\left(\partial_{t} g+\Delta g\right) & =\partial_{t}(f g)-g \sum_{j=1}^{n} \partial_{j}^{2} f+f \sum_{j=1}^{n} \partial_{j}^{2} g \\
& =\partial_{t}(f g)+\sum_{j=1}^{n} \partial_{j}\left(f \partial_{j} g-g \partial_{j} f\right) \\
& =\operatorname{div}_{t, x} F
\end{aligned}
$$

where

$$
F=\left(f g, f \partial_{1} g-g \partial_{1} f, \ldots, f \partial_{n} g-g \partial_{n} f\right)
$$

[^0]Take $t_{0}>0, x_{0} \in \mathbb{R}^{n}$, and let $f(t, x)=u(t, x)$ and $g(t, x)=k\left(t_{0}-t, x-x_{0}\right)$ for $t>0, x \in \mathbb{R}^{n}$. Let $0<a<b<t_{0}$ and $r>0$, and define

$$
\Omega=\{(t, x):|x|<r, a<t<b\} .
$$

In Ω we check that $\left(\partial_{t}-\Delta\right) f=0$ and $\left(\partial_{t}+\Delta\right) g=0$, so by the divergence theorem,

$$
\int_{\partial \Omega} F \cdot \nu=\int_{\Omega} \operatorname{div}_{t, x} F=\int_{\Omega} g\left(\partial_{t} f-\Delta f\right)+f\left(\partial_{t} g+\Delta g\right)=\int_{\Omega} g \cdot 0+f \cdot 0=0 .
$$

On the other hand, as

$$
\partial \Omega=\{(b, x):|x| \leq r\} \cup\{(a, x):|x| \leq r\} \cup\{(t, x): a<t<b,|x|=r\}
$$

we have

$$
\begin{aligned}
\int_{\partial \Omega} F \cdot \nu= & \int_{|x| \leq r} F(b, x) \cdot(1,0, \ldots, 0) d x+\int_{|x| \leq r} F(a, x) \cdot(-1,0, \ldots, 0) d x \\
& +\int_{a}^{b} \int_{|x|=r} F(t, x) \cdot \frac{x}{r} d \sigma(x) t^{n-1} d t \\
= & \int_{|x| \leq r} f(b, x) g(b, x) d x-\int_{|x| \leq r} f(a, x) g(a, x) d x \\
& +\int_{a}^{b} \int_{|x|=r} \sum_{j=1}^{n}\left(f \partial_{j} g-g \partial_{j} f\right)(t, x) \frac{x_{j}}{r} d \sigma(x) t^{n-1} d t \\
= & \int_{|x| \leq r} u(b, x) k\left(t_{0}-b, x-x_{0}\right) d x-\int_{|x| \leq r} u(a, x) k\left(t_{0}-a, x-x_{0}\right) d x \\
& +\int_{a}^{b} \int_{|x|=r} \sum_{j=1}^{n}\left(u(t, x) \partial_{j} k\left(t_{0}-t, x-x_{0}\right)\right. \\
& \left.-k\left(t_{0}-t, x-x_{0}\right) \partial_{j} u(t, x)\right) \frac{x_{j}}{r} d \sigma(x) t^{n-1} d t
\end{aligned}
$$

where σ is surface measure on $\{|x|=r\}=r S^{n-1}$. As $r \rightarrow \infty$, the first two terms tend to

$$
\int_{\mathbb{R}^{n}} u(b, x) k_{t_{0}-b}\left(x-x_{0}\right) d x=\int_{\mathbb{R}^{n}} u(b, x) k_{t_{0}-b}\left(x_{0}-x\right) d x=u(b, \cdot) * k_{t_{0}-b}\left(x_{0}\right)
$$

and

$$
\int_{\mathbb{R}^{n}} u(a, x) k_{t_{0}-a}\left(x-x_{0}\right) d x=\int_{\mathbb{R}^{n}} u(a, x) k_{t_{0}-a}\left(x_{0}-x\right) d x=u(a, \cdot) * k_{t_{0}-a}\left(x_{0}\right)
$$

respectively. Let $\epsilon<\frac{1}{4\left(t_{0}-a\right)}$, and let C be as given in the statement of the theorem. Using $\partial_{j} k(t, x)=-\frac{x_{j}}{2 t} k(t, x)$, for any $r>0$ the third term is bounded by
$n \int_{a}^{b} \int_{|x|=r}\left(C e^{\epsilon r^{2}} \frac{\left|x-x_{0}\right|}{2 t} k\left(t_{0}-t, x-x_{0}\right)+k\left(t_{0}-t, x-x_{0}\right) C e^{\epsilon r^{2}}\right) d \sigma(x) t^{n-1} d t$,
which is bounded by
$n \int_{a}^{b} \int_{|x|=r} C e^{\epsilon r^{2}}\left(\frac{\left|x_{0}\right|+r}{2 a}+1\right)\left(4 \pi\left(t_{0}-b\right)\right)^{-n / 2} \exp \left(-\frac{r^{2}}{4\left(t_{0}-a\right)}\right) d \sigma(x) t^{n-1} d t$, and writing $\eta=\frac{1}{4\left(t_{0}-a\right)}-\epsilon$ and $\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$, the surface area of the sphere of radius 1 in \mathbb{R}^{n}, this is equal to

$$
(b-a)^{n} r^{n-1} \omega_{n} C e^{-\eta r^{2}}\left(\frac{\left|x_{0}\right|+r}{2 a}+1\right)\left(4 \pi\left(t_{0}-b\right)\right)^{-n / 2}
$$

which tends to 0 as $r \rightarrow \infty$. Therefore,

$$
u(b, \cdot) * k_{t_{0}-b}\left(x_{0}\right)=u(a, \cdot) * k_{t_{0}-a}\left(x_{0}\right)
$$

One checks that as $b \rightarrow t_{0}$, the left-hand side tends to $u\left(t_{0}, x_{0}\right)$, and that as $a \rightarrow 0$, the right-hand side tends to $u\left(0, x_{0}\right)=0$. Therefore,

$$
u\left(t_{0}, x_{0}\right)=0
$$

This is true for any $t_{0}>0, x_{0} \in \mathbb{R}^{n}$, and as $u:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{C}$ is continuous, it follows that u is identically 0 .

3 Fundamental solutions

We extend k to $\mathbb{R} \times \mathbb{R}^{n}$ as

$$
k(t, x)= \begin{cases}(4 \pi t)^{-n / 2} \exp \left(-\frac{|x|^{2}}{4 t}\right) & t>0, x \in \mathbb{R}^{n} \\ 0 & t \leq 0, x \in \mathbb{R}^{n}\end{cases}
$$

This function is locally integrable in $\mathbb{R} \times \mathbb{R}^{n}$, so it makes sense to define $\Lambda_{k} \in$ $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ by

$$
\Lambda_{k} \phi=\int_{\mathbb{R}} \int_{\mathbb{R}^{n}} \phi(t, x) k(t, x) d x d t, \quad \phi \in \mathscr{D}\left(\mathbb{R} \times \mathbb{R}^{n}\right)
$$

Suppose that P is a polynomial in n variables:

$$
P(\xi)=\sum c_{\alpha} \xi^{\alpha}=\sum c_{\alpha} \xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}
$$

We say that $E \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a fundamental solution of the differential operator

$$
P(D)=\sum c_{\alpha} D_{\alpha}=\sum c_{\alpha} i^{-|\alpha|} D^{\alpha}
$$

if $P(D) E=\delta$. If $E=\Lambda_{f}$ for some locally integrable $f, \Lambda_{f} \phi=\int_{\mathbb{R}^{n}} \phi(x) f(x) d x$, we also say that the function f is a fundamental solution of the differential operator $P(D)$. We now prove that the heat kernel extended to $\mathbb{R} \times \mathbb{R}^{n}$ in the above way is a fundamental solution of the heat operator. ${ }^{4}$

[^1]Theorem 2. Λ_{k} is a fundamental solution of $D_{t}-\Delta$.
Proof. For $\epsilon>0$, define $K_{\epsilon}(t, x)=k(t, x)$ if $t>\epsilon$ and $K_{\epsilon}(t, x)=0$ otherwise. For any $\phi \in \mathscr{D}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\left|\int_{\mathbb{R}} \int_{\mathbb{R}^{n}}\left(k(t, x)-K_{\epsilon}(t, x)\right) \phi(t, x) d x d t\right| & =\left|\int_{0}^{\epsilon} \int_{\mathbb{R}^{n}} k(t, x) \phi(t, x) d x d t\right| \\
& \leq\|\phi\|_{\infty} \int_{0}^{\epsilon} \int_{\mathbb{R}^{n}} k(t, x) d x d t \\
& =\|\phi\|_{\infty} \int_{0}^{\epsilon} d t \\
& =\|\phi\|_{\infty} \epsilon
\end{aligned}
$$

This shows that $\Lambda_{K_{\epsilon}} \rightarrow \Lambda_{k}$ in $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$, with the weak-* topology. It is a fact that for any multi-index, $E \mapsto D^{\alpha} E$ is continuous $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$, and hence $\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}} \rightarrow\left(D_{t}-\Delta\right) \Lambda_{k}$ in $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$. Therefore, to prove the theorem it suffices to prove that $\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}} \rightarrow \delta$ (because $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ with the weak-* topology is Hausdorff).

Let $\phi \in \mathscr{D}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$. Doing integration by parts,

$$
\begin{aligned}
\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}}(\phi)= & \Lambda_{K_{\epsilon}}\left(\left(D_{t}-\Delta\right) \phi\right) \\
= & \int_{\mathbb{R}} \int_{\mathbb{R}^{n}} K_{\epsilon}(t, x)\left(D_{t} \phi(t, x)-\Delta \phi(t, x)\right) d x t x \\
= & \int_{\epsilon}^{\infty} \int_{\mathbb{R}^{n}} k(t, x) D_{t} \phi(t, x)-k(t, x) \Delta \phi(t, x) d x t x \\
= & \int_{\mathbb{R}^{n}}\left(k(\epsilon, x) \phi(\epsilon, x)-\int_{\epsilon}^{\infty} \phi(t, x) D_{t} k(t, x) d t\right) d x \\
& +\int_{\epsilon}^{\infty} \int_{\mathbb{R}^{n}} \phi(t, x) \Delta k(t, x) d x d t \\
= & \int_{\mathbb{R}^{n}} k(\epsilon, x) \phi(\epsilon, x) d x \\
& -\int_{\epsilon}^{\infty} \int_{\mathbb{R}^{n}} \phi(t, x)\left(D_{t}-\Delta\right) k(t, x) d t d x \\
= & \int_{\mathbb{R}^{n}} k(\epsilon, x) \phi(\epsilon, x) d x
\end{aligned}
$$

So, using $k_{t}(x)=k_{t}(-x)$ and writing $\phi_{t}(x)=\phi(t, x)$,

$$
\begin{aligned}
\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}}(\phi) & =\int_{\mathbb{R}^{n}} k_{\epsilon}(-x) \phi_{\epsilon}(x) d x \\
& =k_{\epsilon} * \phi_{\epsilon}(0) \\
& =k_{\epsilon} * \phi_{0}(0)+k_{\epsilon} *\left(\phi_{\epsilon}-\phi_{0}\right)(0)
\end{aligned}
$$

Using the definition of convolution, the second term is bounded by

$$
\sup _{x \in \mathbb{R}^{n}}\left|\phi_{\epsilon}(x)-\phi_{0}(x)\right|\left\|k_{\epsilon}\right\|_{1}=\sup _{x \in \mathbb{R}^{n}}\left|\phi_{\epsilon}(x)-\phi_{0}(x)\right|
$$

which tends to 0 as $\epsilon \rightarrow 0$. Because k is an approximate identity, $k_{\epsilon} * \phi_{0}(0) \rightarrow$ $\phi_{0}(0)$ as $\epsilon \rightarrow 0$. That is,

$$
\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}}(\phi) \rightarrow \phi_{0}(0)=\delta(\phi)
$$

as $\epsilon \rightarrow 0$, showing that $\left(D_{t}-\Delta\right) \Lambda_{K_{\epsilon}} \rightarrow \delta$ in $\mathscr{D}^{\prime}\left(\mathbb{R} \times \mathbb{R}^{n}\right)$ and completing the proof.

4 Functions of the Laplacian

This section is my working through of material in Folland. ${ }^{5}$ For $f \in \mathscr{S}_{n}$ and for any nonnegative integer k, doing integration by parts we get

$$
\mathscr{F}\left((-\Delta)^{k} f\right)(\xi)=\int_{\mathbb{R}^{n}}\left((-\Delta)^{k} f\right)(x) e^{-2 \pi i \xi x} d x=\left(4 \pi^{2}|\xi|^{2}\right)^{k}(\mathscr{F} f)(\xi), \quad \xi \in \mathbb{R}^{n}
$$

Suppose that P is a polynomial in one variable: $P(x)=\sum c_{k} x^{k}$. Then, writing $P(-\Delta)=\sum c_{k}(-\Delta)^{k}$, we have

$$
\begin{aligned}
\mathscr{F}(P(-\Delta) f)(\xi) & =\sum c_{k} \mathscr{F}\left((-\Delta)^{k} f\right)(\xi) \\
& =\sum c_{k}\left(4 \pi^{2}|\xi|^{2}\right)^{k}(\mathscr{F} f)(\xi) \\
& =(\mathscr{F} f)(\xi) P\left(4 \pi^{2}|\xi|^{2}\right)
\end{aligned}
$$

We remind ourselves that tempered distributions are elements of \mathscr{S}_{n}^{\prime}, i.e. continuous linear maps $\mathscr{S}_{n} \rightarrow \mathbb{C}$. The Fourier transform of a tempered distribution Λ is defined by $\widehat{\Lambda} f=(\mathscr{F} \Lambda) f=\Lambda \hat{f}, f \in \mathscr{S}_{n}$. It is a fact that the Fourier transform is an isomorphism of locally convex spaces $\mathscr{S}_{n}^{\prime} \rightarrow \mathscr{S}_{n}^{\prime}$. ${ }^{6}$

Suppose that $\psi:(0, \infty) \rightarrow \mathbb{C}$ is a function such that

$$
\Lambda f=\int_{\mathbb{R}^{n}} f(\xi) \psi\left(4 \pi^{2}|\xi|^{2}\right) d \xi, \quad f \in \mathscr{S}_{n}
$$

is a tempered distribution. We define $\psi(-\Delta): \mathscr{S}_{n} \rightarrow \mathscr{S}_{n}^{\prime}$ by

$$
\psi(-\Delta) f=\mathscr{F}^{-1}(\hat{f} \Lambda), \quad f \in \mathscr{S}_{n}
$$

Define $\check{f}(x)=f(-x)$; this is not the inverse Fourier transform of f, which we denote by \mathscr{F}^{-1}. As well, write $\tau_{x} f(y)=f(y-x)$. For $u \in \mathscr{S}_{n}^{\prime}$ and $\phi \in \mathscr{S}_{n}$, we define the convolution $u * \phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by

$$
(u * \phi)(x)=u\left(\tau_{x} \check{\phi}\right), \quad x \in \mathbb{R}^{n}
$$

One proves that $u * \phi \in C^{\infty}\left(\mathbb{R}^{n}\right)$, that

$$
D^{\alpha}(u * \phi)=\left(D^{\alpha} u\right) * \phi=u *\left(D^{\alpha} \phi\right)
$$

[^2]for any multi-index, that $u * \phi$ is a tempered distribution, that $\mathscr{F}(u * \phi)=\hat{\phi} \hat{u}$, and that $\hat{u} * \hat{\phi}=\mathscr{F}(\phi u) .{ }^{7}$

We can also write $\psi(-\Delta)$ in the following way. There is a unique $\kappa_{\psi} \in \mathscr{S}_{n}^{\prime}$ such that

$$
\mathscr{F} \kappa_{\psi}=\Lambda .
$$

For $f \in \mathscr{S}_{n}$, we have $\mathscr{F}\left(\kappa_{\psi} * f\right)=\hat{f} \hat{\kappa}_{\psi}=\hat{f} \Lambda$, but, using the definition of $\psi(-\Delta)$ we also have $\mathscr{F}(\psi(-\Delta) f)=\mathscr{F} \mathscr{F}^{-1}(\hat{f} \Lambda)=\hat{f} \Lambda$, so

$$
\kappa_{\psi} * f=\psi(-\Delta) f
$$

Moreover, $\kappa_{\psi} * f \in C^{\infty}\left(\mathbb{R}^{n}\right)$; this shows that $\psi(-\Delta) f$ can be interpreted as a tempered distribution or as a function. We call κ_{ψ} the convolution kernel of $\psi(-\Delta)$.

For a fixed $t>0$, define $\psi(s)=e^{-t s}$. Then $\Lambda: \mathscr{S}_{n} \rightarrow \mathbb{C}$ defined by

$$
\Lambda f=\int_{\mathbb{R}^{n}} f(\xi) \psi\left(4 \pi^{2}|\xi|^{2}\right) d \xi=\int_{\mathbb{R}^{n}} f(\xi) \exp \left(-4 \pi^{2}|\xi|^{2} t\right) d \xi=\int_{\mathbb{R}^{n}} f(\xi) \hat{k}_{t}(\xi) d \xi
$$

is a tempered distribution. Using the Plancherel theorem, we have

$$
\Lambda f=\int_{\mathbb{R}^{n}} \hat{f}(\xi) k_{t}(\xi) d \xi
$$

With $\kappa_{\psi} \in \mathscr{S}_{n}^{\prime}$ such that $\mathscr{F} \kappa_{\psi}=\Lambda$, we have

$$
\Lambda f=\left(\mathscr{F} \kappa_{\psi}\right)(f)=\kappa_{\psi}(\hat{f})
$$

Because $f \mapsto \hat{f}$ is a bijection $\mathscr{S}_{n} \rightarrow \mathscr{S}_{n}$, this shows that for any $f \in \mathscr{S}_{n}$ we have

$$
\kappa_{\psi}(f)=\int_{\mathbb{R}^{n}} f(\xi) k_{t}(\xi) d \xi
$$

Hence,

$$
\begin{equation*}
e^{t \Delta} f=\kappa_{\psi} * f=k_{t} * f, \quad t>0, f \in \mathscr{S}_{n} \tag{1}
\end{equation*}
$$

Suppose that $\phi:(0, \infty) \rightarrow \mathbb{C}$ and $\omega:(0, \infty) \rightarrow(0, \infty)$ are functions and that

$$
\psi(s)=\int_{0}^{\infty} \phi(\tau) e^{-s \omega(\tau)} d \tau, \quad s>0
$$

Manipulating symbols suggests that it may be true that

$$
\psi(-\Delta)=\int_{0}^{\infty} \phi(\tau) e^{\omega(\tau) \Delta} d \tau
$$

and then, for $f \in \mathscr{S}_{n}$,

$$
\psi(-\Delta) f=\int_{0}^{\infty} \phi(\tau) e^{\omega(\tau) \Delta} f d \tau=\int_{0}^{\infty} \phi(\tau)\left(k_{\omega(\tau)} * f\right) d \tau
$$

[^3]and hence
\[

$$
\begin{equation*}
\kappa_{\psi}(x)=\int_{0}^{\infty} \phi(\tau) k_{\omega(\tau)}(x) d \tau, \quad x \in \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

\]

Take $\psi(s)=s^{-\beta}$ with $0<\operatorname{Re} \beta<\frac{n}{2}$. Because $\operatorname{Re} \beta<\frac{n}{2}$, one checks that

$$
\Lambda f=\int_{\mathbb{R}^{n}} f(\xi)\left(4 \pi^{2}|\xi|^{2}\right)^{-\beta} d \xi
$$

is a tempered distribution. As $\operatorname{Re} \beta>0$, we have

$$
s^{-\beta}=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-s \tau} d \tau
$$

and writing $\phi(\tau)=\frac{\tau^{\beta-1}}{\Gamma(\beta)}$ and $\omega(\tau)=\tau$, we suspect from (2) that the convolution kernel of $(-\Delta)^{-\beta}$ is

$$
\kappa_{\psi}(x)=\int_{0}^{\infty} \frac{\tau^{\beta-1}}{\Gamma(\beta)} k_{\tau}(x) d \tau
$$

which one calculates is equal to

$$
\begin{equation*}
\frac{\Gamma\left(\frac{n}{2}-\beta\right)}{\Gamma(\beta) 4^{\beta} \pi^{n / 2}|x|^{n-2 \beta}} . \tag{3}
\end{equation*}
$$

What we have written so far does not prove that this is the convolution kernel of $(-\Delta)^{-\beta}$ because it used (2), but it is straightforward to calculate that indeed the convolution kernel of $(-\Delta)^{-\beta}$ is (3). This calculation is explained in an exercise in Folland. ${ }^{8}$

Taking $\alpha=2 \beta$ and defining

$$
R_{\alpha}(x)=\frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right) 2^{\alpha} \pi^{n / 2}|x|^{n-\alpha}}, \quad 0<\operatorname{Re} \alpha<n, x \in \mathbb{R}^{n}
$$

we call R_{α} the Riesz potential of order α. Taking as granted that (3) is the convolution kernel of $(-\Delta)^{-\beta}$, we have

$$
(-\Delta)^{-\alpha / 2} f=R_{\alpha} * f, \quad f \in \mathscr{S}_{n}
$$

Then, if $n>2$ and $\alpha=2$ satisfies $0<\operatorname{Re} \alpha<n$, we work out that

$$
R_{2}(x)=\frac{1}{(n-2) \omega_{n}|x|^{n-2}},
$$

where $\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$, and hence

$$
(-\Delta)^{-1} f=R_{2} * f, \quad f \in \mathscr{S}_{n}
$$

[^4]and applying $-\Delta$ we obtain
$$
f=-\Delta\left(R_{2} * f\right)=\left(-\Delta R_{2}\right) * f
$$
hence $-\Delta R_{2}=\delta$. That is, R_{2} is the fundamental solution for $-\Delta$.
Suppose that $\operatorname{Re} \beta>0$. Then, using the definition of $\Gamma(\beta)$ as an integral, with $\psi(s)=(1+s)^{-\beta}$, we have
$$
\psi(s)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-(1+s) \tau} d \tau, \quad s>0
$$

Manipulating symbols suggests that

$$
\psi(-\Delta)=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau} e^{\tau \Delta} d \tau
$$

and using (1), assuming the above is true we would have for all $f \in \mathscr{S}_{n}$,

$$
\psi(-\Delta) f=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau} e^{\tau \Delta} f d \tau=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau}\left(k_{\tau} * f\right) d \tau
$$

whose convolution kernel is

$$
\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} \tau^{\beta-1} e^{-\tau} k_{\tau} d \tau
$$

We write $\alpha=2 \beta$ and define, for $\operatorname{Re} \alpha>0$,

$$
B_{\alpha}(x)=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)(4 \pi)^{n / 2}} \int_{0}^{\infty} \tau^{\frac{\alpha-n}{2}-1} e^{-\tau-\frac{|x|^{2}}{4 \tau}} d \tau, \quad x \neq 0
$$

We call B_{α} the Bessel potential of order α. It is straightforward to show, and shown in Folland, that $\left\|B_{\alpha}\right\|_{1}<\infty$, so $B_{\alpha} \in L^{1}\left(\mathbb{R}^{n}\right)$. Therefore we can take the Fourier transform of B_{α}, and one calculates that it is

$$
\widehat{B}_{\alpha}(\xi)=\left(1+4 \pi^{2}|\xi|^{2}\right)^{-\alpha / 2}, \quad \xi \in \mathbb{R}^{n}
$$

and then

$$
\psi(-\Delta)=(1-\Delta)^{-\alpha / 2} f=B_{\alpha} * f, \quad f \in \mathscr{S}_{n}
$$

5 Gaussian measure

If μ is a measure on \mathbb{R}^{n} and $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a function such that for every $x \in \mathbb{R}^{n}$ the integral $\int_{\mathbb{R}^{n}} f(x-y) d \mu(y)$ converges, we define the convolution $\mu * f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by
$(\mu * f)(x)=\mu\left(\tau_{x} \check{f}\right)=\int_{\mathbb{R}^{n}}\left(\tau_{x} \check{f}\right)(y) d \mu(y)=\int_{\mathbb{R}^{n}} \check{f}(y-x) d \mu(y)=\int_{\mathbb{R}^{n}} f(x-y) d \mu(y)$.
Let ν_{t} be the measure on \mathbb{R}^{n} with density k_{t}. We call ν_{t} Gaussian measure. It satisfies

$$
\nu_{t} * f(x)=\int_{\mathbb{R}^{n}} f(x-y) d \nu_{t}(y)=\int_{\mathbb{R}^{n}} f(x-y) k_{t}(y) d y=f * k_{t}(x), \quad x \in \mathbb{R}^{n}
$$

[^0]: ${ }^{1} k_{1}$, and any k_{t}, belong merely to \mathscr{S}_{n} and not to $\mathscr{D}\left(\mathbb{R}^{n}\right)$, which is demanded in the definition of an approximate identity in Rudin's Functional Analysis, second ed.
 ${ }^{2}$ Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 11, Theorem 0.14.
 ${ }^{3}$ Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 144, Theorem 4.4.

[^1]: ${ }^{4}$ Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 146, Theorem 4.6.

[^2]: ${ }^{5}$ Gerald B. Folland, Introduction to Partial Differential Equations, second ed., pp. 149-152, §4B.
 ${ }^{6}$ Walter Rudin, Functional Analysis, second ed., p. 192, Theorem 7.15.

[^3]: ${ }^{7}$ Walter Rudin, Functional Analysis, second ed., p. 195, Theorem 7.19.

[^4]: ${ }^{8}$ Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 154, Exercise 1.

