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1 Notation

For f € L'(R"), we define f:R" = C by

FE=(FNE = [ flaje e, EeR"

Rn

The statement of the Riemann-Lebesgue lemma is that f € Co(R™).
We denote by .#, the Fréchet space of Schwartz functions R™ — C.
If o is a multi-index, we define

« o] «
D :D11~--Dn”,

1 a1 1 Qn
D, :i—|a\Da _ (D1> (Dn> ;
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A=D?+-.-+ D2

and

2 The heat equation
Fix n, and for t > 0, x € R™, define

jz?

k() = k(t, ) = (4nt) "™/ ? exp (—Z“) .

We call k the heat kernel. It is straightforward to check for any ¢ > 0 that
ki € ./,. The heat kernel satisfies

Eo(z) = Y2k (¢ %),  t>0,2 € R™.

For a > 0 and f(z) = e~mall® it is a fact that f(é) = a~"/2e=mIE1"/a Using
this, for any ¢t > 0 we get

k(€)= e e Rm



Thus for any ¢ > 0,
]Rn

Then the heat kernel is an approximate identity: if f € LP(R"), 1 < p < o0,
then || f *xk: — f|l, = 0 as t — 0, and if f is a function on R™ that is bounded
and continuous, then for every x € R", f * ky(z) — f(z) as t — 0.} For each
t > 0, because k; € ., we have f xk; € C°(R"), and D(f x k) = f * D%
for any multi-index c.2

The heat operator is D; — A and the heat equation is (D; — A)u = 0.
It is straightforward to check that

(D¢ — A)k(t,z) =0, t>0,z R,

that is, the heat kernel is a solution of the heat equation.

To get some practice proving things about solutions of the heat equation,
we work out the following theorem from Folland.® In Folland’s proof it is not
apparent how the hypotheses on u and D, are used, and we make this explicit.

Theorem 1. Suppose that u : [0,00) x R"® — C is continuous, that u is C? on
(0,00) X R™, that

(D — A)u(t,x) =0, t>0,2z R
and that uw(0,2) = 0 for x € R™. If for every € > 0 there is some C such that
lu(t, z)| < Ceclel’, IDyu(t, )| < Ce™* >0,z R,
then u = 0.

Proof. If f and g are C? functions on some open set in R x R", such as (0, c0) x
R"”, then

g0 f = Af) + f(Dg+Dg) = 0(fg)—g> 03f+ 1Y dg
j=1 j=1

= 0(f9)+ Y 0;(f0;9 - 99;f)
=1
= din)$F,

where

F = (fg,fo1g—gorf,...,fong — gOnf).

k1, and any k¢, belong merely to .%, and not to 2(R™), which is demanded in the definition
of an approximate identity in Rudin’s Functional Analysis, second ed.

2Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 11, The-
orem 0.14.
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Take tg > 0, xo € R™, and let f(¢,2) = u(t,z) and g(¢,x) = k(to — t, 2 — x0)
fort >0, x € R". Let 0 <a<b<tyandr >0, and define

Q={(t,z) : |z] <r,a<t<b}.

In Q we check that (0 — A)f = 0 and (9 + A)g = 0, so by the divergence
theorem,

/ F~1/:/divth:/g(@tffAf)an(athrAg):/g-0+f-0:0.
o0 Q Q Q
On the other hand, as

O ={(b,z): |z| <r}U{(a,z): |z| <r}U{(t,z):a <t <b|z|=r},

we have

/ F-v = / F(b,x)~(1,(),...,())dx+/ F(a,z)-(-1,0,...,0)dz
o0 |z|<r |z|<r

b
+// F(t,z)-%da(az)t”*ldt
a Jl|z|=r

= b,x)g(b, x)dx — a,x)g(a,r)dx
/Iqu( bt~ [ fla)glan)

|z|<r

//|_ Zfagg 90, )(t,2) L do (@)t

= / u(b, x)k(to — byx — xo)dx — / u(a, 2)k(to — a,x — xo)dx
lz|<r

|z|<r

/ /|w - u(t, )d;k(to — t,2 — o)

—k(to —t,x — xo)aju(t, x)) %do(x)t"’ldt,

where o is surface measure on {|z| = r} = rS" 1. As r — oo, the first two
terms tend to

/n u(b, )kty—p(x — x0)dx = /n u(b, )k, —p(xo — x)dx = u(b, ) * kty—p(x0)
and

/n w(a, )kiy—a(x — xg)da = /n u(a, )kiy—q(xo — x)dx = u(a, ) * kty—a(To)

respectively. Let € < m, and let C be as given in the statement of the

theorem Using 9;k(t,z) = —5+k(t, x), for any r > 0 the third term is bounded

// C er® m0| (toft,xf:vo)+I<;(t0ft,xfxO)Ce"2)da(x)t”*1dt,
|z|=r



which is bounded by

o[ e () ntom e (g ot

and writing n = m —¢€and w, = Igzrn/Q)’ the surface area of the sphere of
radius 1 in R”, this is equal to

|l‘0|—|—’l‘

(b— a)"7"”_1wnC'e_m"2 ( + 1) (4r(to — b))_n/Q,

which tends to 0 as r — co. Therefore,

u(b, ) * kyy—p(x0) = ula, ) * kiy—a(x0).

One checks that as b — to, the left-hand side tends to wu(to,zo), and that as
a — 0, the right-hand side tends to u(0,z¢) = 0. Therefore,

U(to, (130) =0.

This is true for any tg > 0, g € R™, and as u : [0,00) x R™ — C is continuous,
it follows that w is identically 0. O

3 Fundamental solutions

We extend k to R x R™ as
—-n ‘27‘2 n
Kt ) = (4mt)~"/2 exp <_Tt) t>0,z€eR
0 t <0,z € R™
This function is locally integrable in R x R™, so it makes sense to define Ay €
2'(R x R™) by
A = / o(t, 2)k(t, z)dzdt, o€ DR xR").
R JR"

Suppose that P is a polynomial in n variables:

g) = Z Ca§ Z Cag o an

We say that E € 2'(R") is a fundamental solution of the differential operator

D)= caDa =Y cui 1*D*

if P(D)E = 4. If E = Ay for some locally integrable f, Ay¢ = [, ¢(z)f(x)dx,
we also say that the function f is a fundamental solution of the differential
operator P(D). We now prove that the heat kernel extended to R x R™ in the
above way is a fundamental solution of the heat operator.*

4Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 146,
Theorem 4.6.



Theorem 2. Ay is a fundamental solution of Dy — A.

Proof. For € > 0, define K (t,2) = k(t,x) if t > ¢ and K.(t,2) = 0 otherwise.
For any ¢ € (R x R"),

n n

k(t,x) — K.(t,2))o(t, m)dmdt‘

k(t, x)o(t, w)dxdt‘

IN

1]l / k(t, x)ddt
R’V‘L

e / dat

= ¢lle.

This shows that A, — Ay in 2/(R x R™), with the weak-* topology. It is a fact
that for any multi-index, F +— D*FE is continuous 2'(R x R") — 2'(R x R"),
and hence (Dy — A)Ag, — (Dy — A)Ay, in Z'(R x R™). Therefore, to prove the
theorem it suffices to prove that (D; — A)Ag, — § (because 2’'(R x R™) with
the weak-* topology is Hausdorff).

Let ¢ € 2(R x R™). Doing integration by parts,

(Di = A)Ak (¢) = Ak ((De—A)9)
= / K (t,2)(Dip(t, ) — Ag(t, z))dxtx

RTL
/ / (t,z)Dip(t, z) — k(t,2)Ad(t, z)dxtx

[ (Mot~ [~ ote.a Do) do

+ / B(t, ©)Ak(t, x)dzdt
€ Rn

/ k(e,@)éle.x)de

_ / T bt ) Dy — Ak(t 2)dtda
€ R

k(e, x)o (e, x)dz.

RTL
So, using ki(x) = ki(—2) and writing ¢¢(x) = ¢(t, x),
(D= DAk @) = [ k(-2)s.(w)is

- ke *¢6(0)
= ke * ¢o(0) + ke * (de — ¢0)(0).

Using the definition of convolution, the second term is bounded by

sup |pe(x) — go(@)|l|kel1 = sup |pe(x) — go(),
xeR™ zeR™



which tends to 0 as e — 0. Because k is an approximate identity, k. * ¢o(0) —
¢0(0) as € — 0. That is,

(Dt — A)Ak. (¢) = ¢o(0) = 6(¢)
as € — 0, showing that (D; — A)Ax, — 0 in (R x R™) and completing the

proof. O
4 Functions of the Laplacian

This section is my working through of material in Folland.> For f € .#, and
for any nonnegative integer k, doing integration by parts we get

F(=A)f)E) = /n((—A)kf)(x)e_z”ig’”dw = (@r’ g (7 f)e),  €eR™

Suppose that P is a polynomial in one variable: P(z) = 3 cxz*. Then, writing
P(=A) =Y ci(—=A)*, we have

F(P(=2)1)(E)

> (D) )E)
= ch(47r2\§|2)k(3zf)(f)
= (ZNHEOPAT|E).

We remind ourselves that tempered distributions are elements of .7,
i.e. continuous linear maps ., — C. The Fourier transform of a tempered
distribution A is defined by Af = (FA)f = Af, f € .%,. It is a fact that the
Fourier transform is an isomorphism of locally convex spaces .¥,, — ...

Suppose that v : (0,00) — C is a function such that

Af= [ fvriEP)de,  fe S,
R?’T,
is a tempered distribution. We define (—A) : ., — .7, by

w(_A)f:y_l(fA>7 feyn
Define f(x) = f(—z); this is not the inverse Fourier transform of f, which
we denote by Z 1. As well, write 7, f(y) = f(y — z). For u € ¥} and ¢ € .7,
we define the convolution u * ¢ : R® — C by
(u* ¢)(z) = u(rpd), x € R™
One proves that u x ¢ € C°°(R"™), that
D(ux* @) = (D%) x ¢ = ux (D)

5Gerald B. Folland, Introduction to Partial Differential Equations, second ed., pp. 149-152,
§4B.
SWalter Rudin, Functional Analysis, second ed., p. 192, Theorem 7.15.




for any multi-index, that u * ¢ is a tempered distribution, that .# (u x ¢) = b,
and that @ ¢ = .Z (¢u).”

We can also write )(—A) in the following way. There is a unique £y € .7,
such that

fﬁw =A.
For f € .7, we have .Z (ky >kf) f/%w = fA, but, using the definition of Y(—A)
we also have Z(Y(—A)f) =.Z.F L(fA) = fA, so
Ky * f=0(=A)f.

Moreover, Ky * f € C°(R"); this shows that ¥(—A)f can be interpreted as a
tempered distribution or as a function. We call £, the convolution kernel of

(=A4).
For a fixed t > 0, define ¥(s) = e *. Then A : .#,, — C defined by

Af = /f P(An?|¢[?)de = /f ) exp (—dn2[€[%t) dE = /f )k (€)de

is a tempered distribution. Using the Plancherel theorem, we have

Af = | f(Oke(€)de.

Rn

With kg € ) such that Fry = A, we have

Af = (Frp)(f) = ry(f)-

Because f — f is a bijection .#, — .7, this shows that for any f € .7, we
have

wof) = | FER(€)de

Hence,
P f=kyxf=kxf,  t>0,f€.F. (1)

Suppose that ¢ : (0,00) = C and w : (0,00) — (0, 00) are functions and that

o)
s) = / o(r)e *“Mdr, s> 0.
0

Manipulating symbols suggests that it may be true that

= [ s,
0
and then, for f € .7,

_A)f = / $(r)e“ A fdr = / () (ko) * f)dr

"Walter Rudin, Functional Analysis, second ed., p. 195, Theorem 7.19.




and hence

Ky(x) = /000 () ke (ry (2)dT, r e R". (2)

Take 1(s) = s with 0 < Re 3 < Z. Because Re 8 < Z, one checks that

A= [ O de
is a tempered distribution. As Re 8 > 0, we have

1 o0
sh = —/ P=le=dr
0

and writing ¢(7) = }i—;) and w(7) = 7, we suspect from (2) that the convolution

kernel of (—A)78 is

which one calculates is equal to

(5 —5)
D) Plal 2

(3)

What we have written so far does not prove that this is the convolution kernel
of (—A)™# because it used (2), but it is straightforward to calculate that indeed
the convolution kernel of (—A)~# is (3). This calculation is explained in an
exercise in Folland.®

Taking o = 28 and defining
r(*3%)

Ra(l') = T (%) 2a7rn/2|x|nfa’

0 <Rea <n,z e R,

we call R, the Riesz potential of order . Taking as granted that (3) is the
convolution kernel of (—A)~™#, we have

(~A)"2f =Ry xf, f€Fn

Then, if n > 2 and a = 2 satisfies 0 < Rea < n, we work out that

1

) B

n/2
where w,, = %, and hence

(~A)'f=Roxf, feS,

8Gerald B. Folland, Introduction to Partial Differential Equations, second ed., p. 154,
Exercise 1.




and applying —A we obtain
f=—-ARe* f) = (-ARz) * [,

hence —ARy = 6. That is, Ry is the fundamental solution for —A.
Suppose that Re 8 > 0. Then, using the definition of I'(3) as an integral,
with ¥(s) = (14 5)7#, we have

1 o0
P(s) = —/ A te ()7 s> 0.

L(B) Jo
Manipulating symbols suggests that
1 oo
Y(=A) = —/ P le e A dr,
I'(8) Jo
and using (1), assuming the above is true we would have for all f € .7,
1 * 1 >
Y(=A)f = —/ P e Te™A fdr = —/ P~ Ye " (ky % f)dr,
r'(B) Jo r'(B) Jo

whose convolution kernel is

1 /OO -1 —
—_— 7 e Tk, drT.
I'(8) Jo

We write @ = 23 and define, for Rea > 0,

1 © ain |22
B, - 7 le= T I ¢ , 0.
(z) (@) am) 2 /0 T e T T #

We call B, the Bessel potential of order a. It is straightforward to show, and
shown in Folland, that ||B,|1 < oo, so B, € L'(R™). Therefore we can take
the Fourier transform of B, and one calculates that it is

Bo(6) = (L +4n2¢)™/2,  ceR",

and then
Y(=A)=(1—-A)"2f=B,xf,  feI.

5 (Gaussian measure

If o is a measure on R™ and f : R™ — C is a function such that for every
x € R™ the integral [, f(z — y)du(y) converges, we define the convolution
pwx f:R* = C by

(1) (@) = plr f) = /

Let v; be the measure on R™ with density k;. We call 1, Gaussian measure.
It satisfies

v x f(z) = (x—y)dn(y) = | flx—yk(y)dy=fxk(z), xeR™

Rn Rn

(o) (W)dp(y) = . Ffly—a)duly) = . flz—y)du(y).

n



