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1 Example of free particle in one dimension

Define L(q, v) = m
2 v

2, where m is a nonzero constant. Fixing two times t0 < t1,
we define the action for a path γ in R by

S(γ) =

∫ t1

t0

L(γ(t), γ̇(t))dt

=
m

2

∫ t1

t0

(γ̇(t))2dt.

Suppose that γ is satisfies the Euler-Lagrange equation for the Lagrangian L.
That is,

d

dt

(
∂L

∂v
(γ(t), γ̇(t))

)
− ∂L

∂q
(γ(t), γ̇(t)) = 0,

and here ∂L
∂v = mv and ∂L

∂q = 0, so

d

dt
(mγ̇(t)) = 0,

i.e.
mγ̈(t) = 0,

so γ̈(t) = 0, and hence γ(t) = at + b for some constants a, b. If we are given
the conditions γ(t0) = q0 and γ(t1) = q1, then a solution of the Euler-Lagrange
equation that satisfies these conditions must be

γ(t) = q0 +
q1 − q0
t1 − t0

(t− t0).

The action of this path is

S(γ) =
m

2

∫ t1

t0

(
q1 − q0
t1 − t0

)2

dt =
m

2

(q1 − q0)
2

t1 − t0
.

The dimensions of the right hand side are

kgm2 s−1 = kgm s−2 ms = Nms = J s,
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which are indeed the dimensions that action ought to have. If instead of talking
about action that is a function of paths we talk about action that is a function
of the end point of a motion and the time at which the motion ends, taking the
time and location at which the motion starts as fixed, then

S(q, t) =
m

2

(q − q0)
2

t− t0
,

for which
∂S

∂q
= m

q − q0
t− t0

and
∂S

∂t
= −m

2

(q − q0)
2

(t− t0)2
.

These satisfy

∂S

∂t
+

1

2m

(
∂S

∂q

)2

= 0.

If we write

H(q, p) =
p

m

∂L

∂v

(
q,
p

m

)
− L

(
q,
p

m

)
=

p

m
·m · p

m
− m

2

( p
m

)2
=

p2

2m
.

Then,
∂S

∂t
(q, t) +H

(
q,
∂S

∂q
(q, t)

)
= 0.

2 Motivation for the Hamilton-Jacobi equation

Suppose that γ is a path that satisfies the Euler-Lagrange equation for some
Lagrangian L. If we perturb the path to start at the same position at time t0 but
to end at q + δq instead of at q, then the perturbed path is s 7→ γ(s) + (δγ)(s),
where (δγ)(0) = 0 and (δγ)(t) = δq. Then, first doing a Taylor approximation
in which we drop all powers of δγ or δγ̇ higher than the first and then using the
Euler-Lagrange equation, and using Einstein summation notation,

S(γ + δγ)− S(γ) =

∫ t

t0

L(γ + δγ, γ̇ + δγ̇)− L(γ, γ̇)ds

=

∫ t

t0

∂L

∂qi
(γ, γ̇)δγi +

∂L

∂vi
(γ, γ̇)δγ̇ids

=

∫ t

t0

(
d

dt

∂L

∂vi
(γ, γ̇)

)
δγi +

∂L

∂vi
(γ, γ̇)δγ̇ids

=

∫ t

t0

d

dt

(
∂L

∂vi
(γ, γ̇)δγi

)
ds

=
∂L

∂vi
(γ(t), γ̇(t))(δγi)(t)−

∂L

∂vi
(γ(t0), γ̇(t0))(δγi)(t0)

=
∂L

∂vi
(γ(t), γ̇(t))δq.
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We have not been precise about what we mean by perturbing a path, but what
we have obtained suggests that if we think of S as a function of the endpoint of
a path and the time at which the path ends rather than as a function of a path
itself, we have

∂S

∂qi
=
∂L

∂vi
(γ(t), γ̇(t)) = pi(t).

If on the other hand we fix the point q at which a path ends and change
the time at which it arrives at this point from t to t+ δt, then, doing a Taylor
expansion and dropping all powers of δt higher than the first,

γ(t+ δt)− γ(t) = γ̇(t)δt.

But γ(t+ δt) = q, so
γ(t) = q − γ̇(t)δt.

Then

δS = Lδt− ∂L

∂vi
viδt.

Defining H = ∂L
∂vi

vi − L, what we have done suggests that

∂S

∂t
= −H.

Then, using ∂S
∂qi

= pi, with which H(q, p) = H
(
q, ∂S∂q

)
, and using ∂S

∂t =

−H(q, p), we have
∂S

∂t
+H

(
q,
∂S

∂q

)
= 0.

We call this equation the Hamilton-Jacobi equation.
To precisely sort out where the Hamilton-Jacobi equation comes from and

what it means, the only place I can imagine that does an adequate job is Abra-
ham and Marsden.1 Certainly there are other sources that present this more
precisely than I have presented it, but it is almost universal to thoughtlessly
confound the variables on which H or S depends with paths; that is, to write
things like ∂H

∂q and also to think of q not as a point but rather as a path which
for each time goes through a particular point, in which case one has no certain
way of knowing whether dq

dt = 0, as is the case for the derivative of any fixed

point, or to say that q is a path and that dq
dt is a tangent vector at the point q(t)

on the path. If one plainly states that what one has said is only suggestive of
how symbols work together then one does not need to apologize for the absence
of precision, but there is a foul area between suggestive symbol manipulation
and actual precision in which one tricks oneself into believing that one has given
a precise presentation, and this is the path followed by some presentations of
the Hamilton-Jacobi equation.

1Abraham and Marsden, Foundations of Mechanics, second ed.
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3 Harmonic oscillator

Let

H =
p2

2m
+

1

2
mω2q2.

The Hamilton-Jacobi equation for this Hamiltonian is

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+
1

2
mω2q2 = 0.

We set S(q, t) = S0(q)−Et; for this to make sense presumes that there is in fact
a constant E and a function S0 so that S(q, t)− S0(q) depends just on t. With
this, ∂S

∂q = ∂S0

∂q and ∂S
∂t = −E, and so the Hamilton-Jacobi equation becomes

−E +
1

2m

(
∂S0

∂q

)2

+
1

2
mω2q2 = 0,

or
1

2m

(
∂S0

∂q

)2

+
1

2
mω2q2 = E.

Supposing that S0 is nonnegative we get

∂S0

∂q
(q) =

√
2mE −m2ω2q2,

a primitive of which is

S0 =

∫ √
2mE −m2ω2q2dq

=
E

ω

arcsin
mωq√
2mE

+
mωq√
2mE

√
1−

(
mωq√
2mE

)2


for which
∂S0

∂E
=

1

ω
arcsin

mωq√
2mE

.

But ∂S0

∂E = t (using the expression involving S and Et), so ωt = arcsin mωq√
2mE

,

hence

sin(ωt) =

√
mωq√
2E

,

and therefore

q =

√
2E

mω2
sin(ωt).

As well,

p =
∂S

∂q
=
∂S0

∂q
=
√

2mE −m2ω2q2,
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and using the above expression for q this becomes

p =

√
2mE −m2ω2

2E

mω2
sin2(ωt) =

√
2mE − 2mE sin2(ωt).

We have thus written q and p as functions of E and t. Since for a particu-
lar trajectory the energy is fixed, on a particular trajectory the position and
momentum have thus been expressed as functions of t.

4 Schrödinger equation

Write

iℏ
∂ψ

∂t
= Hψ,

called the Schrödinger equation. If H(q, p) = p2

2m + V (q), and p = −iℏ∇, then
p2 = −ℏ2∆ and the Schrödinger equation is

iℏ
∂ψ

∂t
= − ℏ2

2m
∆ψ + V (q)ψ.

Supposing that there is a solution ψ of the form ψ = ei
S
ℏ , we get

iℏei
S
ℏ
i

ℏ
∂S

∂t
= − ℏ2

2m

∂

∂q

(
ei

S
ℏ
i

ℏ
∂S

∂q

)
+ V (q)ei

S
ℏ

= − ℏ2

2m

(
ei

S
ℏ

(
i

ℏ
∂S

∂q

)2

+ ei
S
ℏ
i

ℏ
∂2S

∂q2

)
+ V (q)ei

S
ℏ .

Diving both sides by ei
S
ℏ gives

−∂S
∂t

=
1

2m

(
∂S

∂q

)2

− iℏ
2m

∂2S

∂q2
+ V (q).

Taking ℏ → 0 yields the equation

−∂S
∂t

=
1

2m

(
∂S

∂q

)2

+ V (q) = H

(
q,
∂S

∂q

)
,

which is the Hamilton-Jacobi equation.
The above derivation of the Hamilton-Jacobi equation from the Schrödinger

equation is suggestive symbol manipulation. Rather than stating that we assume
ψ = ei

S
ℏ , I could have written that we “make an Ansatz”; “ein Ansatz” means

“an approach”, and is used to mean a guess which may work out. Of course,
if there is some problem for which one knows there is a unique solution and
we find an explicit solution starting from some unjustified assumption, then
we don’t need to have justified the assumption because we can explicitly check
that what we have found is a solution. But this is the only situation where
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there is precision to “making an Ansatz”. Otherwise, to talk about an Ansatz
is a sophisticated sounding way of saying “we make an assumption”, and after
making this assumption we have no guarantee that anything we end up with
need make any sense. This does not mean that it is useless to make unjustified
assumptions; but it is deceitful to smuggle Ansätze into the realm of proved
things, and confuses those who later would rely on one’s work.
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