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1 Gradients

Let (X, ⟨·, ·⟩) be a real Hilbert space. The Riesz representation theorem says
that the mapping

Φ(x)(y) = ⟨y, x⟩ , Φ : X → X∗,

is an isometric isomorphism. Let U be a nonempty open subset of X and let
f : U → R be differentiable, with derivative f ′ : U → L (X;R) = X∗. The
gradient of f is the function grad f : U → X defined by

grad f = Φ−1 ◦ f ′.

Thus, for x ∈ U , grad f(x) is the unique element of X satisfying

⟨grad f(x), y⟩ = f ′(x)(y), y ∈ X. (1)

Because Φ−1 : X∗ → X is continuous, if f ∈ C1(U ;R) then grad f ∈ C(U ;X),
being a composition of two continuous functions.

For example, let T be a bounded self-adjoint operator on X and define
f : X → R by

f(x) =
1

2
⟨Tx, x⟩ , x ∈ X.

For x, h ∈ X,

f(x+ h)− f(x) =
1

2
⟨Tx, h⟩+ 1

2
⟨Th, x⟩+ 1

2
⟨Th, h⟩ = ⟨Tx, h⟩+ 1

2
⟨Th, h⟩ .

Thus

|f(x+ h)− f(x)− ⟨Tx, h⟩ | = 1

2
| ⟨Th, h⟩ | ≤ 1

2
∥T∥ ∥h∥2 = o(∥h∥),

which shows that f is differentiable at h, with f ′(x)(y) = ⟨Tx, y⟩. Thus by (1),
grad f(x) = Tx.

For example, let T ∈ L (X;X), let h ∈ X, and define f : X → R by

f(x) =
1

2
∥Tx− h∥2 , x ∈ X.

1



We calculate that

grad f(x) = T ∗Tx− T ∗h, x ∈ X.

For x0 ∈ X, define

ϕ(t) = exp(−tT ∗T )x0 +

∫ t

0

exp(−(t− s)T ∗T )T ∗hds, t ≥ 0.

It is proved1 that ϕ satisfies

ϕ′(t) = −(grad f)(ϕ(t)), ϕ(0) = x0.

For a function F : X → X, we say that F is L Lipschitz if

∥F (x)− F (y)∥ ≤ L ∥x− y∥ , x, y ∈ X.

The following is a useful inequality for functions whose gradients are Lipschitz.2

Lemma 1. If f : X → R is differentiable and grad f : X → X is L Lipschitz,
then

f(y) ≤ f(x) + ⟨grad f(x), y − x⟩+ L

2
∥y − x∥2 , x, y ∈ X.

Proof. Let h = y−x and define g : [0, 1] → R by g(t) = f(x+ th). By the chain
rule, for 0 < t < 1,

g′(t) = f ′(x+ th)(h) = ⟨grad f(x+ th), h⟩ .

Thus by the fundamental theorem of calculus,∫ 1

0

⟨grad f(x+ th), h⟩ dt =
∫ 1

0

g′(t)dt = g(1)−g(0) = f(x+h)−f(x) = f(y)−f(x),

and so, using the Cauchy-Schwarz inequality and the fact that grad f is L Lip-
schitz,

f(y)− f(x) =

∫ 1

0

⟨grad f(x+ th)− grad f(x) + grad f(x), h⟩ dt

= ⟨grad f(x), h⟩ dt+
∫ 1

0

⟨grad f(x+ th)− grad f(x), h⟩ dt

≤ ⟨grad f(x), h⟩+
∫ 1

0

∥grad f(x+ th)− grad f(x)∥ ∥h∥ dt

≤ ⟨grad f(x), h⟩+
∫ 1

0

L ∥th∥ ∥h∥ dt

= ⟨grad f(x), y − x⟩+ L

2
∥y − x∥2 ,

proving the claim.
1cf. J.W. Neuberger, A Sequence of Problems on Semigroups, p. 51, Problem 195.
2Juan Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Exam-

ples, p. 15, Lemma 1.30.
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2 Hessians

Let U be a nonempty open subset of X. We prove that if a function is C2 then
its gradient is C1.3

Theorem 2. Let U be an open subset of X. If f ∈ C2(U ;R), then grad f ∈
C1(U ;X), and

f ′′(x)(u)(v) = ⟨v, (grad f)′(x)(u)⟩ , x ∈ U, u, v ∈ X. (2)

Proof. That f is C2 means that f ′ : U → X∗ is C1. That is, for all x ∈ U , the
map f ′ : U → X∗ is continuous at x, there is f ′′(x) ∈ L (X;X∗) such that

∥f ′(x+ h)− f ′(x)− f ′′(x)(h)∥ = o(∥h∥), (3)

as h → 0, and the map x 7→ f ′′(x) is continuous U → L (X;X∗).
Let x ∈ U and let h ∈ X. Define ϕh ∈ X∗ by

ϕh(v) = f ′′(x)(h)(v), v ∈ X.

Define νx(h) = Φ−1(ϕh) ∈ X, thus

f ′′(x)(h)(v) = ⟨v, νx(h)⟩ , v ∈ X.

It is straightforward that νx is linear. Because Φ is an isometric isomorphism,

∥νx(h)∥ = ∥ϕh∥ = sup
∥v∥≤1

|ϕh(v)| = sup
∥v∥≤1

|f ′′(x)(h)(v)| ≤ ∥f ′′(x)∥ ∥h∥ ,

where (u, v) 7→ f ′′(x)(u)(v) is a bilinear form, with

∥f ′′(x)∥ = sup
∥u∥≤1,∥v∥≤1

|f ′′(x)(u)(v)|,

showing that νx : X → X is a bounded linear operator with ∥νx∥ ≤ ∥f ′′(x)∥.
For h such that x+ h ∈ U and for v ∈ X,

(f ′(x+ h)− f ′(x)− f ′′(x)(h))(v) = ⟨v, grad f(x+ h)− grad f(x)− νx(h)⟩ ,

so

∥f ′(x+ h)− f ′(x)− f ′′(x)(h)∥ = sup
∥v∥≤1

| ⟨v, grad f(x+ h)− grad f(x)− νx(h)⟩ |

= ∥grad f(x+ h)− grad f(x)− νx(h)∥ .

Thus by (3),

∥grad f(x+ h)− grad f(x)− νx(h)∥ = o(∥h∥)
3Rodney Coleman, Calculus on Normed Vector Spaces, p. 139, Theorem 6.5.
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as h → 0, and because νx ∈ L (X;X), this means that grad f : U → X is
differentiable at x, with (grad f)′(x) = νx. It remains to prove that x 7→ νx is
continuous U → L (X;X), namely that (grad f)′ is continuous. For x ∈ U and
for h with x+ h ∈ U ,

∥νx+h − νx∥ = sup
∥u∥≤1

∥νx+h(u)− νx(u)∥

= sup
∥u∥≤1

sup
∥v∥≤1

| ⟨v, νx+h(u)− νx(u)⟩ |

= sup
∥u∥≤1

sup
∥v∥≤1

|f ′′(x+ h)(u)(v)− f ′′(x)(u)(v)|

= ∥f ′′(x+ h)− f ′′(x)∥ ,

and because f ′′ is continuous on U we get that x 7→ νx is continuous on U ,
completing the proof.

If f ∈ C2(U ;R), we proved in the above theorem that grad f ∈ C1(U ;X).
We call the derivative of grad f the Hessian of f ,4

Hess f = (grad f)′, U → L (X;X),

and (2) then reads

f ′′(x)(u)(v) = ⟨v,Hess f(x)(u)⟩ , x ∈ U, u, v ∈ X.

Furthermore, it is a fact that if f ∈ C2(U ;R), then for each x ∈ U , the
bilinear form

(u, v) 7→ f ′′(x)(u)(v)

is symmetric.5 Thus, for x ∈ U and u, v ∈ X,

⟨v,Hess f(x)(u)⟩ = ⟨u,Hess f(x)(v)⟩ .

Now, using that ⟨·, ·⟩ is symmetric as X is a real Hilbert space, (Hess f(x))∗ ∈
L (X;X) satisfies

⟨u,Hess f(x)(v)⟩ = ⟨(Hess f(x))∗u, v⟩ = ⟨v, (Hess f(x))∗u⟩ .

so
⟨v,Hess f(x)(u)⟩ = ⟨v, (Hess f(x))∗u⟩ .

Because this is true for all v we have Hess f(x)(u) = (Hess f(x))∗u, and because
this is true for all u we have Hess f(x) = (Hess f(x))∗, i.e. Hess f(x) is self-
adjoint.

Theorem 3. If U is an open subset of X and f ∈ C2(U ;R), then for each
x ∈ U it is the case that Hess f(x) ∈ L (X;X) is self-adjoint.

4cf. R. A. Tapia, The differentiation and integration of nonlinear operators, pp. 45–101,
in Nonlinear Functional Analysis and Applications (Louis B. Rall, ed.)

5Serge Lang, Real and Functional Analysis, third ed., p. 344, Theorem 5.3.
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3 Critical points

For an open set U in X for k ≥ 1, and for f ∈ Ck+2(U ;R), we say that x0 ∈ U
is a critical point of f if f ′(x0) = 0. If x0 is a critical point of f , let we
say that x0 is a nondegenerate critical point of f if Hess f(x0) ∈ L (X;X)
is invertible. The Morse-Palais lemma6 states that if f ∈ Ck+2(U ;R) with
k ≥ 1, f(0) = 0, and 0 is a nondegenerate critical point of f , then there is some
open subset V of U with 0 ∈ V and a Ck diffeomorphism ϕ : V → V , ϕ(0) = 0,
such that

f(x) =
1

2
⟨Hess f(0)(ϕ(x)), ϕ(x)⟩ , x ∈ V.

If x is a critical point of a differentiable function f : U → R, we call f(x)
a critical value of f . If k ≥ n and f ∈ Ck(Rn;R), Sard’s theorem tells us
that the set of critical values of f has Lebesgue measure 0 and is meager.

For Banach spaces Y and Z, a Fredholm operator7 is a bounded linear
operator T : Y → Z such that (i) α(T ) = dimkerT < ∞, (ii) T (Y ) is a closed
subset of Z, and (iii) β(T ) = dimkerT ∗ < ∞. The index of a Fredholm
operator T is

indT = α(T )− β(T ).

For a differentiable function f : U → R, U an open subset of X, and for
x ∈ U , f ′(x) ∈ L (X;R) = X∗. f ′(x) is a Fredholm operator if and only if
dimker f ′(x) < ∞. For U a connected open subset of X and for f ∈ C1(U ;R),
we call f a Fredholm map if f ′(x) is a Fredholm operator for each x ∈ U . It
is a fact that ind f ′(x) = ind f ′(y) for all x, y ∈ U , using that U is connected.
We denote this common value by ind f . A generalization of Sard’s theorem by
Smale here tells us that if X is separable, U is a connected open subset of X,
f ∈ Ck(U ;R) is a Fredholm map, and

k > max{ind f, 0},

then the set of critical values of f is meager.8

A function f ∈ C1(X;R) is said to satisfy the Palais-Smale condition
if (uk) is a sequence in X such that (i) {f(uk)} is a bounded subset of R and
(ii) grad f(uk) → 0, then {uk} is a precompact subset of X: every subsequence
of (uk) itself has a Cauchy subsequence.

6Serge Lang, Differential and Riemannian Manifolds, p. 182, chapter VII, Theorem 5.1;
Kung-ching Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems,
p. 33, Theorem 4.1; André Avez, Calcul différentiel, p. 87, §3; N. A. Bobylev, S. V. Emel’yanov,
and S. K. Korovin, Geometrical Methods in Variational Problems, p. 360, Theorem 5.5.2; Ha-
jime Urakawa, Calculus of Variations and Harmonic Maps, p. 87, chapter 3, §1, Theorem
1.10; Jean-Pierre Aubin and Ivar Ekeland, Applied Nonlinear Analysis, p. 52, Theorem 8;
Melvyn S. Berger, Nonlinearity and Functional Analysis: Lectures on Nonlinear Problems in
Mathemtical Analysis, p. 355, Theorem 6.5.4.

7Martin Schechter, Principles of Functional Analysis, second ed., chapter 5.
8Eberhard Zeidler, Nonlinear Functional Analysis and its Applications, IV: Applications to

Mathematical Physics, p. 829, Theorem 78.A; Melvyn S. Berger, Nonlinearity and Functional
Analysis: Lectures on Nonlinear Problems in Mathematical Analysis, p. 125, Theorem 3.1.45.
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Often when speaking about ordinary differential equations in Rd, we deal
with differentiable functions whose derivatives are locally Lipschitz. Rd has the
Heine-Borel property: a subset K of Rd is compact if and only if K is closed
and bounded. In fact no infinite dimensional Banach space has the Heine-
Borel property.9 Thus a locally Lipschitz function need not be Lipschitz on a
bounded subset of X. (On a compact set, the set is covered by balls on which
the function is Lipschitz, and then the function is Lipschitz on the compact
set with Lipschitz constant equal to the maximum of finitely many Lipschitz
constants on the balls.) We denote by C the set of function f : X → R that are
differentiable and such that for each bounded subset A of X, the restriction of
grad f to A is Lipschitz.

The mountain pass theorem10 states that if (i) I ∈ C, (ii) I satisfies the
Palais-Smale condition, (iii) I(0) = 0, (iv) there are r, a > 0 such that I(u) ≥ a
when ∥u∥ = r, and (v) there is some v ∈ X satisfying ∥v∥ > r and I(v) ≤ 0,
then

inf
g∈Γv

sup
0≤t≤1

(I ◦ g)(t)

is a critical value of I, where

Γv = {g ∈ C([0, 1];X) : g(0) = 0, g(1) = v}.

4 Convexity

We prove that a critical point of a differentiable convex function on an open
convex set is a minimum.11

Theorem 4. If A is an open convex set, f : A → R is differentiable and convex,
and x0 ∈ A is a critical point of f , then f(x0) ≤ f(x) for all x ∈ A.

Proof. Because f is convex, for 0 < t < 1,

f(tx+ (1− t)x0) ≤ tf(x) + (1− t)f(x0),

i.e.
f(x0 + t(x− x0))− f(x0)

t
≤ f(x)− f(x0).

Taking t → 0,
f ′(x0)(x− x0) ≤ f(x)− f(x0),

and because x0 is a critical point,

0 ≤ f(x)− f(x0),

i.e. f(x0) ≤ f(x).

9Some Fréchet spaces have the Heine-Borel property, like the space of holomorphic func-
tions on the open unit disc, which is what Montel’s theorem says.

10Lawrence C. Evans, Partial Differential Equations, p. 480, Theorem 2; Antonio Am-
brosetti and David Arcoya Álvarez, An Introduction to Nonlinear Functional Analysis and
Elliptic Problems, p. 48, §5.3.

11N. A. Bobylev, S. V. Emel’yanov, and S. K. Korovin, Geometrical Methods in Variational
Problems, p. 39, Theorem 2.1.4.
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We establish equivalent conditions for a differentiable function to be con-
vex.12

Theorem 5. If A is an open convex subset of X and f : A → R is differentiable,
then the following are equvialent:

1. f is convex.

2. f(y) ≥ f(x) + ⟨grad f(x), y − x⟩, x, y ∈ A.

3. ⟨grad f(x)− grad f(y), x− y⟩ ≥ 0, x, y ∈ A.

Proof. Suppose (1). For x, y ∈ A and 0 < t < 1, that f is convex means
f(ty + (1− t)x) ≤ tf(y) + (1− t)f(x), i.e.

f(x+ t(y − x))− f(x)

t
≤ f(y)− f(x),

and taking t → 0 yields

f ′(x)(y − x) ≤ f(y)− f(x),

i.e.
⟨grad f(x), y − x⟩ ≤ f(y)− f(x).

Suppose (2) and let x, y ∈ A, for which

⟨grad f(x), y − x⟩ ≤ f(y)− f(x), ⟨grad f(y), x− y⟩ ≤ f(x)− f(y).

Adding these inequalities,

⟨grad f(x), y − x⟩ − ⟨grad f(y), y − x⟩ ≤ 0.

Suppose (3), let x, y ∈ A, and define ϕ : [0, 1] → R by

ϕ(t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y).

ϕ(0) = 0 and ϕ(1) = 0, and for 0 < t < 1, using the chain rule gives

ϕ′(t) = f ′(tx+ (1− t)y)(x− y)− f(x) + f(y)

= ⟨grad f(tx+ (1− t)y), x− y⟩ − f(x) + f(y).

Let 0 < s < t < 1, let u = sx + (1 − s)y and v = tx + (1 − t)y, which both
belong to A because A is convex, and so the above reads

ϕ′(s) = ⟨grad f(u), x− y⟩−f(x)+f(y), ϕ′(t) = ⟨grad f(v), x− y⟩−f(x)+f(y),

so
ϕ′(s)− ϕ′(t) = ⟨grad f(u)− grad f(v), x− y⟩ .

12Juan Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Exam-
ples, p. 38, Proposition 3.10.
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And
(s− t)(x− y) = u− y − (v − y) = u− v,

so

ϕ′(s)− ϕ′(t) =
1

s− t
⟨grad f(u)− grad f(v), u− v⟩ .

But (3) tells us
⟨grad f(u)− grad f(v), u− v⟩ ≥ 0,

so, as s− t < 0,
ϕ′(s)− ϕ′(t) ≤ 0,

showing that ϕ′ is nondecreasing. On the other hand, because ϕ(0) = 0 and
ϕ(1) = 0, by the mean value theorem there is some 0 < t0 < 1 for which
ϕ′(t0) = 0. Therefore, because ϕ′ is nondecreasing it holds that

ϕ′(t) ≤ 0, 0 ≤ t ≤ t0,

and
ϕ′(t) ≥ 0, t0 ≤ t ≤ 1.

That is, ϕ is nonincreasing on [0, t0], and with ϕ(0) = 0 this yields ϕ(t) ≤ 0
for t ∈ [0, t0], and ϕ is nondecreasing on [t0, 1], and with ϕ(1) = 0 this yields
ϕ(t) ≤ 0 for t ∈ [t0, 1]. Therefore ϕ(t) ≤ 0 for t ∈ [0, 1], which means that

f(tx+ (1− t)y)− tf(x)− (1− t)f(y) ≤ 0, 0 ≤ t ≤ 1,

showing that f is convex.

Theorem 6. If A is an open convex subset of X and f : A → R is twice
differentiable, then the following are equivalent:

1. f is convex.

2. ⟨Hess f(x)(v), v⟩ ≥ 0, x ∈ A, v ∈ X.

Proof. Suppose (1) and let x ∈ A. From Theorem 5, v ∈ X and for t > 0 with
which x+ tv ∈ A,

⟨grad f(x+ tv)− grad f(x), tv⟩ ≥ 0,

i.e.
f ′(x+ tv)(v)− f ′(x)(v)

t
≥ 0.

Taking t → 0,
f ′′(x)(v)(v) ≥ 0,

i.e.
⟨Hess f(x)(v), v⟩ ≥ 0.

Suppose (2), let x, y ∈ A and define ϕ : [0, 1] → R by

ϕ(t) = f(tx+ (1− t)y)− tf(x)− (1− t)f(y).
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Applying the chain rule, for 0 < t < 1,

ϕ′′(t) = f ′′(tx+ (1− t)y)(x− y)(x− y),

i.e.
ϕ′′(t) = ⟨Hess f(tx+ (1− t)y)(x− y), x− y⟩ ≥ 0,

showing that ϕ′ is nondecreasing. In the proof of Theorem 5 we deduced from
ϕ′ being nondecreasing and satisfying ϕ(0) = 0, ϕ(1) = 0, that f is convex, and
the same reasoning yields here that f is convex.

We call a function F : X → X β co-coercive if

⟨F (x)− F (y), x− y⟩ ≥ β ∥F (x)− F (y)∥2 .

We prove conditions under which the gradient of a differentiable convex function
is co-coercive.13

Theorem 7 (Baillon-Haddad theorem). Let f : X → R be differentiable and
convex and let L > 0. Then grad f is L Lipschitz if and only if grad f is 1

L
co-coercive.

Proof. Suppose that grad f is L Lipschitz and for x ∈ X, define hx : X → R by

hx(y) = f(y)− f ′(x)(y) = f(y)− ⟨grad f(x), y⟩ .

For y, z ∈ X and 0 < t < 1, because f is convex,

hx(tz + (1− t)y) = f(tz + (1− t)y)− ⟨grad f(x), tz + (1− t)y⟩
≤ tf(z) + (1− t)f(y)− ⟨grad f(x), tz + (1− t)y⟩
= thx(z) + (1− t)hx(y),

showing that hx is convex. For y, z ∈ X,14

h′
x(y)(z) = f ′(y)(z)− f ′(x)(z),

and in particular gradhx(x) = 0. Thus by Theorem 4,

hx(x) ≤ hx(y), y ∈ X. (4)

For x, y, z ∈ X, by Lemma 1,

f(z) ≤ f(x) + ⟨grad f(x), z − x⟩+ L

2
∥z − x∥2 ,

so

hy(z) ≤ f(x)− ⟨grad f(y), z⟩+ ⟨grad f(x), z − x⟩+ L

2
∥z − x∥2 ,

13Juan Peypouquet, Convex Optimization in Normed Spaces: Theory, Methods and Exam-
ples, p. 40, Theorem 3.13.

14Henri Cartan, Differential Calculus, p. 29, Proposition 2.4.2.
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i.e.

hy(z) ≤ hx(x) + ⟨grad f(x)− grad f(y), z⟩+ L

2
∥z − x∥2 ,

and applying (4),

hy(y) ≤ hx(x) + ⟨grad f(x)− grad f(y), z⟩+ L

2
∥z − x∥2 . (5)

Now,
∥grad f(x)− grad f(y)∥ = sup

∥v∥≤1

⟨grad f(x)− grad f(y), v⟩

so for each ϵ > 0 there is some vϵ ∈ X with ∥vϵ∥ ≤ 1 and

⟨grad f(x)− grad f(y), vϵ⟩ ≥ ∥grad f(x)− grad f(y)∥ − ϵ.

Let R = ∥grad f(x)−grad f(y)∥
L , and applying (5) with z = x−Rvϵ yields

hy(y) ≤ hx(x) + ⟨grad f(x)− grad f(y), x−Rvϵ⟩+
L

2
∥Rvϵ∥2

= hx(x) + ⟨grad f(x)− grad f(y), x⟩ −R ⟨grad f(x)− grad f(y), vϵ⟩

+
1

2L
∥grad f(x)− grad f(y)∥2 ∥vϵ∥2

≤ hx(x) + ⟨grad f(x)− grad f(y), x⟩ −R ∥grad f(x)− grad f(y)∥+Rϵ

+
1

2L
∥grad f(x)− grad f(y)∥2

= hx(x) + ⟨grad f(x)− grad f(y), x⟩ − 1

2L
∥grad f(x)− grad f(y)∥2 +Rϵ.

Likewise, because R does not change when x and y are switched,

hx(x) ≤ hy(y) + ⟨grad f(y)− grad f(x), y⟩ − 1

2L
∥grad f(y)− grad f(x)∥2 +Rϵ.

Adding these inequalities,

0 ≤ ⟨grad f(x)− grad f(y), x⟩+ ⟨grad f(y)− grad f(x), y⟩

− 1

L
∥grad f(x)− grad f(y)∥2 + 2Rϵ,

i.e.

1

L
∥grad f(x)− grad f(y)∥2 ≤ ⟨grad f(x)− grad f(y), x− y⟩+ 2Rϵ.

This is true for all ϵ > 0, so

1

L
∥grad f(x)− grad f(y)∥2 ≤ ⟨grad f(x)− grad f(y), x− y⟩ ,

showing that grad f is 1
L co-coercive.
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Suppose that grad f is 1
L co-coercive and let x, y ∈ X. Then applying the

Cauchy-Schwarz inequality,

∥grad f(x)− grad f(y)∥2 ≤ L ⟨grad f(x)− grad f(y), x− y⟩
≤ L ∥grad f(x)− grad f(y)∥ ∥x− y∥ .

If ∥grad f(x)− grad f(y)∥ = 0 then certainly ∥grad f(x)− grad f(y)∥ ≤ L ∥x− y∥.
Otherwise, dividing by ∥grad f(x)− grad f(y)∥ gives

∥grad f(x)− grad f(y)∥ ≤ L ∥x− y∥ ,

showing that grad f is L Lipschitz.
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