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1 Narrow topology

Let X be a metrizable space and let Cb(X) be the Banach space of bounded
continuous functions X → R, with the norm ∥f∥ = supx∈X |f(x)|. If X is
metrizable with the metric d, let Ud(X) be the collection of bounded d-uniformly
continuous functions X → R. This is a vector space and is a closed subset of
Cb(X), thus is itself a Banach space.

Let X be a metrizable space and denote by P(X) the collection of Borel
probability measures on X. The narrow topology on P(X) is the coarsest
topology on P(X) such that for every f ∈ Cb(X), the mapping µ 7→

∫
X
fdµ is

continuous P(X) → R. It can be proved that if X is metrizable with a metric
d and D is a dense subset of Ud(X), then the narrow topology is equal to the
coarsest topology such that for each f ∈ Ud(X), the mapping µ 7→

∫
X
fdµ is

continuous P(X) → R.1
If X is a separable metrizable space, then it is metrizable by a metric d such

that the metric space (X, d) is totally bounded. It is a fact that if (X, d) is a
totally bounded metric space, then Ud(X) is separable.2

Theorem 1. If X is a separable metrizable space, then X is metrizable by a
metric d for which there is a countable dense subset D of Ud(X) such that µn

converges narrowly to µ if and only if∫
X

fdµn →
∫
X

fdµ, f ∈ D.

2 Independent and identically distributed ran-
dom variables

Let (Ω, S, P ) be a probability space and let X be a separable metric space, with
the Borel σ-algebra BX . We say that a finite collection measurable functions

1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 507, Theorem 15.2.

2Daniel W. Stroock, Probability Theory: An Analytic View, p. 371, Lemma 9.1.4.
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ξi : Ω → X, 1 ≤ i ≤ n, is independent if

P

(
n⋂

i=1

ξ−1
i (Ai)

)
=

n∏
i=1

P (ξ−1
i (Ai)), A1, . . . , An ∈ BX ,

i.e.

P (ξ1 ∈ A1, . . . , ξn ∈ An) = P (ξ1 ∈ A1) · · ·P (ξn ∈ An), A1, . . . , An ∈ BX .

We say that a family of measurable functions is independent if every finite subset
of it is independent.

We say that two measurable functions f, g : Ω → X are identically dis-
tributed if the pushforward f∗P of P by f is equal to the pushforward g∗P
of P by g, i.e. P (f−1(A)) = P (g−1(A)) for every A ∈ BX . We say that a
family of measurable functions is identically distributed if any two of them are
identically distributed.

3 Strong law of large numbers

If ζ ∈ L1(P ), the expectation of ζ is

E(ζ) =

∫
Ω

ζdP,

and by the change of variables theorem,∫
Ω

ζ(ω)dP (ω) =

∫
R
xd(ζ∗P )(x).

The strong law of large numbers3 states that if ζ1, ζ2, . . . ∈ L1(P ) are
independent and identically distributed, with common expectation E0, then

P

({
ω ∈ Ω :

n∑
i=1

ζi(ω)

n
→ E0

})
= 1.

4 Sample distributions

Let X be a separable metrizable space and let ξ1, ξ2, . . . be independent and
identically distributed measurable functions Ω → X. For ω ∈ Ω, define µω

n on
BX by

µω
n =

n∑
i=1

1

n
δξi(ω),

which is a probability measure. We call the sequence µω
n the sample distribu-

tion of ω.

3M. Loève, Probability Theory I, 4th ed., p. 251, 17.B.
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The following is the Glivenko-Cantelli theorem, which shows that the
sample distributions of a sequence of independent and identically distributed
measurable functions converge narrowly almost everywhere to the common
pushforward measure.4

Theorem 2 (Glivenko-Cantelli theorem). Let (Ω, S, P ) be a probability space,
let X be a separable metrizable space and let ξ1, ξ2, . . . be independent and iden-
tically distributed measurable functions Ω → X, with common pushforward mea-
sure µ. Then

P ({ω ∈ Ω : µω
n → µ narrowly}) = 1.

Proof. For g ∈ Cb(X), g ◦ ξi : Ω → R is measurable bounded, hence belongs to
L1(P ). Also, (g ◦ ξi)∗P = g∗µ, so the sequence g ◦ ξi are identically distributed.
We now check that the sequence is independent. Let A1, . . . , An ∈ BR. Then
g−1(A1), . . . , g

−1(An) ∈ BX , and because ξ1, ξ2, . . . are independent,

P

(
n⋂

i=1

ξ−1
i (g−1(Ai))

)
=

n∏
i=1

P (ξ−1
i (g−1(Ai))),

i.e.,

P

(
n⋂

i=1

(g ◦ ξi)−1(Ai)

)
=

n∏
i=1

P ((g ◦ ξi)−1(Ai)),

showing that (g ◦ ξ1), (g ◦ ξ2), . . . are independent. For any i, by the change of
variables theorem

E(g ◦ ξi) =
∫
Ω

g ◦ ξidP =

∫
X

gd((ξi)∗P ) =

∫
X

gdµ,

so the strong law of large numbers tells us that there is a set Ng ∈ S with
P (Ng) = 0 such that for all ω ∈ Ω \Ng,

n∑
i=1

(g ◦ ξi)(ω)
n

→
∫
X

gdµ.

But
n∑

i=1

(g ◦ ξi)(ω)
n

=

n∑
i=1

1

n

∫
X

gdδξi(ω) =

∫
X

gdµω
n ,

so for all ω ∈ Ω \Ng, ∫
X

gdµω
n →

∫
X

gdµ.

Because X is separable, Theorem 1 tells us that there is a metric d that
induces the topology of X and some countable dense subset G of Ud(X) such
that a sequence νn in P(X) converges narrowly to ν if and only if∫

X

gdνn →
∫
X

gdν, g ∈ G.

4K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 53, Theorem 7.1.
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Now let N =
⋃

g∈G Ng, which satisfies P (N) = 0, and if ω ∈ Ω \ N then for
each g ∈ G, ∫

X

gdµω
n →

∫
X

gdµ.

This implies that for all µω
n converges narrowly to µ. That is, there is a setN ∈ S

with P (N) = 0 such that for all ω ∈ Ω\N , the sample distribution µω
n converges

narrowly to the common pushforward measure µ, proving the claim.
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