The Gelfand transform, positive linear functionals, and positive-definite functions

Jordan Bell

June 24, 2015

1 Introduction

In this note, unless we say otherwise every vector space or algebra we speak about is over \mathbb{C}.

If A is a Banach algebra and $e \in A$ satisfies $x e=x$ and $e x=x$ for all $x \in A$, and also $\|e\|=1$, we say that e is unity and that A is unital.

If A is a unital Banach algebra and $x \in A$, the spectrum of x is the set $\sigma(x)$ of those $\lambda \in \mathbb{C}$ for which $\lambda e-x$ is not invertible. It is a fact that if A is a unital Banach algebra and $x \in A$, then $\sigma(x) \neq \emptyset .{ }^{1}$

If A and B are Banach algebras and $T: A \rightarrow B$ is a map, we say that T is an isomorphism of Banach algebras if T is an algebra isomorphism and an isometry.

Theorem 1 (Gelfand-Mazur). If A is a Banach algebra and every nonzero element of A is invertible, then there is an isomorphism of Banach algebras $A \rightarrow \mathbb{C}$.

Proof. Let $x \in A . \sigma(x) \neq \emptyset$. If $\lambda_{1}, \lambda_{2} \in \sigma(x)$, then neither $\lambda_{1} e-x$ nor $\lambda_{2} e-x$ is invertible, so they are both $0: x=\lambda_{1} e$ and $x=\lambda_{2} e$, whence $\lambda_{1}=\lambda_{2}$. Therefore $\sigma(x)$ has precisely one element, which we denote by $\lambda(x)$, and which satisfies

$$
x=\lambda(x) e
$$

If $x, y \in A$, then $x+y=\lambda(x) e+\lambda(y) e=(\lambda(x)+\lambda(y)) e$ and also $x+y=$ $\lambda(x+y) e$, so $\lambda(x+y)=\lambda(x)+\lambda(y)$. If $x \in A$ and $\alpha \in \mathbb{C}$, then $\alpha x=\alpha \lambda(x) e$ and also $\alpha x=\lambda(\alpha x) e$, so $\lambda(\alpha x)=\alpha \lambda(x)$. Hence $x \mapsto \lambda(x)$ is linear. If $\lambda_{0} \in \mathbb{C}$, then $\lambda\left(\lambda_{0} e\right)=\lambda_{0}$, showing that $x \mapsto \lambda(x)$ is onto. If $\lambda(x)=\lambda(y)$ then $x=\lambda(x) e=\lambda(y) e=y$, showing that $x \mapsto \lambda(x)$ is one-to-one. Therefore $x \mapsto \lambda(x)$ is a linear isomorphism $A \rightarrow \mathbb{C}$.

If $x \in A$, then $x=\lambda(x) e$ gives

$$
\|x\|=\|\lambda(x) e\|=|\lambda(x)|\|e\|=|\lambda(x)|
$$

showing that the map $x \mapsto \lambda(x)$ is an isometry $A \rightarrow \mathbb{C}$.

[^0]
2 Complex homomorphisms

An ideal J of an algebra A is said to be proper if $J \neq A$. An ideal is called maximal if it is a maximal element in the collection of proper ideals of A ordered by set inclusion.

The following theorem, which is proved using the fact that a maximal ideal is closed, the fact that a quotient of a Banach algebra with a closed ideal is a Banach algebra, and the Gelfand-Mazur theorem, states some basic facts about algebra homomorphisms from a Banach algebra to $\mathbb{C} .^{2}$

Theorem 2. If A is a commutative unital Banach algebra and Δ is the set of all nonzero algebra homomorphisms $A \rightarrow \mathbb{C}$, then:

1. If M is a maximal ideal of A then there is some $h \in \Delta$ for which $M=\operatorname{ker} h$.
2. If $h \in \Delta$ then $\operatorname{ker} h$ is a maximal ideal of A.
3. $x \in A$ is invertible if and only if $h(x) \neq 0$ for all $h \in \Delta$.
4. $x \in A$ is invertible if and only if x does not belong to any proper ideal of A.
5. $\lambda \in \sigma(x)$ if and only if there is some $h \in \Delta$ for which $h(x)=\lambda$.

3 The Gelfand transform and maximal ideals

Suppose that A is a commutative unital Banach algebra and that Δ is the set of all nonzero algebra homomorphisms $A \rightarrow \mathbb{C}$. For each $x \in A$, we define $\hat{x}: \Delta \rightarrow \mathbb{C}$ by

$$
\hat{x}(h)=h(x), \quad h \in \Delta .
$$

We call \hat{x} the Gelfand transform of x, and we call the map $\Gamma: A \rightarrow \mathbb{C}^{\Delta}$ defined by $\Gamma(x)=\hat{x}$ the Gelfand transform.

We define $\widehat{A}=\{\hat{x}: x \in A\}$, and we call the set Δ with the initial topology for \widehat{A} the maximal ideal space of A. That is, the topology of Δ is the coarsest topology on Δ such that each $\hat{x}: \Delta \rightarrow \mathbb{C}$ is continuous. If X is a topological space, we denote by $C(X)$ the set of all continuous functions $X \rightarrow \mathbb{C} . C(X)$ is a commutative unital algebra, although it need not be a Banach algebra.

The radical of A, denoted $\operatorname{rad} A$, is the intersection of all maximal ideals of A. If $\operatorname{rad} A=\{0\}$, we say that A is semisimple.

The following theorem establishes some basic facts about the Gelfand transform and the maximal ideal space. ${ }^{3}$

Theorem 3. If A is a commutative unital Banach algebra and Δ is the maximal ideal space of A, then:

[^1]1. $\Gamma: A \rightarrow C(\Delta)$ is an algebra homomorphism with $\operatorname{ker} \Gamma=\operatorname{rad} A$.
2. If $x \in A$, then $\operatorname{im} \hat{x}=\sigma(x)$.
3. Δ is a compact Hausdorff space.

Proof. Let $x, y \in A$ and $\alpha \in \mathbb{C}$. For $h \in \Delta$,
$\Gamma(\alpha x+y)(h)=h(\alpha x+y)=\alpha h(x)+h(y)=\alpha \Gamma(x)(h)+\Gamma(y)(h)=(\Gamma(x)+\Gamma(y)(h)$,
showing that $\Gamma(\alpha x+y)=\alpha \Gamma(x)+\Gamma(y)$, and

$$
\Gamma(x y)(h)=h(x y)=h(x) h(y)=\Gamma(x)(h) \Gamma(y)(h)=(\Gamma(x) \Gamma(y))(h)
$$

showing that $\Gamma(x y)=\Gamma(x) \Gamma(y)$. Therefore $\Gamma: A \rightarrow C(\Delta)$ is an algebra homomorphism. $x \in \operatorname{ker} \Gamma$ is equivalent to $h(x)=0$ for all $h \in \Delta$, which is equivalent to $x \in \operatorname{ker} h$ for all $h \in \Delta$. But by Theorem 2 , $\{\operatorname{ker} h: h \in \Delta\}$ is equal to the set of all maximal ideals of A, so $x \in \operatorname{ker} \Gamma$ is equivalent to $x \in \operatorname{rad} A$, i.e. $\operatorname{ker} \Gamma=\operatorname{rad} A$.

Let $x \in A$. If $\lambda \in \operatorname{im} \hat{x}$ then there is some $h \in \Delta$ for which $\hat{x}(h)=\lambda$, and by Theorem 2, this yields $\lambda \in \sigma(x)$. Hence $\operatorname{im} \hat{x} \subseteq \sigma(x)$. If $\lambda \in \sigma(x)$, then by Theorem 2 there is some $h \in \Delta$ for which $h(x)=\lambda$, i.e. there is some $h \in \Delta$ for which $\hat{x}(h)=\lambda$, i.e. $\lambda \in \operatorname{im} \hat{x}$. Hence $\sigma(x) \subseteq \operatorname{im} \hat{x}$. Therefore, $\operatorname{im} \hat{x}=\sigma(x)$.

It is straightforward to check that the topology of Δ is the subspace topology inherited from A^{*} with the weak-* topology; in particular, the topology of Δ is Hausdorff. Therefore, to prove that Δ is compact it suffices to prove that Δ is a weak-* compact subset of A^{*}. Let

$$
K=\left\{\lambda \in A^{*}:\|\lambda\| \leq 1\right\}
$$

By the Banach-Alaoglu theorem, K is a weak-* compact subset of A^{*}. If $h \in \Delta$, then because h is an algebra homomorphism $A \rightarrow \mathbb{C}$ it follows that $\|h\| \leq 1 .^{4}$ Thus, $\Delta \subset K$. Therefore, to prove that Δ is compact it suffices to prove that Δ is a weak-* closed subset of A^{*}.

Suppose that $h_{i} \in \Delta$ is a net that weak-* converges to $\lambda \in A^{*}$. Then $h_{i}(e) \rightarrow$ $\lambda(e)$, i.e. $1 \rightarrow \lambda(e)$, so $\lambda(e)=1$. Thus $\lambda \neq 0$. Let $x, y \in A$. On the one hand, $h_{i}(x y) \rightarrow \lambda(x y)$, and on the other hand, $h_{i}(x) \rightarrow \lambda(x)$ and $h_{i}(y) \rightarrow \lambda(y)$, so $h_{i}(x) h_{i}(y) \rightarrow \lambda(x) \lambda(y)$ and hence $h_{i}(x y)=h_{i}(x) h_{i}(y) \rightarrow \lambda(x) \lambda(y)$. Therefore, $\lambda(x y)=\lambda(x) \lambda(y)$, and because $\lambda \in A^{*}$ is linear, this shows that $\lambda: A \rightarrow \mathbb{C}$ is an algebra homomorphism, and hence that $\lambda \in \Delta$. Therefore Δ is a weak-* closed subset of A^{*}.

If A is a commutative unital Banach algebra, the above theorem shows that $\Gamma: A \rightarrow \widehat{A}$ is an algebra isomorphism if and only if $\operatorname{rad} A=\{0\}$, i.e., Γ is an algebra isomorphism if and only if A is semisimple.

[^2]The above theorem tells us that if A is a commutative unital Banach algebra and $x \in A$, then $\operatorname{im} \hat{x}=\sigma(x)$. This gives us

$$
\begin{equation*}
\|\hat{x}\|_{\infty}=\rho(x) \tag{1}
\end{equation*}
$$

where $\rho(x)$ is the spectral radius of x, defined by

$$
\rho(x)=\sup \{|\lambda|: \lambda \in \sigma(x)\}
$$

Therefore, $\hat{x}=0$ is equivalent to $\rho(x)=0$, and so by the above theorem, $x \in \operatorname{rad} A$ is equivalent to $\rho(x)=0$. Moreover, it is a fact that $\rho(x) \leq\|x\| .{ }^{5}$ Therefore,

$$
\begin{equation*}
\|\hat{x}\|_{\infty} \leq\|x\| \tag{2}
\end{equation*}
$$

In the proof of Theorem 3 we used the fact ${ }^{6}$ that the norm of any algebra homomorphism from a Banach algebra to \mathbb{C} is ≤ 1. In particular, this means that any algebra homomorphism from a Banach algebra to \mathbb{C} is continuous. The following theorem shows that any algebra homomorphism from a Banach algebra to a commutative unital semisimple Banach algebra is continuous. ${ }^{7}$

Theorem 4. Suppose that A is a Banach algebra and that B is a commutative unital semisimple Banach algebra. If $\psi: A \rightarrow B$ is an algebra homomorphism, then ψ is continuous.

Proof. Because $\psi: A \rightarrow B$ is linear, to prove that ψ is continuous, by the closed graph theorem ${ }^{8}$ it suffices to prove that

$$
G=\{(x, \psi(x)): x \in A\}
$$

is closed in $A \times B$. To prove that G is closed in $A \times B$, it suffices to prove that if $\left(x_{n}, y_{n}\right) \in G$ converges to $(x, y) \in A \times B$ then $(x, y) \in G$.

Let $h \in \Delta_{B}$. Then $\phi=h \circ \psi: A \rightarrow \mathbb{C}$ is an algebra homomorphism. Because $h: B \rightarrow \mathbb{C}$ and $\phi: A \rightarrow \mathbb{C}$ are algebra homomorphisms with codomain \mathbb{C}, they are both continuous. Therefore, $h\left(y_{n}\right) \rightarrow h(y)$ and $\phi\left(x_{n}\right) \rightarrow \phi(x)$. Therefore,
$h(y)=\lim h\left(y_{n}\right)=\lim h\left(\psi\left(x_{n}\right)\right)=\lim (h \circ \psi)\left(x_{n}\right)=\lim \phi\left(x_{n}\right)=\phi(x)=h(\psi(x))$,
so $h(y-\psi(x))=0$. This is true for all $h \in \Delta_{B}$, hence $y-\psi(x) \in \operatorname{rad} B$. But B is semisimple, so $y-\psi(x)=0$, i.e. $y=\psi(x)$, so $(x, y) \in G$.

If A is a commutative unital Banach algebra and $x \in A$, we recorded in (2) that $\|\hat{x}\|_{\infty} \leq\|x\|$. The following lemma ${ }^{9}$ shows that if $\left\|x^{2}\right\|=\|x\|^{2}$ and $x \neq 0$, then $\inf \frac{\|\hat{x}\|_{\infty}}{\|x\|} \geq 1$, hence that $\|\hat{x}\|_{\infty}=\|x\|$. Therefore, if $\left\|x^{2}\right\|=\|x\|^{2}$ for all $x \in A$, then $\Gamma: A \rightarrow C(\Delta)$ is an isometry.

[^3]Lemma 5. Let A be a commutative unital Banach algebra. If

$$
r=\inf _{x \neq 0} \frac{\left\|x^{2}\right\|}{\|x\|^{2}}, \quad s=\inf _{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|}
$$

then $s^{2} \leq r \leq s$.
Theorem 3 shows that if A is a commutative unital Banach algebra, then Γ : $A \rightarrow C(\Delta)$ is an algebra homomorphism. Therefore $\Gamma(A)=\widehat{A}$ is a subalgebra of $C(\Delta)$. Moreover, Theorem 3 also shows that Δ is a compact Hausdorff space. Therefore, $C(\Delta)$ is a unital Banach algebra with the supremum norm. (If X is a topological space then $C(X)$ is an algebra, but need not be a Banach algebra.) For \widehat{A} to be a Banach subalgebra of $C(\Delta)$ it is necessary and sufficient that \widehat{A} be a closed subset of the Banach algebra $C(\Delta)$. The following theorem gives conditions under which this occurs. ${ }^{10}$

Theorem 6. If A is a commutative unital Banach algebra, then A is semisimple and \widehat{A} is a closed subset of $C(\Delta)$ if and only if there exists some $K<\infty$ such that $\|x\|^{2} \leq K\left\|x^{2}\right\|$ for all $x \in A$.
Proof. Suppose that there is some $0<K<\infty$ such that $x \in A$ implies that $\|x\|^{2} \leq K\left\|x^{2}\right\|$. Then

$$
r=\inf _{x \neq 0} \frac{\left\|x^{2}\right\|}{\|x\|^{2}} \geq \inf _{x \neq 0} \frac{\left\|x^{2}\right\|}{K\left\|x^{2}\right\|}=\frac{1}{K}
$$

By Lemma 5, with $s=\inf _{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|}$ we have

$$
\frac{1}{K} \leq s
$$

hence $\|\hat{x}\|_{\infty} \geq \frac{1}{K}\|x\|$. Thus, if $x \in A$ then $\|\hat{x}\|_{\infty} \geq \frac{1}{K}\|x\|$, from which it follows that $\Gamma: A \rightarrow C(\Delta)$ is one-to-one. Since Γ is one-to-one, by Theorem 3 we get that A is semisimple. Suppose that $\hat{x}_{n} \in \widehat{A}$ converges to $\hat{x} \in \widehat{A}$, i.e. $\left\|\hat{x}_{n}-\hat{x}\right\|_{\infty} \rightarrow 0$, i.e. $\left\|\Gamma\left(x_{n}-x\right)\right\|_{\infty} \rightarrow 0$. But $\left\|\Gamma\left(x_{n}-x\right)\right\|_{\infty} \geq \frac{1}{K}\left\|x_{n}-x\right\|$, so $\left\|x_{n}-x\right\| \rightarrow 0$, showing that $\Gamma^{-1}: \widehat{A} \rightarrow A$ is bounded. Therefore $\Gamma: A \rightarrow \widehat{A}$ is bilipschitz, and so \widehat{A} is a complete metric space, from which it follows that \widehat{A} is a closed subset of $C(\Delta)$.

Suppose that A is semisimple and that \widehat{A} is a closed subset of $C(\Delta)$. The fact that A is semisimple gives us by Theorem 3 that $\Gamma: A \rightarrow \widehat{A}$ is a bijection. The fact that \widehat{A} is closed means that \widehat{A} is a Banach algebra. Because $\Gamma: A \rightarrow \widehat{A}$ is continuous, linear, and a bijection, by the open mapping theorem ${ }^{11}$ it follows that there are positive real numbers a, b such that if $x \in A$ then

$$
a\|x\| \leq\|\Gamma x\|_{\infty} \leq b\|x\|
$$

Then $\inf _{x \neq 0} \frac{\|\hat{x}\|_{\infty}}{\|x\|} \geq a$. By Lemma 5, it follows that $\inf _{x \neq 0} \frac{\left\|x^{2}\right\|}{\|x\|^{2}} \geq a^{2}$. Hence, for all $x \neq 0$ we have $\|x\|^{2} \leq K\left\|x^{2}\right\|$, with $K=\frac{1}{a^{2}}$.

[^4]
$4 \quad \mathrm{~L}^{1}$

Let $M\left(\mathbb{R}^{n}\right)$ denote the set of all complex Borel measures on \mathbb{R}^{n}, and let S : $\mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be defined by $S(x, y)=x+y$. For $\mu_{1}, \mu_{2} \in M\left(\mathbb{R}^{n}\right)$, we denote by $\mu_{1} \times \mu_{2}$ the product measure on $\mathbb{R}^{n} \times \mathbb{R}^{n}$, and we define the convolution of μ_{1} and μ_{2} to be $\mu_{1} * \mu_{2}=S_{*}\left(\mu_{1} \times \mu_{2}\right)$, the pushforward of $\mu_{1} \times \mu_{2}$ with respect to S. That is, if E is a Borel subset of \mathbb{R}^{n}, then

$$
\begin{aligned}
\left(\mu_{1} * \mu_{2}\right)(E) & =\left(S_{*}\left(\mu_{1} \times \mu_{2}\right)\right)(E) \\
& =\left(\mu_{1} \times \mu_{2}\right)\left(S^{-1}(E)\right) \\
& =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \chi_{E}(x+y) d \mu_{1}(x) d \mu_{2}(y)
\end{aligned}
$$

With convolution as multiplication, $M\left(\mathbb{R}^{n}\right)$ is an algebra.
If $\mu \in M\left(\mathbb{R}^{n}\right)$, the variation of μ is the measure $|\mu| \in M\left(\mathbb{R}^{n}\right)$, where for a Borel subset E of \mathbb{R}^{n}, we define $|\mu|(E)$ to be the supremum of $\sum_{A \in \pi}|\mu(A)|$ over all partitions π of E into finitely many disjoint Borel subsets. The total variation of μ is $\|\mu\|=|\mu|\left(\mathbb{R}^{n}\right)$. One proves that $\|\cdot\|$ is a norm on $M\left(\mathbb{R}^{n}\right)$ and that with this norm, $M\left(\mathbb{R}^{n}\right)$ is a Banach algebra. ${ }^{12}$

Let m_{n} be Lebesgue measure on \mathbb{R}^{n}, let δ be the Dirac measure on \mathbb{R}^{n}, and let A be the set of those $\mu \in M\left(\mathbb{R}^{n}\right)$ for which there is some $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and some $\alpha \in \mathbb{C}$ with which

$$
d \mu=f d m_{n}+\alpha d \delta
$$

One proves that A is a Banach subalgebra of $M\left(\mathbb{R}^{n}\right) . A$ is a unital Banach algebra, with unity δ. In particular, A is a unital Banach algebra that contains the Banach algebra $L^{1}\left(\mathbb{R}^{n}\right)$.

If $f+\alpha \delta, g+\beta \delta \in A$ (identifying $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with the complex Borel measure whose Radon-Nikodym derivative with respect to m_{n} is f), then

$$
\begin{equation*}
(f+\alpha \delta) *(g+\beta \delta)=(f * g+\beta f+\alpha g)+\alpha \beta \delta \tag{3}
\end{equation*}
$$

where

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d m_{n}(y)
$$

If $t \in \mathbb{R}^{n}$, let $e_{t}(x)=\exp ($ it $\cdot x)$, and if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, define $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$, the Fourier transform of f, by

$$
\hat{f}(t)=\int_{\mathbb{R}^{n}} f e_{-t} d m_{n}, \quad t \in \mathbb{R}^{n}
$$

If $t \in \mathbb{R}^{n}$, define $h_{t}: A \rightarrow \mathbb{C}$ by

$$
h_{t}(f+\alpha \delta)=\hat{f}(t)+\alpha, \quad f+\alpha \delta \in A
$$

and define $h_{\infty}: A \rightarrow \mathbb{C}$ by

$$
h_{\infty}(f+\alpha \delta)=\alpha, \quad f+\alpha \delta \in A
$$

[^5]By (3) it is apparent that for each $t \in \mathbb{R}^{n} \cup\{\infty\}$, the map h_{t} is a homomorphism of algebras. It can be proved that $\Delta=\left\{h_{t}: t \in \mathbb{R}^{n}\right\} \cup\left\{h_{\infty}\right\} .{ }^{13}$ Let $\mathbb{R}^{n} \cup\{\infty\}$ be the one-point compactification of \mathbb{R}^{n}, and define $T: \mathbb{R}^{n} \cup\{\infty\} \rightarrow \Delta$ by $T(t)=h_{t}$, which is a bijection.

Suppose that $t_{k} \rightarrow t$ in \mathbb{R}^{n}. If $f+\alpha \delta \in A$, then because $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is continuous, we have

$$
T\left(t_{k}\right)(f+\alpha \delta)=h_{t_{k}}(f+\alpha \delta)=\hat{f}\left(t_{k}\right)+\alpha \rightarrow \hat{f}(t)+\alpha=T(t)(f+\alpha \delta)
$$

Suppose that $t_{k} \rightarrow \infty$. If $f+\alpha \delta \in A$, then by the Riemann-Lebesgue lemma we have $\hat{f}\left(t_{k}\right) \rightarrow 0$, and hence

$$
T\left(t_{k}\right)(f+\alpha \delta)=\hat{f}\left(t_{k}\right)+\alpha \rightarrow \alpha=h_{\infty}(f+\alpha \delta)=T(\infty)(f+\alpha \delta)
$$

Therefore, $T: \mathbb{R}^{n} \cup\{\infty\} \rightarrow \Delta$ is continuous.
Suppose that $h_{t_{k}} \rightarrow h_{t}$ in $\Delta, t_{k}, t \in \mathbb{R}^{n}$. If $f+\alpha \delta \in A$, then $h_{t_{k}}(f+\alpha \delta) \rightarrow$ $h_{t}(f+\alpha \delta)$. But $h_{t_{k}}(f+\alpha \delta)=\hat{f}\left(t_{k}\right)+\alpha$ and $h_{t}(f+\alpha \delta)=\hat{f}(t)+\alpha$, so $\hat{f}\left(t_{k}\right) \rightarrow$ $\hat{f}(t)$. Because this is true for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$, it follows that $t_{k} \rightarrow t$. Suppose that $h_{t_{k}} \rightarrow h_{\infty}$ in $\Delta, t_{k} \in \mathbb{R}^{n}$. If $f+\alpha \delta \in A$, then $h_{t_{k}}(f+\alpha \delta) \rightarrow h_{\infty}(f+\alpha \delta)$, i.e. $\hat{f}\left(t_{k}\right)+\alpha \rightarrow \alpha$, i.e. $\hat{f}\left(t_{k}\right) \rightarrow 0$. Because this is true for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$, it follows that $t_{k} \rightarrow \infty$. Therefore, $T^{-1}: \Delta \rightarrow \mathbb{R}^{n} \cup\{\infty\}$ is continuous, and so Δ is homeomorphic to the one-point compactification of \mathbb{R}^{n}.

5 Involutions

If A is an algebra, an involution of A is a map * : $A \rightarrow A$ satisfying

1. $(x+y)^{*}=x^{*}+y^{*}$
2. $(\alpha x)^{*}=\bar{\alpha} x^{*}$
3. $(x y)^{*}=y^{*} x^{*}$
4. $x^{* *}=x$.

We say that x is self-adjoint if $x^{*}=x$.
Following Rudin, if A is a Banach algebra with an involution * : $A \rightarrow A$ satisfying

$$
\left\|x x^{*}\right\|=\|x\|^{2}, \quad x \in A
$$

we say that A is a B^{*}-algebra.
The following theorem shows that a commutative unital B^{*}-algebra with maximal ideal space Δ is isomorphic as a B^{*}-algebra to $C(\Delta) .{ }^{14}$ (An isomorphism of B^{*}-algebras is an isomorphism of Banach algebras that preserves the involution; the involution on $C(\Delta)$ is $(x \mapsto f(x)) \mapsto(x \mapsto \overline{f(x)})$.)

[^6]Theorem 7 (Gelfand-Naimark). If A is a commutative unital B^{*}-algebra, then $\Gamma: A \rightarrow C(\Delta)$ is an isomorphism of Banach algebras, and if $x \in A$ then $\Gamma\left(x^{*}\right)=\overline{\Gamma(x)}$.

Proof. Let $u \in A$ be self-adjoint, let $h \in \Delta$, and let $h(u)=\alpha+i \beta$. For $t \in \mathbb{R}$, put $z=u+i t e$. We have

$$
h(z)=h(u)+h(i t e)=\alpha+i \beta+i t=\alpha+i(\beta+t)
$$

and

$$
z z^{*}=(u+i t e)(u-i t e)=u^{2}+t^{2} e
$$

hence

$$
\alpha^{2}+(\beta+t)^{2}=|h(z)|^{2} \leq\|z\|^{2}=\left\|z z^{*}\right\|=\left\|u^{2}+t^{2} e\right\| \leq\|u\|^{2}+t^{2}
$$

i.e.

$$
\alpha^{2}+\beta^{2}+2 \beta t \leq\|u\|^{2}
$$

Because this is true for all $t \in \mathbb{R}$, it follows that $\beta=0$. Therefore, if $u \in A$ is self-adjoint then $h(u) \in \mathbb{R}$.

Furthermore, if $x \in A$ then with $2 u=x+x^{*}$ and $2 v=i\left(x^{*}-x\right)$ we have $x=u+i v$ with u and v self-adjoint. Then $x^{*}=u-i v$, and so

$$
h\left(x^{*}\right)=h(u-i v)=h(u)-i h(v)=\overline{h(x)}
$$

This shows that if $x \in A$ then $\Gamma\left(x^{*}\right)=\overline{\Gamma(x)}$. In particular, \widehat{A} is closed under complex conjugation. If $h_{1} \neq h_{2}$, then there is some $x \in A$ for which $h_{1}(x) \neq$ $h_{2}(x)$, i.e. $\hat{x}\left(h_{1}\right) \neq \hat{x}\left(h_{2}\right)$, so \widehat{A} separates points in Δ. Because \widehat{A} is a unital Banach algebra, it follows from the Stone-Weierstrass theorem that \widehat{A} is dense in $C(\Delta)$.

Let $x \in A$. With $y=x x^{*}$, we have $y^{*}=\left(x x^{*}\right)^{*}=x^{* *} x^{*}=x x^{*}=y$, from which it follows that $\left\|y^{2}\right\|=\|y\|^{2}$. Assume by induction that $\left\|y^{m}\right\|=\|y\|^{m}$, for $m=2^{n}$. Then, as $\left(y^{m}\right)^{*}=y^{m}$,

$$
\left\|y^{2 m}\right\|=\left\|y^{m} y^{m}\right\|=\left\|y^{m}\left(y^{m}\right)^{*}\right\|=\left\|y^{m}\right\|^{2}=\left(\|y\|^{m}\right)^{2}=\|y\|^{2 m}
$$

The spectral radius formula ${ }^{15}$ gives

$$
\rho(y)=\lim \left\|y^{n}\right\|^{1 / n}
$$

and because $\left\|y^{m}\right\|=\|y\|^{m}$ for $m=2^{n}$, we have $\lim \left\|y^{m}\right\|^{1 / m}=\|y\|$. Because the limit of this subsequence is $\|y\|$, the limit of $\left\|y^{n}\right\|^{1 / n}$ is also $\|y\|$, so we obtain

$$
\rho(y)=\|y\| .
$$

But (1) tells us $\|\hat{y}\|_{\infty}=\rho(y)$, so we have $\|\hat{y}\|_{\infty}=\|y\|$. Because $y=x x^{*}$, using $\Gamma\left(x^{*}\right)=\overline{\Gamma(x)}$ and the fact that Γ is an algebra homomorphism, we get

$$
\Gamma(y)=\Gamma\left(x x^{*}\right)=\Gamma(x) \Gamma\left(x^{*}\right)=\Gamma(x) \overline{\Gamma(x)}=|\Gamma(x)|^{2}
$$

[^7]That is, $\hat{y}=|\hat{x}|^{2}$ and with $\|\hat{y}\|_{\infty}=\|y\|$ we obtain

$$
\|\hat{x}\|_{\infty}^{2}=\|\hat{y}\|_{\infty}=\|y\|=\left\|x x^{*}\right\|=\|x\|^{2}
$$

i.e.

$$
\|\hat{x}\|_{\infty}=\|x\|
$$

This shows that $\Gamma: A \rightarrow C(\Delta)$ is an isometry. In particular, Γ maps closed sets to closed sets, so $\widehat{A}=\Gamma(A)$ is a closed subset of $C(\Delta)$. We have already established that \widehat{A} is dense in $C(\Delta)$, so $\widehat{A}=C(\Delta)$. The fact that Γ is an isometry yields that Γ is one-to-one, and the fact that $\widehat{A}=C(\Delta)$ means that that Γ is onto, hence Γ is a bijection, and therefore it is an isomorphism of algebras. Because Γ is an isometry, it is an isomorphism of Banach algebras.

The following theorem states conditions under which a self-adjoint element of a unital Banach algebra with an involution has a square root. ${ }^{16}$
Theorem 8. Let A be a unital Banach algebra with an involution * $: A \rightarrow A$. If $x \in A$ is self-adjoint and $\sigma(x)$ contains no real λ with $\lambda \leq 0$, then there is some self-adjoint $y \in A$ satisfying $y^{2}=x$.

If A is a Banach algebra and $x \in A$, we say that $x \in A$ is normal if $x x^{*}=x^{*} x$. If A is a Banach algebra with involution ${ }^{*}: A \rightarrow A$, by $x \geq 0$ we mean that x is self-adjoint and $\sigma(x) \subseteq[0, \infty)$, and we say that x is positive. The following theorem states basic facts about the spectrum of elements of a unital B^{*}-algebra. ${ }^{17}$

Theorem 9. If A is a unital B^{*}-algebra, then:

1. If x is self-adjoint, then $\sigma(x) \subseteq \mathbb{R}$.
2. If x is normal, then $\rho(x)=\|x\|$.
3. If $x \in A$, then $\rho\left(x x^{*}\right)=\|x\|^{2}$.
4. If $x \geq 0$ and $y \geq 0$, then $x+y \geq 0$.
5. If $x \in A$, then $x x^{*} \geq 0$.
6. If $x \in A$, then $e+x x^{*}$ is invertible.

6 Positive linear functionals

Suppose that A is a Banach algebra with an involution ${ }^{*}: A \rightarrow A$. If $F: A \rightarrow \mathbb{C}$ is a linear map such that $F\left(x x^{*}\right)$ is real and ≥ 0 for all $x \in A$, we say that F is a positive linear functional. In particular, if $h \in \Delta$ and $x \in A$, then from Theorem 7 we have $h\left(x^{*}\right)=\overline{h(x)}$, and so $h\left(x x^{*}\right)=h(x) h\left(x^{*}\right)=h(x) \overline{h(x)}=|h(x)|^{2} \geq 0$. Thus, the elements of Δ are positive linear functionals.

We shall use the following theorem to prove the theorem after it. ${ }^{18}$

[^8]Theorem 10. If X is a real or complex Banach space, X_{1} and X_{2} are closed subspaces of X, and $X=X_{1}+X_{2}$, then there is some $\gamma<\infty$ such that for every $x \in X$ there are $x_{1} \in X_{1}, x_{2} \in X_{2}$ satisfying $x=x_{1}+x_{2}$ and

$$
\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq \gamma\|x\|
$$

The following theorem establishes some basic properties of positive linear functionals on a unital Banach algebra with an involution. ${ }^{19}$

Theorem 11. Suppose that A is a unital Banach algebra with an involution * $: A \rightarrow A$. If $F: A \rightarrow \mathbb{C}$ is a positive linear functional, then:

1. $F\left(x^{*}\right)=\overline{F(x)}$.
2. $\left|F\left(x y^{*}\right)\right|^{2} \leq F\left(x x^{*}\right) F\left(y y^{*}\right)$.
3. $|F(x)|^{2} \leq F(e) F\left(x x^{*}\right) \leq F(e)^{2} \rho\left(x x^{*}\right)$.
4. If x is normal, then $|F(x)| \leq F(e) \rho(x)$.
5. If A is commutative, then $\|F\|=F(e)$.
6. If there is some β such that $\left\|x^{*}\right\| \leq \beta\|x\|$ for all $x \in A$, then $\|F\| \leq$ $\beta^{1 / 2} F(e)$.
7. F is a bounded linear map.

Proof. Suppose that $x, y \in A$. For any $\alpha \in \mathbb{C}$, we have on the one hand $F\left((x+\alpha y)(x+\alpha y)^{*}\right) \geq 0$, and on the other hand
$F\left((x+\alpha y)(x+\alpha y)^{*}\right)=F\left((x+\alpha y)\left(x^{*}+\bar{\alpha} y^{*}\right)\right)=F\left(x x^{*}+\bar{\alpha} x y^{*}+\alpha y x^{*}+|\alpha|^{2} y y^{*}\right)$.
Therefore,

$$
\begin{equation*}
F\left(x x^{*}\right)+\bar{\alpha} F\left(x y^{*}\right)+\alpha F\left(y x^{*}\right)+|\alpha|^{2} F\left(y y^{*}\right) \geq 0 . \tag{4}
\end{equation*}
$$

Applying (4) with $\alpha=1$ gives

$$
F\left(x x^{*}\right)+F\left(x y^{*}\right)+F\left(y x^{*}\right)+F\left(y y^{*}\right) \geq 0
$$

In particular, this expression is real, and because $F\left(x x^{*}\right)$ and $F\left(y y^{*}\right)$ are real we get that $F\left(x y^{*}\right)+F\left(y x^{*}\right)$ is real, so $\operatorname{Im} F\left(y x^{*}\right)=-\operatorname{Im} F\left(x y^{*}\right)$. Applying (4) with $\alpha=i$ gives

$$
F\left(x x^{*}\right)-i F\left(x y^{*}\right)+i F\left(y x^{*}\right)+F\left(y y^{*}\right) \geq 0 .
$$

In particular, this expression is real, and so $-i F\left(x y^{*}\right)+i F\left(y x^{*}\right)$ is real, i.e. $\underline{F\left(x y^{*}\right)}-F\left(y x^{*}\right)$ is imaginary, so $\operatorname{Re} F\left(y x^{*}\right)=\operatorname{Re} F\left(x y^{*}\right)$. Therefore $F\left(y x^{*}\right)=$ $\overline{F\left(x y^{*}\right)}$. Using $y=e$ yields

$$
F\left(x^{*}\right)=\overline{F(x)}
$$

[^9]Suppose that $x, y \in A$ and that $F\left(x y^{*}\right) \neq 0$. For any $t \in \mathbb{R}$, using (4) with $\alpha=\frac{t}{\left|F\left(x y^{*}\right)\right|} F\left(x y^{*}\right)$ gives

$$
F\left(x x^{*}\right)+\frac{t}{\left|F\left(x y^{*}\right)\right|} \overline{F\left(x y^{*}\right)} F\left(x y^{*}\right)+\frac{t}{\left|F\left(x y^{*}\right)\right|} F\left(x y^{*}\right) F\left(y x^{*}\right)+t^{2} F\left(y y^{*}\right) \geq 0
$$

i.e.

$$
F\left(x x^{*}\right)+t\left|F\left(x y^{*}\right)\right|+\frac{t}{\left|F\left(x y^{*}\right)\right|} F\left(x y^{*}\right) F\left(y x^{*}\right)+t^{2} F\left(y y^{*}\right) \geq 0
$$

and as $F\left(y x^{*}\right)=F\left(\left(x y^{*}\right)^{*}\right)=\overline{F\left(x y^{*}\right)}$, we have

$$
F\left(x x^{*}\right)+2 t\left|F\left(x y^{*}\right)\right|+t^{2} F\left(y y^{*}\right) \geq 0 .
$$

For $t=-\frac{\left|F\left(x y^{*}\right)\right|}{F\left(y y^{*}\right)}$ this is

$$
F\left(x x^{*}\right)-2 \frac{\left|F\left(x y^{*}\right)\right|^{2}}{F\left(y y^{*}\right)}+\frac{\left|F\left(x y^{*}\right)\right|^{2}}{F\left(y y^{*}\right)} \geq 0
$$

i.e.

$$
\left|F\left(x y^{*}\right)\right|^{2} \leq F\left(x x^{*}\right) F\left(y y^{*}\right)
$$

Suppose that $x \in A$. Because $x e^{*}=x$ and $e e^{*}=e$, we have

$$
|F(x)|^{2} \leq F(e) F\left(x x^{*}\right)
$$

We shall prove that $F\left(x x^{*}\right) \leq F(e) \rho\left(x x^{*}\right)$. Let $t>\rho\left(x x^{*}\right)$. It then follows that $\sigma\left(t e-x x^{*}\right)$ is contained in the open right half-plane, and thus by Theorem 8 there is some self-adjoint $u \in A$ satisfying $u^{2}=t e-x x^{*}$. Then

$$
F\left(t e-x x^{*}\right)=F\left(u^{2}\right)=F\left(u u^{*}\right) \geq 0
$$

so

$$
F\left(x x^{*}\right) \leq t F(e) .
$$

Because this is true for all $t>\rho\left(x x^{*}\right)$, we obtain

$$
F\left(x x^{*}\right) \leq F(e) \rho\left(x x^{*}\right)
$$

Suppose that x is normal. It is a fact that if x and y belong to a unital Banach algebra and $x y=y x$, then $\sigma(x y) \subseteq \sigma(x) \sigma(y) .{ }^{20}$ Thus $\sigma\left(x x^{*}\right) \subseteq \sigma(x) \sigma\left(x^{*}\right)$, from which we get

$$
\rho\left(x x^{*}\right) \leq \rho(x) \rho\left(x^{*}\right) .
$$

It is a fact that $\sigma\left(x^{*}\right)=\overline{\sigma(x)},{ }^{21}$, so we have $\rho(x)=\rho\left(x^{*}\right)$, and thus

$$
\rho\left(x x^{*}\right) \leq \rho(x)^{2}
$$

[^10]But $|F(x)|^{2} \leq F(e)^{2} \rho\left(x x^{*}\right)$, so we have $|F(x)|^{2} \leq F(e)^{2} \rho(x)^{2}$, i.e.

$$
|F(x)| \leq F(e) \rho(x)
$$

Suppose that A is commutative, and let $x \in A$. Since A is commutative, x is normal and hence we have $|F(x)| \leq F(e) \rho(x)$, and as always we have $\rho(x) \leq\|x\|$. Therefore, for every $x \in A$ we have

$$
|F(x)| \leq F(e)\|x\|
$$

This implies that $\|F\| \leq F(e)$, and because the above inequality is an equality for $x=e$, we have $\|F\|=F(e)$.

Suppose that there is some β such that $\left\|x^{*}\right\| \leq \beta\|x\|$ for all $x \in A$. We have $\rho\left(x x^{*}\right) \leq\left\|x x^{*}\right\| \leq\|x\|\left\|x^{*}\right\| \leq \beta\|x\|^{2}$. (We merely stipulated that A is a unital Banach algebra with an involution; if we had demanded that A be a B^{*}-algebra, then we would have $\left\|x x^{*}\right\|=\|x\|\left\|x^{*}\right\|=\|x\|^{2}$.) Using $|F(x)|^{2} \leq F(e)^{2} \rho\left(x x^{*}\right)$ then gives us $|F(x)|^{2} \leq \beta F(e)^{2}\|x\|^{2}$, hence

$$
|F(x)| \leq \beta^{1 / 2} F(e)\|x\|
$$

If $F(e)=0$, then $|F(x)|^{2} \leq 0$ for all $x \in A$, and hence $F=0$, which indeed is bounded. Otherwise, $F(e)>0$, and F is bounded if and only if $\frac{1}{F(e)} F$ is bounded. Therefore, to prove that F is bounded it suffices to prove that F is bounded in the case where $F(e)=1$.

Let H be the set of all self-adjoint elements of $A . H$ and $i H$ are real vector spaces. For any $x \in A$, defining $2 u=x+x^{*}$ and $2 v=i\left(x^{*}-x\right)$, we have $x=u+i v$, and u, v are self-adjoint. It follows that

$$
A=H+i H
$$

Because the elements of H are self-adjoint, the restriction of F to H is a reallinear map $H \rightarrow \mathbb{R}$. For $u \in H$, because u is self-adjoint it is in particular normal, and so $|F(x)| \leq F(e) \rho(x) \leq F(e)\|x\|=\|x\|$, because $F(e)=1$. Hence the restriction of F to H is a real-linear map $H \rightarrow \mathbb{R}$ with norm 1 , and therefore there is a unique bounded real-linear map $\Phi: \bar{H} \rightarrow \mathbb{R}$ whose restriction to H is equal to the restriction of F to H, and $\|\Phi\|=1$.

Suppose that $y \in \bar{H} \cap i \bar{H}$. There are $u_{n} \in H$ with $u_{n} \rightarrow y$ and there are $v_{n} \in H$ with $i v_{n} \rightarrow y$. Then $u_{n}^{2} \rightarrow y^{2}$ and $-v_{n}^{2} \rightarrow y$, or $v_{n}^{2} \rightarrow-y^{2}$. Because $\left|F\left(u_{n}\right)\right|^{2} \leq F(e) F\left(u_{n} u_{n}^{*}\right)=F\left(u_{n}^{2}\right)$, we have

$$
\left|F\left(u_{n}\right)\right|^{2} \leq F\left(u_{n}^{2}\right) \leq F\left(u_{n}^{2}+v_{n}^{2}\right)
$$

Because u_{n} and v_{n} are self-adjoint, $u_{n}^{2}+v_{n}^{2}$ is normal and hence

$$
\left|F\left(u_{n}^{2}+v_{n}^{2}\right)\right| \leq F(e) \rho\left(u_{n}^{2}+v_{n}^{2}\right)=\rho\left(u_{n}^{2}+v_{n}^{2}\right) \leq\left\|u_{n}^{2}+v_{n}^{2}\right\|
$$

and so we have

$$
\left|F\left(u_{n}\right)\right|^{2} \leq\left\|u_{n}^{2}+v_{n}^{2}\right\|
$$

But $u_{n}^{2} \rightarrow y$ and $v_{n}^{2} \rightarrow-y$, so $\left\|u_{n}^{2}+v_{n}^{2}\right\| \rightarrow\|y-y\|=0$. Therefore, $F\left(u_{n}\right) \rightarrow 0$, and so

$$
\Phi(y)=\lim F\left(u_{n}\right) \rightarrow 0 .
$$

That is, if $y \in \bar{H} \cap i \bar{H}$, then $F(y)=0$.
Because $A=H+i H$, certainly $A=\bar{H}+i \bar{H}$, so by Theorem 10 there is some $\gamma<\infty$ such that for all $x \in A$, there are $x_{1} \in \bar{H}$ and $x_{2} \in \bar{H}$ satisfying

$$
x=x_{1}+i x_{2}, \quad\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq \gamma\|x\| .
$$

Let $x \in A$ and let $x=x_{1}+i x_{2}$, where x_{1}, x_{2} satisfy the above, and let $x=u+i v$ with $u, v \in H$, namely $2 u=x+x^{*}$ and $2 v=i\left(x^{*}-x\right)$. Supposing that $x_{1}-u$ and $x_{2}-v \in \bar{H} \cap i \bar{H}$, which Rudin asserts but whose truth is not apparent to me, we obtain $F\left(x_{1}-u\right)=0$ and $F\left(x_{2}-v\right)=0$, or $F\left(x_{1}\right)=F(u)$ and $F\left(x_{2}\right)=F(v)$. Then,

$$
F(x)=F(u+i v)=F(u)+i F(v)=F\left(x_{1}\right)+i F\left(x_{2}\right)=\Phi\left(x_{1}\right)+i \Phi\left(x_{2}\right),
$$

and therefore, because $\|\Phi\|=1$ and because $\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq \gamma\|x\|$,

$$
|F(x)| \leq\left|\Phi\left(x_{1}\right)+i \Phi\left(x_{2}\right)\right| \leq\left|\Phi\left(x_{1}\right)\right|+\left|\Phi\left(x_{2}\right)\right| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\| \leq \gamma\|x\|
$$

showing that $\|F\| \leq \gamma$, and in particular that F is bounded.

7 The Riesz-Markov theorem and extreme points

We say that a positive Borel measure μ on a compact Hausdorff space X is regular if for every Borel subset E of X we have

$$
\mu(E)=\sup \{\mu(F): F \text { is compact and } F \subseteq E\}
$$

and

$$
\mu(E)=\inf \{\mu(G): G \text { is open and } E \subseteq G\}
$$

We say that a complex Borel measure μ on a compact Hausdorff space is regular if the positive Borel measure $|\mu|$ is regular, and we write $\|\mu\|=|\mu|(X)$. The following is the Riesz-Markov theorem, stated for complex Borel measures on a compact Hausdorff space. ${ }^{22}$

Theorem 12 (Riesz-Markov). Suppose that X is a compact Hausdorff space. If Λ is a bounded linear functional on $C(X)$, then there is one and only one regular complex Borel measure μ on X satisfying

$$
\Lambda f=\int_{X} f d \mu, \quad f \in C(X)
$$

This measure μ satisfies $\|\mu\|=\|\Lambda\|$.
The following theorem uses the Riesz-Markov theorem to define a correspondence between positive linear functionals on a commutative unital Banach algebra with a symmetric involution and regular positive Borel measures on its maximal ideal space. ${ }^{23}$

[^11]Theorem 13. Suppose that A is a commutative unital Banach algebra with an involution * $: A \rightarrow A$ satisfying

$$
\begin{equation*}
h\left(x^{*}\right)=\overline{h(x)}, \quad x \in A, h \in \Delta \tag{5}
\end{equation*}
$$

Let K be the set of all positive linear functionals $F: A \rightarrow \mathbb{C}$ satisfying $F(e) \leq 1$, and let M be the set of all regular positive Borel measures μ on Δ satisfying $\mu(\Delta) \leq 1 . K$ and M are convex sets. If $\mu \in M$, then $F: A \rightarrow \mathbb{C}$ defined by

$$
F_{\mu}(x)=\int_{\Delta} \hat{x} d \mu, \quad x \in A
$$

belongs to K, and this map $\mu \mapsto F_{\mu}$ is an isometric bijection $M \rightarrow K$.
Proof. If $F_{1}, F_{2} \in K$ and $0 \leq t \leq 1$, then $(1-t) F_{1}+t F_{2}$ is linear, and it is straightforward to check that it is positive. Moreover, $\left((1-t) F_{1}+t F_{2}\right)(e)=$ $(1-t) F_{1}(e)+t F_{2}(e) \leq(1-t)+t=1$, so $(1-t) F_{1}+t F_{2} \in K$. Therefore K is a convex set.

Suppose that $\mu_{1}, \mu_{2} \in M$, that a_{1}, a_{2} are nonnegative real numbers, and let $\mu=a_{1} \mu_{1}+a_{2} \mu_{2}$. If E is a Borel subset of Δ, then for any $\epsilon>0$ there are compact subsets F_{1}, F_{2} of Δ such that $\mu_{1}(E)<\mu_{1}\left(F_{1}\right)-\epsilon$ and $\mu_{2}(E)<\mu_{2}\left(F_{2}\right)-\epsilon$. With $F=F_{1} \cup F_{2}$, we have

$$
\begin{aligned}
\mu(F) & =a_{1} \mu_{1}(F)+a_{2} \mu_{2}(F) \\
& \geq a_{1} \mu_{1}\left(F_{1}\right)+a_{2} \mu_{2}\left(F_{2}\right) \\
& \geq a_{1}\left(\mu_{1}(E)+\epsilon\right)+a_{2}\left(\mu_{2}(E)+\epsilon\right) \\
& =\mu(E)+\left(a_{1}+a_{2}\right) \epsilon
\end{aligned}
$$

It follows that $\mu(E)=\sup \{\mu(F): F$ is compact and $F \subseteq E\}$. If E is a Borel subset of Δ, then for any $\epsilon>0$ there are open subsets G_{1}, G_{2} of Δ such that $\mu_{1}(E)>\mu_{1}\left(G_{1}\right)-\epsilon$ and $\mu_{2}(E)>\mu_{2}\left(G_{2}\right)-\epsilon$. With $G=G_{1} \cap G_{2}$, we have

$$
\begin{aligned}
\mu(G) & =a_{1} \mu_{1}(G)+a_{2} \mu_{2}(G) \\
& \leq a_{1} \mu_{1}\left(G_{1}\right)+a_{2} \mu_{2}\left(G_{2}\right) \\
& <a_{1}\left(\mu_{1}(E)+\epsilon\right)+a_{2}\left(\mu_{2}(E)+\epsilon\right) \\
& =\mu(E)+\left(a_{1}+a_{2}\right) \epsilon
\end{aligned}
$$

It follows that $\mu(E)=\inf \{\mu(G): G$ is open and $E \subseteq G\}$. Therefore, $\mu=a_{1} \mu_{1}+$ $a_{2} \mu_{2}$ is a regular positive Borel measure. In particular, if $0 \leq t \leq 1$ and $a_{1}=1-t, a_{2}=t$, then μ is a regular positive Borel measure. Finally, for $\mu=(1-t) \mu_{1}+t \mu_{2}, 0 \leq t \leq 1$, we have, because $\mu_{1}(\Delta) \leq 1$ and $\mu_{2}(\Delta) \leq 1$,

$$
\mu(\Delta)=(1-t) \mu_{1}(\Delta)+t \mu_{2}(\Delta) \leq(1-t)+t=1
$$

so $\mu \in M$, showing that M is a convex set.
Let $\mu \in M$. It is apparent that $F_{\mu}: A \rightarrow \mathbb{C}$ is linear. For $x \in A$, we have $\Gamma\left(x x^{*}\right)=\Gamma(x) \Gamma\left(x^{*}\right)$, and as $\Gamma\left(x^{*}\right)=\overline{\Gamma(x)}$ by (5), we get $\Gamma\left(x x^{*}\right)=|\Gamma(x)|^{2}$. As
$|\Gamma(x)|^{2}(h) \geq 0$ for all $h \in \Delta$, we have

$$
F_{\mu}\left(x x^{*}\right)=\int_{\Delta} \Gamma\left(x x^{*}\right) d \mu=\int_{\Delta}|\Gamma(x)|^{2} d \mu \geq 0
$$

showing that F_{μ} is a positive linear functional. Furthermore, $\hat{e}(h)=h(e)=1$ for all $h \in \Delta$, so

$$
F_{\mu}(e)=\mu(\Delta) \leq 1
$$

showing that $F_{\mu} \in K$.
If $x \in \operatorname{rad} A$, then $\rho(x)=0$ by (1), and so $F(x)=0$ by Theorem 11. We define $\widehat{F}: \widehat{A} \rightarrow \mathbb{C}$

$$
\widehat{F}(\hat{x})=F(x)
$$

this makes sense because if $\hat{x}=\hat{y}$ then $\Gamma(x-y)=0$, and so by Theorem 3 we have $x-y \in \operatorname{rad} A$ and hence $F(x-y)=0$, i.e. so $F(x)=F(y)$. For $x \in A, x$ is normal because A is commutative so we have by Theorem 11 that

$$
|\widehat{F}(\hat{x})|=|F(x)| \leq F(e) \rho(x)
$$

and by (1) we have $\rho(x)=\|\hat{x}\|_{\infty}$, so

$$
|\widehat{F}(\hat{x})| \leq F(e)\|\hat{x}\|_{\infty}
$$

As $\widehat{F}(\hat{e})=F(e)$, it follows that $\|\widehat{F}\|=F(e)$. By (5) and because \widehat{A} separates points in Δ, applying the Stone-Weierstrass we obtain that \widehat{A} is dense in $C(\Delta)$. Because \widehat{F} is a continuous linear functional on the dense subspace \widehat{A} of $C(\Delta)$, there is a unique continuous linear functional Λ on $C(\Delta)$ such that $\Lambda=\widehat{F}$ on \widehat{A}, and $\|\Lambda\|=\|\widehat{F}\|$. Applying Theorem 12, there is one and only one regular complex Borel measure μ on X that satisfies

$$
\begin{equation*}
\Lambda f=\int_{\Delta} f d \mu, \quad f \in C(\Delta) \tag{6}
\end{equation*}
$$

and $\|\mu\|=\|\Lambda\|=\|\widehat{F}\|=F(e)$. It follows that $\mu \mapsto F_{\mu}$ is one-to-one. Because $\hat{e}(h)=1$ for all $h \in \Delta$,

$$
\mu(\Delta)=\int_{\Delta} \chi_{\Delta} d \mu=\int_{\Delta} \hat{e} d \mu=\Lambda \hat{e}=\widehat{F}(\hat{e})=F(e)=\|\mu\|=|\mu|(\Delta)
$$

The fact that $\mu(\Delta)=|\mu|(\Delta)$ implies that μ is a positive measure. The above equalities also state $\mu(\Delta)=F(e)$, and since $F \in K$ we have $F(e) \leq 1$, hence $\mu(\Delta) \leq 1$. Therefore, $\mu \in M$. For $x \in A$, as $\hat{x} \in C(\Delta)$ we have by (6) that

$$
F_{\mu}(x)=\int_{\Delta} \hat{x} d \mu=\Lambda \hat{x}=\widehat{F}(\hat{x})=F(x)
$$

showing that $F=F_{\mu}$. This shows that $\mu \mapsto F_{\mu}$ is onto, and therefore $\mu \mapsto F_{\mu}$ is a bijection $M \rightarrow K$.

Because the map $\mu \mapsto F_{\mu}$ in the above theorem is an isometric bijection $M \rightarrow K$, it follows that that μ is an extreme point of M if and only if F_{μ} is an extreme point of K.

It is a fact that the set of extreme points of the set of regular Borel probability measures on a compact Hausdorff space X is $\left\{\delta_{x}: x \in X\right\} .{ }^{24}$ Given this, one proves that the set of extreme points of M is $\{0\} \cup\left\{\delta_{h}: h \in \Delta\right\}$. For $x \in A$, $F_{0}(x)=0$, i.e. $F_{0}=0$. For $h \in \Delta$ and $x \in A$,

$$
F_{\delta_{h}}(x)=\int_{\Delta} \hat{x} d \delta_{h}=\hat{x}(h)=h(x),
$$

so $F_{\delta_{h}}=h$. Therefore, the extreme points of K are $\{0\} \cup \Delta$, that is, the set of algebra homomorphisms $A \rightarrow \mathbb{C}$.

Corollary 14. Suppose that A is a commutative unital Banach algebra with involution * $: A \rightarrow A$ satisfying

$$
h\left(x^{*}\right)=\overline{h(x)}, \quad x \in A, h \in \Delta .
$$

If K is the set of all positive linear functionals $F: A \rightarrow \mathbb{C}$ satisfying $F(e) \leq 1$, then

$$
\operatorname{ext} K=\{0\} \cup \Delta
$$

Moreover, it is straightforward to check that the set K in the above corollary is a weak-* closed subset of A^{*} : if $F_{i} \in K$ is a net that weak-* converges to $\Lambda \in A^{*}$, one checks that $\Lambda\left(x x^{*}\right) \geq 0$ for all $x \in A$ and that $\Lambda e \leq 1$. By the Banach-Alaoglu theorem, the set $B=\left\{\Lambda \in A^{*}:\|\Lambda\| \leq 1\right\}$ is weak-* compact, and if $F \in K$ then $\|F\|=F(e)$ by Theorem 11 and $F(e) \leq 1$, so $K \subseteq B$. Hence, K is a weak-* compact subset of A^{*}. Therefore, the Krein-Milman theorem ${ }^{25}$ tells us that K is equal to the weak-* closure of the convex hull of the set of its extreme points, and by the above corollary this means that K is equal to the weak-* closure of the convex hull of $\{0\} \cup \Delta$.

8 Positive definite functions

A function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is said to be positive-definite if $r \geq 1, x_{1}, \ldots, x_{r} \in$ $\mathbb{R}^{n}, c_{1}, \ldots, c_{r} \in \mathbb{C}$ imply that

$$
\sum_{i, j=1}^{r} c_{i} \overline{c_{j}} \phi\left(x_{i}-x_{j}\right) \geq 0
$$

in particular, for ϕ to be positive-definite demands that the left-hand side of this inequality is real.

A positive-definite function need not be measurable. For example, \mathbb{R} is a vector space over \mathbb{Q}, and if $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is a vector space automorphism of \mathbb{R} over

[^12]\mathbb{Q}, one proves that $x \mapsto e^{i \psi(x)}$ is a positive-definite function $\mathbb{R} \rightarrow \mathbb{C}$, and that there are ψ for which $x \mapsto e^{i \psi(x)}$ is not measurable.

The following theorem states some basic facts about positive-definite functions. More material on positive-definite functions is presented in Bogachev; for example, if $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a measurable positive-definite function, then there is a continuous positive-definite function $\mathbb{R}^{n} \rightarrow \mathbb{C}$ that is equal to ϕ almost everywhere. ${ }^{26}$

Theorem 15. If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive-definite, then

$$
\begin{equation*}
\phi(0) \geq 0 \tag{7}
\end{equation*}
$$

and for all $x \in \mathbb{R}^{n}$ we have

$$
\begin{equation*}
\overline{\phi(x)}=\phi(-x) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
|\phi(x)| \leq \phi(0) \tag{9}
\end{equation*}
$$

Proof. Using $r=1$ and $c_{1}=1$, we have for all $x_{1} \in \mathbb{R}^{n}$ that $\phi\left(x_{1}-x_{1}\right) \geq 0$, i.e. $\phi(0) \geq 0$.

Using $r=2$, for $x_{1}, x_{2} \in \mathbb{R}^{n}$ and $c_{1}, c_{2} \in \mathbb{C}$ we have

$$
c_{1} \overline{c_{1}} \phi\left(x_{1}-x_{1}\right)+c_{1} \overline{c_{2}} \phi\left(x_{1}-x_{2}\right)+c_{2} \overline{c_{1}} \phi\left(x_{2}-x_{1}\right)+c_{2} \overline{c_{2}} \phi\left(x_{2}-x_{2}\right) \geq 0 .
$$

Take $x_{1}=x$ and $x_{2}=0$, with which

$$
\left|c_{1}\right|^{2} \phi(0)+c_{1} \overline{c_{2}} \phi(x)+c_{2} \overline{c_{1}} \phi(-x)+\left|c_{2}\right|^{2} \phi(0) \geq 0
$$

in particular, the left-hand side is real, and because $\phi(0)$ is real by (7), this implies that $c_{1} \overline{c_{2}} \phi(x)+c_{2} \overline{c_{1}} \phi(-x)$ is real. That is, it is equal to its complex conjugate:

$$
c_{1} \overline{c_{2}} \phi(x)+c_{2} \overline{c_{1}} \phi(-x)=\overline{c_{1}} c_{2} \overline{\phi(x)}+\overline{c_{2}} c_{1} \overline{\phi(-x)} .
$$

The fact that this holds every $c_{1}, c_{2} \in \mathbb{C}$ implies that $\overline{\phi(x)}=\phi(-x)$.
Again using that

$$
c_{1} \overline{c_{1}} \phi\left(x_{1}-x_{1}\right)+c_{1} \overline{c_{2}} \phi\left(x_{1}-x_{2}\right)+c_{2} \overline{c_{1}} \phi\left(x_{2}-x_{1}\right)+c_{2} \overline{c_{2}} \phi\left(x_{2}-x_{2}\right) \geq 0
$$

with $x_{1}=x, x_{2}=0$ and $c_{2}=1$ we get

$$
\left|c_{1}\right|^{2} \phi(0)+c_{1} \phi(x)+\overline{c_{1}} \phi(-x)+\phi(0) \geq 0
$$

Applying (8) gives

$$
\left|c_{1}\right|^{2} \phi(0)+c_{1} \phi(x)+\overline{c_{1} \phi(x)}+\phi(0) \geq 0
$$

For $c_{1} \in \mathbb{C}$ such that $\left|c_{1}\right|=1$,

$$
2 \phi(0)+2 \operatorname{Re}\left(c_{1} \phi(x)\right) \geq 0
$$

[^13]$$
-\operatorname{Re}\left(c_{1} \phi(x)\right) \leq \phi(0)
$$

Thus, taking $c_{1} \in \mathbb{C}$ such that $\left|c_{1}\right|=1$ and for which $-\operatorname{Re}\left(c_{1} \phi(x)\right)=|\phi(x)|$, we get $|\phi(x)| \leq \phi(0)$.

The following lemma about positive-definite functions follows a proof in Bogachev. ${ }^{27}$

Lemma 16. If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a measurable positive-definite function and $f \in L^{1}\left(\mathbb{R}^{n}\right)$ is nonnegative, then

$$
\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \phi(x-y) f(x) f(y) d m_{n}(x) d m_{n}(y) \geq 0
$$

Proof. For $r \geq 2$ and for any x_{1}, \ldots, x_{r} and $c_{1}=1, \ldots, c_{r}=1$, we have

$$
\sum_{j, k=1}^{r} \phi\left(x_{j}-x_{k}\right) \geq 0
$$

or

$$
r \phi(0)+\sum_{j \neq k} \phi\left(x_{j}-x_{k}\right) \geq 0
$$

By (9), ϕ is bounded. It follows that we can integrate both sides of the above inequality over $\left(\mathbb{R}^{n}\right)^{r}$ with respect to the positive measure

$$
f\left(x_{1}\right) \cdots f\left(x_{r}\right) d m_{n}\left(x_{1}\right) \cdots d m_{n}\left(x_{r}\right)
$$

Writing

$$
I=\int_{\mathbb{R}^{n}} f(x) d m_{n}(x)
$$

we obtain

$$
r \phi(0) I^{r}+\sum_{j \neq k} \int_{\mathbb{R}^{n}} \cdots \int_{\mathbb{R}^{n}} \phi\left(x_{j}-x_{k}\right) f\left(x_{1}\right) \cdots f\left(x_{r}\right) d m_{n}\left(x_{1}\right) \cdots d m_{n}\left(x_{r}\right) \geq 0
$$

and so, writing

$$
J=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \phi(x-y) f(x) f(y) d m_{n}(x) d m_{n}(y)
$$

we have

$$
r \phi(0) I^{r}+\sum_{j \neq k} J I^{r-2} \geq 0
$$

or

$$
r \phi(0) I^{r}+r(r-1) J I^{r-2} \geq 0
$$

[^14]If $I=0$, then because f is nonnegative it follows that f is 0 almost everywhere, in which case $J=0$, so the claim is true. If $I>0$, then dividing by $r(r-1) I^{r-2}$ we obtain

$$
\frac{1}{r-1} \phi(0) I^{2}+J \geq 0
$$

This inequality holds for all $r \geq 2$, so taking $r \rightarrow \infty$ yields

$$
J \geq 0
$$

which is the claim.
For $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$,

$$
(f * g)(x)=\int_{\mathbb{R}^{n}} f(y) g(x-y) d m_{n}(y)
$$

The support of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, denoted $\operatorname{supp} f$, is the closure of the set $\left\{x \in \mathbb{R}^{n}: f(x) \neq 0\right\}$. We denote by $C_{c}\left(\mathbb{R}^{n}\right)$ the set of all continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ such that supp f is a compact set. It is straightforward to check that an element of $C_{c}\left(\mathbb{R}^{n}\right)$ is uniformly continuous on \mathbb{R}^{n}. The following theorem is similar to the previous lemma, but applies to functions that need not be nonnegative. ${ }^{28}$

Theorem 17. For $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, define $\tilde{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ by $\tilde{f}(x)=\overline{f(-x)}$. If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is a continuous positive-definite function, then for all $f \in C_{c}\left(\mathbb{R}^{n}\right)$, we have

$$
\int_{\mathbb{R}^{n}}(f * \widetilde{f}) \psi \geq 0
$$

If μ is a complex Borel measure on \mathbb{R}^{n}, the Fourier transform of μ is the function $\hat{\mu}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ defined by

$$
\hat{\mu}(\xi)=\int_{\mathbb{R}^{n}} e_{-\xi} d \mu, \quad \xi \in \mathbb{R}^{n}
$$

One proves using the dominated convergence theorem that $\hat{\mu}$ is continuous.
Theorem 18. If μ is a finite positive Borel measure on \mathbb{R}^{n}, then $\hat{\mu}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive-definite.

[^15]Proof. For $\xi_{1}, \ldots, \xi_{r} \in \mathbb{R}^{n}$ and $c_{1}, \ldots, c_{r} \in \mathbb{C}$, we have

$$
\begin{aligned}
\sum_{j, k=1}^{r} c_{j} \overline{c_{k}} \hat{\mu}\left(\xi_{j}-\xi_{k}\right) & =\sum_{j, k=1}^{r} c_{j} \overline{c_{k}} \int_{\mathbb{R}^{n}} e^{-i\left(\xi_{j}-\xi_{k}\right) \cdot x} d \mu(x) \\
& =\int_{\mathbb{R}^{n}} \sum_{j, k=1}^{r} c_{j} e^{-i \xi_{j} \cdot x} \overline{c_{k} e^{-i \xi_{k} \cdot x}} d \mu(x) \\
& =\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{r} c_{j} e^{-i \xi_{j} \cdot x}\right) \overline{\left(\sum_{k=1}^{r} c_{k} e^{-i \xi_{k} \cdot x}\right)} d \mu(x) \\
& =\int_{\mathbb{R}^{n}}\left|\sum_{j=1}^{r} c_{j} e^{-i \xi_{j} \cdot x}\right|^{2} d \mu(x) \\
& \geq 0
\end{aligned}
$$

The following proof of Bochner's theorem follows an exercise in Rudin. ${ }^{29}$
Theorem 19 (Bochner). If $\phi: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is continuous and positive-definite, then there is some finite positive Borel measure ν on \mathbb{R}^{n} for which $\phi=\hat{\nu}$.

Proof. Let A be the Banach algebra defined in $\S 4$, whose elements are those complex Borel measures μ on \mathbb{R}^{n} for which there is some $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and some $\alpha \in \mathbb{C}$ such that

$$
d \mu=f d m_{n}+\alpha d \delta
$$

where m_{n} is Lebesgue measure on \mathbb{R}^{n}. For $f+\alpha \delta, g+\beta \delta \in A$, we have

$$
(f+\alpha \delta) *(g+\beta \delta)=(f * g+\beta f+\alpha g)+\alpha \beta \delta
$$

we are identifying $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with the complex Borel measure whose RadonNikodym derivative with respect to m_{n} is f. The norm on A is the total variation norm of a complex measure; one checks that for $f+\alpha \delta$ this is

$$
\|f+\alpha \delta\|=\|f\|+|\alpha|
$$

where $\|f\|=\int_{\mathbb{R}^{n}}|f(x)| d m_{n}(x)$.
For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, we define $\tilde{f} \in L^{1}\left(\mathbb{R}^{n}\right)$ by $\widetilde{f}(x)=\overline{f(-x)}$, and we define * $: A \rightarrow A$ by

$$
(f+\alpha \delta)^{*}=\widetilde{f}+\bar{\alpha} \delta, \quad f+\alpha \delta \in A
$$

[^16]On the one hand,

$$
\begin{aligned}
((f+\alpha \delta) *(g+\beta \delta))^{*} & =((f * g+\beta f+\alpha g)+\alpha \beta \delta)^{*} \\
& =\widetilde{f * g}+\bar{\beta} \tilde{f}+\bar{\alpha} \widetilde{g}+\overline{\alpha \beta} \delta \\
& =\widetilde{f * g}+\bar{\beta} \tilde{f}+\bar{\alpha} \widetilde{g}+\overline{\alpha \beta} \delta,
\end{aligned}
$$

and

$$
\widetilde{f * g}(x)=\overline{\int_{\mathbb{R}^{n}} f(y) g(-x-y) d m_{n}(y)}
$$

On the other hand,

$$
\begin{aligned}
(g+\beta \delta)^{*} *(f+\alpha \delta)^{*} & =(\widetilde{g}+\bar{\beta} \delta) *(\widetilde{f}+\bar{\alpha} \delta) \\
& =(\widetilde{g} * \widetilde{f}+\bar{\alpha} \widetilde{g}+\bar{\beta} \widetilde{f})+\overline{\beta \alpha} \delta
\end{aligned}
$$

and

$$
\begin{aligned}
(\widetilde{g} * \widetilde{f})(x) & =\int_{\mathbb{R}^{n}} \tilde{g}(y) \widetilde{f}(x-y) d m_{n}(y) \\
& =\int_{\mathbb{R}^{n}} \overline{g(-y) f(-x+y)} d m_{n}(y) \\
& =\int_{\mathbb{R}^{n}} g(-y-x) f(y) d m_{n}(y)
\end{aligned}
$$

Therefore we have

$$
((f+\alpha \delta) *(g+\beta \delta))^{*}=(g+\beta \delta)^{*} *(f+\alpha \delta)^{*}
$$

Thus * $: A \rightarrow A$ is an involution (the other properties demanded of an involution are immediate).

We define $F: A \rightarrow \mathbb{C}$ by

$$
F(f+\alpha \delta)=\int_{\mathbb{R}^{n}} f \phi d m_{n}+\alpha \phi(0), \quad f+\alpha \delta \in A
$$

It is apparent that F is linear, and because $|\phi(x)| \leq \phi(0)$ for all x,

$$
\begin{aligned}
|F(f+\alpha \delta)| & \leq\left|\int_{\mathbb{R}^{n}} f \phi d m_{n}\right|+|\alpha| \phi(0) \\
& \leq \int_{\mathbb{R}^{n}}|f||\phi| d m_{n}+|\alpha| \phi(0) \\
& \leq \phi(0) \int_{\mathbb{R}^{n}}|f| d m_{n}+|\alpha| \phi(0) \\
& =\phi(0)\|f+\alpha \delta\|
\end{aligned}
$$

from which it follows that $\|F\|=\phi(0)$, and in particular that F is bounded. Let $A_{0}=\left\{f+\alpha \delta \in A: f \in C_{c}\left(\mathbb{R}^{n}\right)\right\}$. Because $F: A \rightarrow \mathbb{C}$ is bounded and A_{0}
is a dense subset of A, to prove that F is a positive linear functional it suffices to prove that for all $f+\alpha \delta \in A_{0}$ we have $F\left((f+\alpha \delta) *(f+\alpha \delta)^{*}\right) \geq 0$.

For $g \in C_{c}\left(\mathbb{R}^{n}\right)$, by Theorem 17 we obtain

$$
\begin{equation*}
F\left(g * g^{*}\right)=F(g * \widetilde{g})=\int_{\mathbb{R}^{n}}(g * \widetilde{g}) \phi d m_{n} \geq 0 \tag{10}
\end{equation*}
$$

Define $\eta: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
\eta(x)= \begin{cases}\exp \left(-\frac{1}{1-|x|^{2}}\right) & |x|<1 \\ 0 & |x| \geq 1\end{cases}
$$

and for $\epsilon>0$, define $\eta_{\epsilon}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $\eta_{\epsilon}(x)=\epsilon^{-n} \eta\left(\frac{x}{\epsilon}\right)$. Let $f+\alpha \delta \in A_{0}$ and define $g_{\epsilon}=f+\alpha \eta_{\epsilon} \in C_{c}\left(\mathbb{R}^{n}\right)$. From (10) we have $F\left(g_{\epsilon} * g_{\epsilon}^{*}\right) \geq 0$ for any $\epsilon>0$. On the other hand,

$$
\begin{aligned}
F\left(g_{\epsilon} * g_{\epsilon}^{*}\right)= & F\left(\left(f+\alpha \eta_{\epsilon}\right) *\left(\tilde{f}+\bar{\alpha} \eta_{\epsilon}\right)\right) \\
= & F\left(f * \widetilde{f}+\bar{\alpha} f * \eta_{\epsilon}+\alpha \eta_{\epsilon} * \tilde{f}+|\alpha|^{2} \eta_{\epsilon} * \eta_{\epsilon}\right) \\
= & F(f * \widetilde{f})+\bar{\alpha} \int_{\mathbb{R}^{n}}\left(f * \eta_{\epsilon}\right) \phi d m_{n}+\alpha \int_{\mathbb{R}^{n}}\left(\eta_{\epsilon} * \widetilde{f}\right) \phi d m_{n} \\
& +|\alpha|^{2} \int_{\mathbb{R}^{n}}\left(\eta_{\epsilon} * \eta_{\epsilon}\right) \phi d m_{n} .
\end{aligned}
$$

We take as granted that

$$
\int_{\mathbb{R}^{n}}\left(f * \eta_{\epsilon}\right) \phi d m_{n} \rightarrow \int_{\mathbb{R}^{n}} f \phi d m_{n}
$$

as $\epsilon \rightarrow 0$, that

$$
\int_{\mathbb{R}^{n}}\left(\eta_{\epsilon} * \widetilde{f}\right) \phi d m_{n} \rightarrow \int_{\mathbb{R}^{n}} \tilde{f} \phi d m_{n}
$$

as $\epsilon \rightarrow 0$, and that

$$
\int_{\mathbb{R}^{n}}\left(\eta_{\epsilon} * \eta_{\epsilon}\right) \phi d m_{n} \rightarrow \phi(0)
$$

as $\epsilon \rightarrow 0$. Furthermore,

$$
\begin{aligned}
F\left((f+\alpha \delta) *(f+\alpha \delta)^{*}\right) & =F((f+\alpha \delta) *(\tilde{f}+\bar{\alpha} \delta)) \\
& =F\left(f * \widetilde{f}+\bar{\alpha} f+\alpha \widetilde{f}+|\alpha|^{2}\right)
\end{aligned}
$$

Thus

$$
F\left(g_{\epsilon} * g_{\epsilon}^{*}\right) \rightarrow F\left((f+\alpha \delta) *(f+\alpha \delta)^{*}\right)
$$

as $\epsilon \rightarrow 0$. Since $F\left(g_{\epsilon} * g_{\epsilon}^{*}\right) \geq 0$ for all $\epsilon>0$, it follows that

$$
F\left((f+\alpha \delta) *(f+\alpha \delta)^{*}\right) \geq 0
$$

Therefore, $F: A \rightarrow \mathbb{C}$ is a positive linear functional.

Because F is a positive linear functional and $F(e)=F(\delta)=1$, we can apply Theorem 12, according to which there is a regular positive Borel measure μ on Δ satisfying

$$
F(f+\alpha \delta)=\int_{\Delta} \Gamma(f+\alpha \delta) d \mu, \quad f+\alpha \delta \in A
$$

and hence, from the definition of F,

$$
\int_{\mathbb{R}^{n}} f \phi d m_{n}+\alpha \phi(0)=\int_{\Delta} \Gamma(f+\alpha \delta) d \mu, \quad f+\alpha \in A
$$

We state the following again from $\S 4$ for easy access. If $t \in \mathbb{R}^{n}$, define $h_{t}: A \rightarrow \mathbb{C}$ by

$$
h_{t}(f+\alpha \delta)=\hat{f}(t)+\alpha, \quad f+\alpha \delta \in A,
$$

and also define $h_{\infty}: A \rightarrow \mathbb{C}$ by

$$
h_{\infty}(f+\alpha \delta)=\alpha, \quad f+\alpha \delta \in A
$$

Let $\mathbb{R}^{n} \cup\{\infty\}$ be the one-point compactification of \mathbb{R}^{n}. We proved in $\S 4$ that the map $T: \mathbb{R}^{n} \cup\{\infty\} \rightarrow \Delta$ defined by $T(t)=h_{t}$ is a homeomorphism. With $\nu=\left(T^{-1}\right)_{*} \mu$ we have $\mu=T_{*} \nu$, and then

$$
\begin{aligned}
\int_{\Delta} \Gamma(f+\alpha \delta) d \mu & =\int_{\Delta} \Gamma(f) d \mu+\alpha \int_{\Delta} \Gamma(\delta) d \mu \\
& =\int_{\Delta} \Gamma(f) d\left(T_{*} \nu\right)+\alpha \int_{\Delta} \chi_{\Delta} d \mu \\
& =\int_{\mathbb{R}^{n} \cup\{\infty\}} \Gamma(f) \circ T d \nu+\alpha \mu(\Delta) \\
& =\int_{\mathbb{R}^{n} \cup\{\infty\}} \Gamma(f) \circ T(t) d \nu(t)+\alpha F(\delta) \\
& =\int_{\mathbb{R}^{n} \cup\{\infty\}} h_{t}(f) d \nu(t)+\alpha \phi(0) \\
& =\int_{\mathbb{R}^{n}} \hat{f}(t) d \nu(t)+\alpha \phi(0)
\end{aligned}
$$

Therefore

$$
\int_{\mathbb{R}^{n}} f \phi d m_{n}+\alpha \phi(0)=\int_{\mathbb{R}^{n}} \hat{f}(t) d \nu(t)+\alpha \phi(0)
$$

i.e.

$$
\int_{\mathbb{R}^{n}} f \phi d m_{n}=\int_{\mathbb{R}^{n}} \hat{f}(t) d \nu(t)
$$

As

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \hat{f}(t) d \nu(t) & =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} e^{-i t \cdot x} f(x) d m_{n}(x)\right) d \nu(t) \\
& =\int_{\mathbb{R}^{n}} f(x) \int_{\mathbb{R}^{n}} e^{-i x \cdot t} d \nu(t) d m_{n}(x) \\
& =\int_{\mathbb{R}^{n}} f(x) \hat{\nu}(x) d m_{n}(x),
\end{aligned}
$$

we have

$$
\int_{\mathbb{R}^{n}} f \phi d m_{n}=\int_{\mathbb{R}^{n}} f \hat{\nu} d m_{n}
$$

This is true for all $f \in L^{1}\left(\mathbb{R}^{n}\right)$, from which it follows that $\phi=\hat{\nu}$.

[^0]: ${ }^{1}$ Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.

[^1]: ${ }^{2}$ Walter Rudin, Functional Analysis, second ed., p. 277, Theorem 11.5.
 ${ }^{3}$ Walter Rudin, Functional Analysis, second ed., p. 280, Theorem 11.9.

[^2]: ${ }^{4}$ Walter Rudin, Functional Analysis, second ed., p. 249, Theorem 10.7.

[^3]: ${ }^{5}$ Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
 ${ }^{6}$ Walter Rudin, Functional Analysis, second ed., p. 249, Theorem 10.7.
 ${ }^{7}$ Walter Rudin, Functional Analysis, second ed., p. 281, Theorem 11.10.
 ${ }^{8}$ Walter Rudin, Functional Analysis, second ed., p. 51, Theorem 2.15.
 ${ }^{9}$ Walter Rudin, Functional Analysis, second ed., p. 282, Lemma 11.11.

[^4]: ${ }^{10}$ Walter Rudin, Functional Analysis, second ed., p. 282, Theorem 11.12.
 ${ }^{11}$ Walter Rudin, Functional Analysis, second ed., p. 49, Corollary 2.12.

[^5]: ${ }^{12}$ See Walter Rudin, Real and Complex Analysis, third ed., chapter 6.

[^6]: ${ }^{13}$ Walter Rudin, Functional Analysis, second ed., p. 285.
 ${ }^{14}$ Walter Rudin, Functional Analysis, second ed., p. 289, Theorem 11.18.

[^7]: ${ }^{15}$ Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.

[^8]: ${ }^{16}$ Walter Rudin, Functional Analysis, second ed., p. 294, Theorem 11.26.
 ${ }^{17}$ Walter Rudin, Functional Analysis, second ed., p. 294, Theorem 11.28.
 ${ }^{18}$ Walter Rudin, Functional Analysis, second ed., p. 137, Theorem 5.20.

[^9]: ${ }^{19}$ Walter Rudin, Functional Analysis, second ed., p. 296, Theorem 11.31.

[^10]: ${ }^{20}$ Walter Rudin, Functional Analysis, second ed., p. 293, Theorem 11.23.
 ${ }^{21}$ Walter Rudin, Functional Analysis, second ed., p. 288, Theorem 11.15.

[^11]: ${ }^{22}$ Walter Rudin, Real and Complex Analysis, third ed., p. 130, Theorem 6.19.
 ${ }^{23}$ Walter Rudin, Functional Analysis, second ed., p. 299, Theorem 11.33.

[^12]: ${ }^{24}$ Barry Simon, Convexity: An Analytic Viewpoint, p. 128, Example 8.16.
 ${ }^{25}$ Walter Rudin, Functional Analysis, second ed., p. 75, Theorem 3.23.

[^13]: ${ }^{26}$ Vladimir I. Bogachev, Measure Theory, vol. 1, p. 221, Theorem 3.10.20. See also Anthony W. Knapp, Basic Real Analysis, p. 406.

[^14]: ${ }^{27}$ Vladimir I. Bogachev, Measure Theory, vol. 1, p. 221, Lemma 3.10.19.

[^15]: ${ }^{28}$ Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 85, Proposition 3.35.

[^16]: ${ }^{29}$ Walter Rudin, Functional Analysis, second ed., p. 303, Exercise 14. Other references on Bochner's theorem are the following: Barry Simon, Convexity: An Analytic Viewpoint, p. 153, Theorem 9.17; Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, vol. II, p. 293, Theorem 33.3; Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets, p. 220, Theorem 3.9.16; Walter Rudin, Fourier Analysis on Groups, p. 19, Theorem 1.4.3; Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 170; Vladimir I. Bogachev, Measure Theory, vol. II, p. 121, Theorem 7.13.1; Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 95, Theorem 4.18.

