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1 Introduction

In this note, unless we say otherwise every vector space or algebra we speak
about is over C.

If A is a Banach algebra and e ∈ A satisfies xe = x and ex = x for all x ∈ A,
and also ∥e∥ = 1, we say that e is unity and that A is unital.

If A is a unital Banach algebra and x ∈ A, the spectrum of x is the set σ(x)
of those λ ∈ C for which λe−x is not invertible. It is a fact that if A is a unital
Banach algebra and x ∈ A, then σ(x) ̸= ∅.1

If A and B are Banach algebras and T : A → B is a map, we say that T
is an isomorphism of Banach algebras if T is an algebra isomorphism and an
isometry.

Theorem 1 (Gelfand-Mazur). If A is a Banach algebra and every nonzero
element of A is invertible, then there is an isomorphism of Banach algebras
A→ C.

Proof. Let x ∈ A. σ(x) ̸= ∅. If λ1, λ2 ∈ σ(x), then neither λ1e−x nor λ2e−x is
invertible, so they are both 0: x = λ1e and x = λ2e, whence λ1 = λ2. Therefore
σ(x) has precisely one element, which we denote by λ(x), and which satisfies

x = λ(x)e.

If x, y ∈ A, then x + y = λ(x)e + λ(y)e = (λ(x) + λ(y))e and also x + y =
λ(x + y)e, so λ(x + y) = λ(x) + λ(y). If x ∈ A and α ∈ C, then αx = αλ(x)e
and also αx = λ(αx)e, so λ(αx) = αλ(x). Hence x 7→ λ(x) is linear. If
λ0 ∈ C, then λ(λ0e) = λ0, showing that x 7→ λ(x) is onto. If λ(x) = λ(y)
then x = λ(x)e = λ(y)e = y, showing that x 7→ λ(x) is one-to-one. Therefore
x 7→ λ(x) is a linear isomorphism A→ C.

If x ∈ A, then x = λ(x)e gives

∥x∥ = ∥λ(x)e∥ = |λ(x)| ∥e∥ = |λ(x)|,

showing that the map x 7→ λ(x) is an isometry A→ C.
1Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
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2 Complex homomorphisms

An ideal J of an algebra A is said to be proper if J ̸= A. An ideal is called
maximal if it is a maximal element in the collection of proper ideals of A ordered
by set inclusion.

The following theorem, which is proved using the fact that a maximal ideal
is closed, the fact that a quotient of a Banach algebra with a closed ideal is a
Banach algebra, and the Gelfand-Mazur theorem, states some basic facts about
algebra homomorphisms from a Banach algebra to C.2

Theorem 2. If A is a commutative unital Banach algebra and ∆ is the set of
all nonzero algebra homomorphisms A→ C, then:

1. IfM is a maximal ideal of A then there is some h ∈ ∆ for whichM = kerh.

2. If h ∈ ∆ then kerh is a maximal ideal of A.

3. x ∈ A is invertible if and only if h(x) ̸= 0 for all h ∈ ∆.

4. x ∈ A is invertible if and only if x does not belong to any proper ideal of
A.

5. λ ∈ σ(x) if and only if there is some h ∈ ∆ for which h(x) = λ.

3 The Gelfand transform and maximal ideals

Suppose that A is a commutative unital Banach algebra and that ∆ is the set
of all nonzero algebra homomorphisms A → C. For each x ∈ A, we define
x̂ : ∆ → C by

x̂(h) = h(x), h ∈ ∆.

We call x̂ the Gelfand transform of x, and we call the map Γ : A→ C∆ defined
by Γ(x) = x̂ the Gelfand transform.

We define Â = {x̂ : x ∈ A}, and we call the set ∆ with the initial topology

for Â the maximal ideal space of A. That is, the topology of ∆ is the coarsest
topology on ∆ such that each x̂ : ∆ → C is continuous. If X is a topological
space, we denote by C(X) the set of all continuous functions X → C. C(X) is
a commutative unital algebra, although it need not be a Banach algebra.

The radical of A, denoted radA, is the intersection of all maximal ideals of
A. If radA = {0}, we say that A is semisimple.

The following theorem establishes some basic facts about the Gelfand trans-
form and the maximal ideal space.3

Theorem 3. If A is a commutative unital Banach algebra and ∆ is the maximal
ideal space of A, then:

2Walter Rudin, Functional Analysis, second ed., p. 277, Theorem 11.5.
3Walter Rudin, Functional Analysis, second ed., p. 280, Theorem 11.9.
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1. Γ : A→ C(∆) is an algebra homomorphism with ker Γ = radA.

2. If x ∈ A, then im x̂ = σ(x).

3. ∆ is a compact Hausdorff space.

Proof. Let x, y ∈ A and α ∈ C. For h ∈ ∆,

Γ(αx+y)(h) = h(αx+y) = αh(x)+h(y) = αΓ(x)(h)+Γ(y)(h) = (Γ(x)+Γ(y)(h),

showing that Γ(αx+ y) = αΓ(x) + Γ(y), and

Γ(xy)(h) = h(xy) = h(x)h(y) = Γ(x)(h)Γ(y)(h) = (Γ(x)Γ(y))(h),

showing that Γ(xy) = Γ(x)Γ(y). Therefore Γ : A → C(∆) is an algebra homo-
morphism. x ∈ ker Γ is equivalent to h(x) = 0 for all h ∈ ∆, which is equivalent
to x ∈ kerh for all h ∈ ∆. But by Theorem 2, {kerh : h ∈ ∆} is equal to
the set of all maximal ideals of A, so x ∈ ker Γ is equivalent to x ∈ radA, i.e.
ker Γ = radA.

Let x ∈ A. If λ ∈ im x̂ then there is some h ∈ ∆ for which x̂(h) = λ, and
by Theorem 2, this yields λ ∈ σ(x). Hence im x̂ ⊆ σ(x). If λ ∈ σ(x), then by
Theorem 2 there is some h ∈ ∆ for which h(x) = λ, i.e. there is some h ∈ ∆ for
which x̂(h) = λ, i.e. λ ∈ im x̂. Hence σ(x) ⊆ im x̂. Therefore, im x̂ = σ(x).

It is straightforward to check that the topology of ∆ is the subspace topology
inherited from A∗ with the weak-* topology; in particular, the topology of ∆ is
Hausdorff. Therefore, to prove that ∆ is compact it suffices to prove that ∆ is
a weak-* compact subset of A∗. Let

K = {λ ∈ A∗ : ∥λ∥ ≤ 1}.

By the Banach-Alaoglu theorem, K is a weak-* compact subset of A∗. If h ∈ ∆,
then because h is an algebra homomorphism A → C it follows that ∥h∥ ≤ 1.4

Thus, ∆ ⊂ K. Therefore, to prove that ∆ is compact it suffices to prove that
∆ is a weak-* closed subset of A∗.

Suppose that hi ∈ ∆ is a net that weak-* converges to λ ∈ A∗. Then hi(e) →
λ(e), i.e. 1 → λ(e), so λ(e) = 1. Thus λ ̸= 0. Let x, y ∈ A. On the one hand,
hi(xy) → λ(xy), and on the other hand, hi(x) → λ(x) and hi(y) → λ(y), so
hi(x)hi(y) → λ(x)λ(y) and hence hi(xy) = hi(x)hi(y) → λ(x)λ(y). Therefore,
λ(xy) = λ(x)λ(y), and because λ ∈ A∗ is linear, this shows that λ : A → C
is an algebra homomorphism, and hence that λ ∈ ∆. Therefore ∆ is a weak-*
closed subset of A∗.

If A is a commutative unital Banach algebra, the above theorem shows that
Γ : A → Â is an algebra isomorphism if and only if radA = {0}, i.e., Γ is an
algebra isomorphism if and only if A is semisimple.

4Walter Rudin, Functional Analysis, second ed., p. 249, Theorem 10.7.
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The above theorem tells us that if A is a commutative unital Banach algebra
and x ∈ A, then im x̂ = σ(x). This gives us

∥x̂∥∞ = ρ(x), (1)

where ρ(x) is the spectral radius of x, defined by

ρ(x) = sup{|λ| : λ ∈ σ(x)}.

Therefore, x̂ = 0 is equivalent to ρ(x) = 0, and so by the above theorem,
x ∈ radA is equivalent to ρ(x) = 0. Moreover, it is a fact that ρ(x) ≤ ∥x∥.5
Therefore,

∥x̂∥∞ ≤ ∥x∥ . (2)

In the proof of Theorem 3 we used the fact6 that the norm of any algebra
homomorphism from a Banach algebra to C is ≤ 1. In particular, this means
that any algebra homomorphism from a Banach algebra to C is continuous.
The following theorem shows that any algebra homomorphism from a Banach
algebra to a commutative unital semisimple Banach algebra is continuous.7

Theorem 4. Suppose that A is a Banach algebra and that B is a commutative
unital semisimple Banach algebra. If ψ : A → B is an algebra homomorphism,
then ψ is continuous.

Proof. Because ψ : A→ B is linear, to prove that ψ is continuous, by the closed
graph theorem8 it suffices to prove that

G = {(x, ψ(x)) : x ∈ A}

is closed in A×B. To prove that G is closed in A×B, it suffices to prove that
if (xn, yn) ∈ G converges to (x, y) ∈ A×B then (x, y) ∈ G.

Let h ∈ ∆B . Then ϕ = h◦ψ : A→ C is an algebra homomorphism. Because
h : B → C and ϕ : A → C are algebra homomorphisms with codomain C, they
are both continuous. Therefore, h(yn) → h(y) and ϕ(xn) → ϕ(x). Therefore,

h(y) = limh(yn) = limh(ψ(xn)) = lim(h◦ψ)(xn) = limϕ(xn) = ϕ(x) = h(ψ(x)),

so h(y − ψ(x)) = 0. This is true for all h ∈ ∆B , hence y − ψ(x) ∈ radB. But
B is semisimple, so y − ψ(x) = 0, i.e. y = ψ(x), so (x, y) ∈ G.

If A is a commutative unital Banach algebra and x ∈ A, we recorded in (2)

that ∥x̂∥∞ ≤ ∥x∥. The following lemma9 shows that if
∥∥x2∥∥ = ∥x∥2 and x ̸= 0,

then inf
∥x̂∥∞
∥x∥ ≥ 1, hence that ∥x̂∥∞ = ∥x∥. Therefore, if

∥∥x2∥∥ = ∥x∥2 for all

x ∈ A, then Γ : A→ C(∆) is an isometry.

5Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
6Walter Rudin, Functional Analysis, second ed., p. 249, Theorem 10.7.
7Walter Rudin, Functional Analysis, second ed., p. 281, Theorem 11.10.
8Walter Rudin, Functional Analysis, second ed., p. 51, Theorem 2.15.
9Walter Rudin, Functional Analysis, second ed., p. 282, Lemma 11.11.
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Lemma 5. Let A be a commutative unital Banach algebra. If

r = inf
x ̸=0

∥∥x2∥∥
∥x∥2

, s = inf
x ̸=0

∥x̂∥∞
∥x∥

,

then s2 ≤ r ≤ s.

Theorem 3 shows that if A is a commutative unital Banach algebra, then Γ :
A → C(∆) is an algebra homomorphism. Therefore Γ(A) = Â is a subalgebra
of C(∆). Moreover, Theorem 3 also shows that ∆ is a compact Hausdorff space.
Therefore, C(∆) is a unital Banach algebra with the supremum norm. (If X is
a topological space then C(X) is an algebra, but need not be a Banach algebra.)

For Â to be a Banach subalgebra of C(∆) it is necessary and sufficient that Â
be a closed subset of the Banach algebra C(∆). The following theorem gives
conditions under which this occurs.10

Theorem 6. If A is a commutative unital Banach algebra, then A is semisimple
and Â is a closed subset of C(∆) if and only if there exists some K < ∞ such

that ∥x∥2 ≤ K
∥∥x2∥∥ for all x ∈ A.

Proof. Suppose that there is some 0 < K < ∞ such that x ∈ A implies that
∥x∥2 ≤ K

∥∥x2∥∥. Then
r = inf

x ̸=0

∥∥x2∥∥
∥x∥2

≥ inf
x ̸=0

∥∥x2∥∥
K ∥x2∥

=
1

K
.

By Lemma 5, with s = infx ̸=0
∥x̂∥∞
∥x∥ we have

1

K
≤ s,

hence ∥x̂∥∞ ≥ 1
K ∥x∥. Thus, if x ∈ A then ∥x̂∥∞ ≥ 1

K ∥x∥, from which it
follows that Γ : A → C(∆) is one-to-one. Since Γ is one-to-one, by Theorem

3 we get that A is semisimple. Suppose that x̂n ∈ Â converges to x̂ ∈ Â, i.e.
∥x̂n − x̂∥∞ → 0, i.e. ∥Γ(xn − x)∥∞ → 0. But ∥Γ(xn − x)∥∞ ≥ 1

K ∥xn − x∥, so
∥xn − x∥ → 0, showing that Γ−1 : Â → A is bounded. Therefore Γ : A → Â is

bilipschitz, and so Â is a complete metric space, from which it follows that Â is
a closed subset of C(∆).

Suppose that A is semisimple and that Â is a closed subset of C(∆). The

fact that A is semisimple gives us by Theorem 3 that Γ : A → Â is a bijection.
The fact that Â is closed means that Â is a Banach algebra. Because Γ : A→ Â
is continuous, linear, and a bijection, by the open mapping theorem11 it follows
that there are positive real numbers a, b such that if x ∈ A then

a ∥x∥ ≤ ∥Γx∥∞ ≤ b ∥x∥ .

Then infx ̸=0
∥x̂∥∞
∥x∥ ≥ a. By Lemma 5, it follows that infx ̸=0

∥x2∥
∥x∥2 ≥ a2. Hence,

for all x ̸= 0 we have ∥x∥2 ≤ K
∥∥x2∥∥, with K = 1

a2 .
10Walter Rudin, Functional Analysis, second ed., p. 282, Theorem 11.12.
11Walter Rudin, Functional Analysis, second ed., p. 49, Corollary 2.12.
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4 L1

Let M(Rn) denote the set of all complex Borel measures on Rn, and let S :
Rn × Rn → Rn be defined by S(x, y) = x+ y. For µ1, µ2 ∈ M(Rn), we denote
by µ1 × µ2 the product measure on Rn × Rn, and we define the convolution of
µ1 and µ2 to be µ1 ∗µ2 = S∗(µ1 ×µ2), the pushforward of µ1 ×µ2 with respect
to S. That is, if E is a Borel subset of Rn, then

(µ1 ∗ µ2)(E) = (S∗(µ1 × µ2))(E)

= (µ1 × µ2)(S
−1(E))

=

∫
Rn

∫
Rn

χE(x+ y)dµ1(x)dµ2(y).

With convolution as multiplication, M(Rn) is an algebra.
If µ ∈ M(Rn), the variation of µ is the measure |µ| ∈ M(Rn), where for

a Borel subset E of Rn, we define |µ|(E) to be the supremum of
∑
A∈π |µ(A)|

over all partitions π of E into finitely many disjoint Borel subsets. The total
variation of µ is ∥µ∥ = |µ|(Rn). One proves that ∥·∥ is a norm on M(Rn) and
that with this norm, M(Rn) is a Banach algebra.12

Let mn be Lebesgue measure on Rn, let δ be the Dirac measure on Rn, and
let A be the set of those µ ∈ M(Rn) for which there is some f ∈ L1(Rn) and
some α ∈ C with which

dµ = fdmn + αdδ.

One proves that A is a Banach subalgebra of M(Rn). A is a unital Banach
algebra, with unity δ. In particular, A is a unital Banach algebra that contains
the Banach algebra L1(Rn).

If f+αδ, g+βδ ∈ A (identifying f ∈ L1(Rn) with the complex Borel measure
whose Radon-Nikodym derivative with respect to mn is f), then

(f + αδ) ∗ (g + βδ) = (f ∗ g + βf + αg) + αβδ, (3)

where

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y)dmn(y).

If t ∈ Rn, let et(x) = exp(it · x), and if f ∈ L1(Rn), define f̂ : Rn → C, the
Fourier transform of f , by

f̂(t) =

∫
Rn

fe−tdmn, t ∈ Rn.

If t ∈ Rn, define ht : A→ C by

ht(f + αδ) = f̂(t) + α, f + αδ ∈ A,

and define h∞ : A→ C by

h∞(f + αδ) = α, f + αδ ∈ A.

12See Walter Rudin, Real and Complex Analysis, third ed., chapter 6.
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By (3) it is apparent that for each t ∈ Rn∪{∞}, the map ht is a homomorphism
of algebras. It can be proved that ∆ = {ht : t ∈ Rn} ∪ {h∞}.13 Let Rn ∪ {∞}
be the one-point compactification of Rn, and define T : Rn ∪ {∞} → ∆ by
T (t) = ht, which is a bijection.

Suppose that tk → t in Rn. If f + αδ ∈ A, then because f̂ : Rn → C is
continuous, we have

T (tk)(f + αδ) = htk(f + αδ) = f̂(tk) + α→ f̂(t) + α = T (t)(f + αδ).

Suppose that tk → ∞. If f + αδ ∈ A, then by the Riemann-Lebesgue lemma
we have f̂(tk) → 0, and hence

T (tk)(f + αδ) = f̂(tk) + α→ α = h∞(f + αδ) = T (∞)(f + αδ).

Therefore, T : Rn ∪ {∞} → ∆ is continuous.
Suppose that htk → ht in ∆, tk, t ∈ Rn. If f + αδ ∈ A, then htk(f + αδ) →

ht(f +αδ). But htk(f +αδ) = f̂(tk) +α and ht(f +αδ) = f̂(t) +α, so f̂(tk) →
f̂(t). Because this is true for all f ∈ L1(Rn), it follows that tk → t. Suppose
that htk → h∞ in ∆, tk ∈ Rn. If f + αδ ∈ A, then htk(f + αδ) → h∞(f + αδ),

i.e. f̂(tk) + α → α, i.e. f̂(tk) → 0. Because this is true for all f ∈ L1(Rn), it
follows that tk → ∞. Therefore, T−1 : ∆ → Rn ∪ {∞} is continuous, and so ∆
is homeomorphic to the one-point compactification of Rn.

5 Involutions

If A is an algebra, an involution of A is a map ∗ : A→ A satisfying

1. (x+ y)∗ = x∗ + y∗

2. (αx)∗ = αx∗

3. (xy)∗ = y∗x∗

4. x∗∗ = x.

We say that x is self-adjoint if x∗ = x.
Following Rudin, if A is a Banach algebra with an involution ∗ : A → A

satisfying
∥xx∗∥ = ∥x∥2 , x ∈ A,

we say that A is a B∗-algebra.
The following theorem shows that a commutative unital B∗-algebra with

maximal ideal space ∆ is isomorphic as a B∗-algebra to C(∆).14 (An isomor-
phism of B∗-algebras is an isomorphism of Banach algebras that preserves the
involution; the involution on C(∆) is (x 7→ f(x)) 7→ (x 7→ f(x)).)

13Walter Rudin, Functional Analysis, second ed., p. 285.
14Walter Rudin, Functional Analysis, second ed., p. 289, Theorem 11.18.
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Theorem 7 (Gelfand-Naimark). If A is a commutative unital B∗-algebra, then
Γ : A → C(∆) is an isomorphism of Banach algebras, and if x ∈ A then
Γ(x∗) = Γ(x).

Proof. Let u ∈ A be self-adjoint, let h ∈ ∆, and let h(u) = α + iβ. For t ∈ R,
put z = u+ ite. We have

h(z) = h(u) + h(ite) = α+ iβ + it = α+ i(β + t),

and
zz∗ = (u+ ite)(u− ite) = u2 + t2e,

hence

α2 + (β + t)2 = |h(z)|2 ≤ ∥z∥2 = ∥zz∗∥ =
∥∥u2 + t2e

∥∥ ≤ ∥u∥2 + t2,

i.e.
α2 + β2 + 2βt ≤ ∥u∥2 .

Because this is true for all t ∈ R, it follows that β = 0. Therefore, if u ∈ A is
self-adjoint then h(u) ∈ R.

Furthermore, if x ∈ A then with 2u = x + x∗ and 2v = i(x∗ − x) we have
x = u+ iv with u and v self-adjoint. Then x∗ = u− iv, and so

h(x∗) = h(u− iv) = h(u)− ih(v) = h(x).

This shows that if x ∈ A then Γ(x∗) = Γ(x). In particular, Â is closed under
complex conjugation. If h1 ̸= h2, then there is some x ∈ A for which h1(x) ̸=
h2(x), i.e. x̂(h1) ̸= x̂(h2), so Â separates points in ∆. Because Â is a unital

Banach algebra, it follows from the Stone-Weierstrass theorem that Â is dense
in C(∆).

Let x ∈ A. With y = xx∗, we have y∗ = (xx∗)∗ = x∗∗x∗ = xx∗ = y, from

which it follows that
∥∥y2∥∥ = ∥y∥2. Assume by induction that ∥ym∥ = ∥y∥m, for

m = 2n. Then, as (ym)∗ = ym,∥∥y2m∥∥ = ∥ymym∥ = ∥ym(ym)∗∥ = ∥ym∥2 = (∥y∥m)2 = ∥y∥2m .

The spectral radius formula15 gives

ρ(y) = lim ∥yn∥1/n ,

and because ∥ym∥ = ∥y∥m for m = 2n, we have lim ∥ym∥1/m = ∥y∥. Because

the limit of this subsequence is ∥y∥, the limit of ∥yn∥1/n is also ∥y∥, so we obtain

ρ(y) = ∥y∥ .

But (1) tells us ∥ŷ∥∞ = ρ(y), so we have ∥ŷ∥∞ = ∥y∥. Because y = xx∗, using

Γ(x∗) = Γ(x) and the fact that Γ is an algebra homomorphism, we get

Γ(y) = Γ(xx∗) = Γ(x)Γ(x∗) = Γ(x)Γ(x) = |Γ(x)|2.
15Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.13.
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That is, ŷ = |x̂|2 and with ∥ŷ∥∞ = ∥y∥ we obtain

∥x̂∥2∞ = ∥ŷ∥∞ = ∥y∥ = ∥xx∗∥ = ∥x∥2 ,

i.e.
∥x̂∥∞ = ∥x∥ .

This shows that Γ : A → C(∆) is an isometry. In particular, Γ maps closed

sets to closed sets, so Â = Γ(A) is a closed subset of C(∆). We have already

established that Â is dense in C(∆), so Â = C(∆). The fact that Γ is an isometry

yields that Γ is one-to-one, and the fact that Â = C(∆) means that that Γ is
onto, hence Γ is a bijection, and therefore it is an isomorphism of algebras.
Because Γ is an isometry, it is an isomorphism of Banach algebras.

The following theorem states conditions under which a self-adjoint element
of a unital Banach algebra with an involution has a square root.16

Theorem 8. Let A be a unital Banach algebra with an involution ∗ : A → A.
If x ∈ A is self-adjoint and σ(x) contains no real λ with λ ≤ 0, then there is
some self-adjoint y ∈ A satisfying y2 = x.

If A is a Banach algebra and x ∈ A, we say that x ∈ A is normal if xx∗ = x∗x.
If A is a Banach algebra with involution ∗ : A → A, by x ≥ 0 we mean
that x is self-adjoint and σ(x) ⊆ [0,∞), and we say that x is positive. The
following theorem states basic facts about the spectrum of elements of a unital
B∗-algebra.17

Theorem 9. If A is a unital B∗-algebra, then:

1. If x is self-adjoint, then σ(x) ⊆ R.

2. If x is normal, then ρ(x) = ∥x∥.

3. If x ∈ A, then ρ(xx∗) = ∥x∥2.

4. If x ≥ 0 and y ≥ 0, then x+ y ≥ 0.

5. If x ∈ A, then xx∗ ≥ 0.

6. If x ∈ A, then e+ xx∗ is invertible.

6 Positive linear functionals

Suppose that A is a Banach algebra with an involution ∗ : A→ A. If F : A→ C
is a linear map such that F (xx∗) is real and ≥ 0 for all x ∈ A, we say that F is a
positive linear functional. In particular, if h ∈ ∆ and x ∈ A, then from Theorem
7 we have h(x∗) = h(x), and so h(xx∗) = h(x)h(x∗) = h(x)h(x) = |h(x)|2 ≥ 0.
Thus, the elements of ∆ are positive linear functionals.

We shall use the following theorem to prove the theorem after it.18

16Walter Rudin, Functional Analysis, second ed., p. 294, Theorem 11.26.
17Walter Rudin, Functional Analysis, second ed., p. 294, Theorem 11.28.
18Walter Rudin, Functional Analysis, second ed., p. 137, Theorem 5.20.
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Theorem 10. If X is a real or complex Banach space, X1 and X2 are closed
subspaces of X, and X = X1 + X2, then there is some γ < ∞ such that for
every x ∈ X there are x1 ∈ X1, x2 ∈ X2 satisfying x = x1 + x2 and

∥x1∥+ ∥x2∥ ≤ γ ∥x∥ .

The following theorem establishes some basic properties of positive linear
functionals on a unital Banach algebra with an involution.19

Theorem 11. Suppose that A is a unital Banach algebra with an involution
∗ : A→ A. If F : A→ C is a positive linear functional, then:

1. F (x∗) = F (x).

2. |F (xy∗)|2 ≤ F (xx∗)F (yy∗).

3. |F (x)|2 ≤ F (e)F (xx∗) ≤ F (e)2ρ(xx∗).

4. If x is normal, then |F (x)| ≤ F (e)ρ(x).

5. If A is commutative, then ∥F∥ = F (e).

6. If there is some β such that ∥x∗∥ ≤ β ∥x∥ for all x ∈ A, then ∥F∥ ≤
β1/2F (e).

7. F is a bounded linear map.

Proof. Suppose that x, y ∈ A. For any α ∈ C, we have on the one hand
F ((x+ αy)(x+ αy)∗) ≥ 0, and on the other hand

F ((x+αy)(x+αy)∗) = F ((x+αy)(x∗+αy∗)) = F (xx∗+αxy∗+αyx∗+|α|2yy∗).

Therefore,
F (xx∗) + αF (xy∗) + αF (yx∗) + |α|2F (yy∗) ≥ 0. (4)

Applying (4) with α = 1 gives

F (xx∗) + F (xy∗) + F (yx∗) + F (yy∗) ≥ 0.

In particular, this expression is real, and because F (xx∗) and F (yy∗) are real
we get that F (xy∗)+F (yx∗) is real, so ImF (yx∗) = −ImF (xy∗). Applying (4)
with α = i gives

F (xx∗)− iF (xy∗) + iF (yx∗) + F (yy∗) ≥ 0.

In particular, this expression is real, and so −iF (xy∗) + iF (yx∗) is real, i.e.
F (xy∗)− F (yx∗) is imaginary, so ReF (yx∗) = ReF (xy∗). Therefore F (yx∗) =
F (xy∗). Using y = e yields

F (x∗) = F (x).

19Walter Rudin, Functional Analysis, second ed., p. 296, Theorem 11.31.
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Suppose that x, y ∈ A and that F (xy∗) ̸= 0. For any t ∈ R, using (4) with
α = t

|F (xy∗)|F (xy
∗) gives

F (xx∗) +
t

|F (xy∗)|
F (xy∗)F (xy∗) +

t

|F (xy∗)|
F (xy∗)F (yx∗) + t2F (yy∗) ≥ 0,

i.e.

F (xx∗) + t|F (xy∗)|+ t

|F (xy∗)|
F (xy∗)F (yx∗) + t2F (yy∗) ≥ 0,

and as F (yx∗) = F ((xy∗)∗) = F (xy∗), we have

F (xx∗) + 2t|F (xy∗)|+ t2F (yy∗) ≥ 0.

For t = − |F (xy∗)|
F (yy∗) this is

F (xx∗)− 2
|F (xy∗)|2

F (yy∗)
+

|F (xy∗)|2

F (yy∗)
≥ 0,

i.e.
|F (xy∗)|2 ≤ F (xx∗)F (yy∗).

Suppose that x ∈ A. Because xe∗ = x and ee∗ = e, we have

|F (x)|2 ≤ F (e)F (xx∗).

We shall prove that F (xx∗) ≤ F (e)ρ(xx∗). Let t > ρ(xx∗). It then follows that
σ(te − xx∗) is contained in the open right half-plane, and thus by Theorem 8
there is some self-adjoint u ∈ A satisfying u2 = te− xx∗. Then

F (te− xx∗) = F (u2) = F (uu∗) ≥ 0,

so
F (xx∗) ≤ tF (e).

Because this is true for all t > ρ(xx∗), we obtain

F (xx∗) ≤ F (e)ρ(xx∗).

Suppose that x is normal. It is a fact that if x and y belong to a unital Banach
algebra and xy = yx, then σ(xy) ⊆ σ(x)σ(y).20 Thus σ(xx∗) ⊆ σ(x)σ(x∗), from
which we get

ρ(xx∗) ≤ ρ(x)ρ(x∗).

It is a fact that σ(x∗) = σ(x),21, so we have ρ(x) = ρ(x∗), and thus

ρ(xx∗) ≤ ρ(x)2.

20Walter Rudin, Functional Analysis, second ed., p. 293, Theorem 11.23.
21Walter Rudin, Functional Analysis, second ed., p. 288, Theorem 11.15.
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But |F (x)|2 ≤ F (e)2ρ(xx∗), so we have |F (x)|2 ≤ F (e)2ρ(x)2, i.e.

|F (x)| ≤ F (e)ρ(x).

Suppose that A is commutative, and let x ∈ A. Since A is commutative,
x is normal and hence we have |F (x)| ≤ F (e)ρ(x), and as always we have
ρ(x) ≤ ∥x∥. Therefore, for every x ∈ A we have

|F (x)| ≤ F (e) ∥x∥ .

This implies that ∥F∥ ≤ F (e), and because the above inequality is an equality
for x = e, we have ∥F∥ = F (e).

Suppose that there is some β such that ∥x∗∥ ≤ β ∥x∥ for all x ∈ A. We have

ρ(xx∗) ≤ ∥xx∗∥ ≤ ∥x∥ ∥x∗∥ ≤ β ∥x∥2. (We merely stipulated that A is a unital
Banach algebra with an involution; if we had demanded that A be a B∗-algebra,
then we would have ∥xx∗∥ = ∥x∥ ∥x∗∥ = ∥x∥2.) Using |F (x)|2 ≤ F (e)2ρ(xx∗)

then gives us |F (x)|2 ≤ βF (e)2 ∥x∥2, hence

|F (x)| ≤ β1/2F (e) ∥x∥ .

If F (e) = 0, then |F (x)|2 ≤ 0 for all x ∈ A, and hence F = 0, which indeed
is bounded. Otherwise, F (e) > 0, and F is bounded if and only if 1

F (e)F is

bounded. Therefore, to prove that F is bounded it suffices to prove that F is
bounded in the case where F (e) = 1.

Let H be the set of all self-adjoint elements of A. H and iH are real vector
spaces. For any x ∈ A, defining 2u = x + x∗ and 2v = i(x∗ − x), we have
x = u+ iv, and u, v are self-adjoint. It follows that

A = H + iH.

Because the elements of H are self-adjoint, the restriction of F to H is a real-
linear map H → R. For u ∈ H, because u is self-adjoint it is in particular
normal, and so |F (x)| ≤ F (e)ρ(x) ≤ F (e) ∥x∥ = ∥x∥, because F (e) = 1. Hence
the restriction of F to H is a real-linear map H → R with norm 1, and therefore
there is a unique bounded real-linear map Φ : H → R whose restriction to H is
equal to the restriction of F to H, and ∥Φ∥ = 1.

Suppose that y ∈ H ∩ iH. There are un ∈ H with un → y and there are
vn ∈ H with ivn → y. Then u2n → y2 and −v2n → y, or v2n → −y2. Because
|F (un)|2 ≤ F (e)F (unu

∗
n) = F (u2n), we have

|F (un)|2 ≤ F (u2n) ≤ F (u2n + v2n).

Because un and vn are self-adjoint, u2n + v2n is normal and hence

|F (u2n + v2n)| ≤ F (e)ρ(u2n + v2n) = ρ(u2n + v2n) ≤
∥∥u2n + v2n

∥∥ ,
and so we have

|F (un)|2 ≤
∥∥u2n + v2n

∥∥ .
12



But u2n → y and v2n → −y, so
∥∥u2n + v2n

∥∥→ ∥y − y∥ = 0. Therefore, F (un) → 0,
and so

Φ(y) = limF (un) → 0.

That is, if y ∈ H ∩ iH, then F (y) = 0.
Because A = H + iH, certainly A = H + iH, so by Theorem 10 there is

some γ <∞ such that for all x ∈ A, there are x1 ∈ H and x2 ∈ H satisfying

x = x1 + ix2, ∥x1∥+ ∥x2∥ ≤ γ ∥x∥ .

Let x ∈ A and let x = x1+ix2, where x1, x2 satisfy the above, and let x = u+iv
with u, v ∈ H, namely 2u = x+ x∗ and 2v = i(x∗ − x). Supposing that x1 − u
and x2 − v ∈ H ∩ iH, which Rudin asserts but whose truth is not apparent
to me, we obtain F (x1 − u) = 0 and F (x2 − v) = 0, or F (x1) = F (u) and
F (x2) = F (v). Then,

F (x) = F (u+ iv) = F (u) + iF (v) = F (x1) + iF (x2) = Φ(x1) + iΦ(x2),

and therefore, because ∥Φ∥ = 1 and because ∥x1∥+ ∥x2∥ ≤ γ ∥x∥,

|F (x)| ≤ |Φ(x1) + iΦ(x2)| ≤ |Φ(x1)|+ |Φ(x2)| ≤ ∥x1∥+ ∥x2∥ ≤ γ ∥x∥ ,

showing that ∥F∥ ≤ γ, and in particular that F is bounded.

7 The Riesz-Markov theorem and extreme points

We say that a positive Borel measure µ on a compact Hausdorff space X is
regular if for every Borel subset E of X we have

µ(E) = sup{µ(F ) : F is compact and F ⊆ E}

and
µ(E) = inf{µ(G) : G is open and E ⊆ G}.

We say that a complex Borel measure µ on a compact Hausdorff space is regular
if the positive Borel measure |µ| is regular, and we write ∥µ∥ = |µ|(X). The
following is the Riesz-Markov theorem, stated for complex Borel measures on a
compact Hausdorff space.22

Theorem 12 (Riesz-Markov). Suppose that X is a compact Hausdorff space.
If Λ is a bounded linear functional on C(X), then there is one and only one
regular complex Borel measure µ on X satisfying

Λf =

∫
X

fdµ, f ∈ C(X).

This measure µ satisfies ∥µ∥ = ∥Λ∥.
The following theorem uses the Riesz-Markov theorem to define a corre-

spondence between positive linear functionals on a commutative unital Banach
algebra with a symmetric involution and regular positive Borel measures on its
maximal ideal space.23

22Walter Rudin, Real and Complex Analysis, third ed., p. 130, Theorem 6.19.
23Walter Rudin, Functional Analysis, second ed., p. 299, Theorem 11.33.
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Theorem 13. Suppose that A is a commutative unital Banach algebra with
an involution ∗ : A→ A satisfying

h(x∗) = h(x), x ∈ A, h ∈ ∆. (5)

Let K be the set of all positive linear functionals F : A→ C satisfying F (e) ≤ 1,
and let M be the set of all regular positive Borel measures µ on ∆ satisfying
µ(∆) ≤ 1. K and M are convex sets. If µ ∈M , then F : A→ C defined by

Fµ(x) =

∫
∆

x̂dµ, x ∈ A,

belongs to K, and this map µ 7→ Fµ is an isometric bijection M → K.

Proof. If F1, F2 ∈ K and 0 ≤ t ≤ 1, then (1 − t)F1 + tF2 is linear, and it is
straightforward to check that it is positive. Moreover, ((1 − t)F1 + tF2)(e) =
(1− t)F1(e) + tF2(e) ≤ (1− t) + t = 1, so (1− t)F1 + tF2 ∈ K. Therefore K is
a convex set.

Suppose that µ1, µ2 ∈M , that a1, a2 are nonnegative real numbers, and let
µ = a1µ1+a2µ2. If E is a Borel subset of ∆, then for any ϵ > 0 there are compact
subsets F1, F2 of ∆ such that µ1(E) < µ1(F1)−ϵ and µ2(E) < µ2(F2)−ϵ. With
F = F1 ∪ F2, we have

µ(F ) = a1µ1(F ) + a2µ2(F )

≥ a1µ1(F1) + a2µ2(F2)

≥ a1(µ1(E) + ϵ) + a2(µ2(E) + ϵ)

= µ(E) + (a1 + a2)ϵ.

It follows that µ(E) = sup{µ(F ) : F is compact and F ⊆ E}. If E is a Borel
subset of ∆, then for any ϵ > 0 there are open subsets G1, G2 of ∆ such that
µ1(E) > µ1(G1)− ϵ and µ2(E) > µ2(G2)− ϵ. With G = G1 ∩G2, we have

µ(G) = a1µ1(G) + a2µ2(G)

≤ a1µ1(G1) + a2µ2(G2)

< a1(µ1(E) + ϵ) + a2(µ2(E) + ϵ)

= µ(E) + (a1 + a2)ϵ.

It follows that µ(E) = inf{µ(G) : G is open and E ⊆ G}. Therefore, µ = a1µ1+
a2µ2 is a regular positive Borel measure. In particular, if 0 ≤ t ≤ 1 and
a1 = 1 − t, a2 = t, then µ is a regular positive Borel measure. Finally, for
µ = (1− t)µ1 + tµ2, 0 ≤ t ≤ 1, we have, because µ1(∆) ≤ 1 and µ2(∆) ≤ 1,

µ(∆) = (1− t)µ1(∆) + tµ2(∆) ≤ (1− t) + t = 1,

so µ ∈M , showing that M is a convex set.
Let µ ∈ M . It is apparent that Fµ : A → C is linear. For x ∈ A, we have

Γ(xx∗) = Γ(x)Γ(x∗), and as Γ(x∗) = Γ(x) by (5), we get Γ(xx∗) = |Γ(x)|2. As
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|Γ(x)|2(h) ≥ 0 for all h ∈ ∆, we have

Fµ(xx
∗) =

∫
∆

Γ(xx∗)dµ =

∫
∆

|Γ(x)|2dµ ≥ 0,

showing that Fµ is a positive linear functional. Furthermore, ê(h) = h(e) = 1
for all h ∈ ∆, so

Fµ(e) = µ(∆) ≤ 1,

showing that Fµ ∈ K.
If x ∈ radA, then ρ(x) = 0 by (1), and so F (x) = 0 by Theorem 11. We

define F̂ : Â→ C
F̂ (x̂) = F (x);

this makes sense because if x̂ = ŷ then Γ(x − y) = 0, and so by Theorem 3 we
have x− y ∈ radA and hence F (x− y) = 0, i.e. so F (x) = F (y). For x ∈ A, x
is normal because A is commutative so we have by Theorem 11 that

|F̂ (x̂)| = |F (x)| ≤ F (e)ρ(x)

and by (1) we have ρ(x) = ∥x̂∥∞, so

|F̂ (x̂)| ≤ F (e) ∥x̂∥∞ .

As F̂ (ê) = F (e), it follows that
∥∥∥F̂∥∥∥ = F (e). By (5) and because Â separates

points in ∆, applying the Stone-Weierstrass we obtain that Â is dense in C(∆).

Because F̂ is a continuous linear functional on the dense subspace Â of C(∆),

there is a unique continuous linear functional Λ on C(∆) such that Λ = F̂ on

Â, and ∥Λ∥ =
∥∥∥F̂∥∥∥. Applying Theorem 12, there is one and only one regular

complex Borel measure µ on X that satisfies

Λf =

∫
∆

fdµ, f ∈ C(∆), (6)

and ∥µ∥ = ∥Λ∥ =
∥∥∥F̂∥∥∥ = F (e). It follows that µ 7→ Fµ is one-to-one. Because

ê(h) = 1 for all h ∈ ∆,

µ(∆) =

∫
∆

χ∆dµ =

∫
∆

êdµ = Λê = F̂ (ê) = F (e) = ∥µ∥ = |µ|(∆).

The fact that µ(∆) = |µ|(∆) implies that µ is a positive measure. The above
equalities also state µ(∆) = F (e), and since F ∈ K we have F (e) ≤ 1, hence
µ(∆) ≤ 1. Therefore, µ ∈M . For x ∈ A, as x̂ ∈ C(∆) we have by (6) that

Fµ(x) =

∫
∆

x̂dµ = Λx̂ = F̂ (x̂) = F (x),

showing that F = Fµ. This shows that µ 7→ Fµ is onto, and therefore µ 7→ Fµ
is a bijection M → K.
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Because the map µ 7→ Fµ in the above theorem is an isometric bijection
M → K, it follows that that µ is an extreme point of M if and only if Fµ is an
extreme point of K.

It is a fact that the set of extreme points of the set of regular Borel probability
measures on a compact Hausdorff space X is {δx : x ∈ X}.24 Given this, one
proves that the set of extreme points of M is {0} ∪ {δh : h ∈ ∆}. For x ∈ A,
F0(x) = 0, i.e. F0 = 0. For h ∈ ∆ and x ∈ A,

Fδh(x) =

∫
∆

x̂dδh = x̂(h) = h(x),

so Fδh = h. Therefore, the extreme points of K are {0} ∪∆, that is, the set of
algebra homomorphisms A→ C.

Corollary 14. Suppose that A is a commutative unital Banach algebra with
involution ∗ : A→ A satisfying

h(x∗) = h(x), x ∈ A, h ∈ ∆.

If K is the set of all positive linear functionals F : A → C satisfying F (e) ≤ 1,
then

extK = {0} ∪∆.

Moreover, it is straightforward to check that the set K in the above corollary
is a weak-* closed subset of A∗: if Fi ∈ K is a net that weak-* converges to
Λ ∈ A∗, one checks that Λ(xx∗) ≥ 0 for all x ∈ A and that Λe ≤ 1. By the
Banach-Alaoglu theorem, the set B = {Λ ∈ A∗ : ∥Λ∥ ≤ 1} is weak-* compact,
and if F ∈ K then ∥F∥ = F (e) by Theorem 11 and F (e) ≤ 1, so K ⊆ B. Hence,
K is a weak-* compact subset of A∗. Therefore, the Krein-Milman theorem25

tells us that K is equal to the weak-* closure of the convex hull of the set of its
extreme points, and by the above corollary this means that K is equal to the
weak-* closure of the convex hull of {0} ∪∆.

8 Positive definite functions

A function ϕ : Rn → C is said to be positive-definite if r ≥ 1, x1, . . . , xr ∈
Rn, c1, . . . , cr ∈ C imply that

r∑
i,j=1

cicjϕ(xi − xj) ≥ 0;

in particular, for ϕ to be positive-definite demands that the left-hand side of
this inequality is real.

A positive-definite function need not be measurable. For example, R is a
vector space over Q, and if ψ : R → R is a vector space automorphism of R over

24Barry Simon, Convexity: An Analytic Viewpoint, p. 128, Example 8.16.
25Walter Rudin, Functional Analysis, second ed., p. 75, Theorem 3.23.
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Q, one proves that x 7→ eiψ(x) is a positive-definite function R → C, and that
there are ψ for which x 7→ eiψ(x) is not measurable.

The following theorem states some basic facts about positive-definite func-
tions. More material on positive-definite functions is presented in Bogachev; for
example, if ϕ : Rn → C is a measurable positive-definite function, then there
is a continuous positive-definite function Rn → C that is equal to ϕ almost
everywhere.26

Theorem 15. If ϕ : Rn → C is positive-definite, then

ϕ(0) ≥ 0, (7)

and for all x ∈ Rn we have
ϕ(x) = ϕ(−x) (8)

and
|ϕ(x)| ≤ ϕ(0). (9)

Proof. Using r = 1 and c1 = 1, we have for all x1 ∈ Rn that ϕ(x1 −x1) ≥ 0, i.e.
ϕ(0) ≥ 0.

Using r = 2, for x1, x2 ∈ Rn and c1, c2 ∈ C we have

c1c1ϕ(x1 − x1) + c1c2ϕ(x1 − x2) + c2c1ϕ(x2 − x1) + c2c2ϕ(x2 − x2) ≥ 0.

Take x1 = x and x2 = 0, with which

|c1|2ϕ(0) + c1c2ϕ(x) + c2c1ϕ(−x) + |c2|2ϕ(0) ≥ 0;

in particular, the left-hand side is real, and because ϕ(0) is real by (7), this
implies that c1c2ϕ(x) + c2c1ϕ(−x) is real. That is, it is equal to its complex
conjugate:

c1c2ϕ(x) + c2c1ϕ(−x) = c1c2ϕ(x) + c2c1ϕ(−x).

The fact that this holds every c1, c2 ∈ C implies that ϕ(x) = ϕ(−x).
Again using that

c1c1ϕ(x1 − x1) + c1c2ϕ(x1 − x2) + c2c1ϕ(x2 − x1) + c2c2ϕ(x2 − x2) ≥ 0,

with x1 = x, x2 = 0 and c2 = 1 we get

|c1|2ϕ(0) + c1ϕ(x) + c1ϕ(−x) + ϕ(0) ≥ 0.

Applying (8) gives

|c1|2ϕ(0) + c1ϕ(x) + c1ϕ(x) + ϕ(0) ≥ 0.

For c1 ∈ C such that |c1| = 1,

2ϕ(0) + 2Re (c1ϕ(x)) ≥ 0,

26Vladimir I. Bogachev, Measure Theory, vol. 1, p. 221, Theorem 3.10.20. See also Anthony
W. Knapp, Basic Real Analysis, p. 406.
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or
−Re (c1ϕ(x)) ≤ ϕ(0).

Thus, taking c1 ∈ C such that |c1| = 1 and for which −Re (c1ϕ(x)) = |ϕ(x)|,
we get |ϕ(x)| ≤ ϕ(0).

The following lemma about positive-definite functions follows a proof in Bo-
gachev.27

Lemma 16. If ϕ : Rn → C is a measurable positive-definite function and
f ∈ L1(Rn) is nonnegative, then∫

Rn

∫
Rn

ϕ(x− y)f(x)f(y)dmn(x)dmn(y) ≥ 0.

Proof. For r ≥ 2 and for any x1, . . . , xr and c1 = 1, . . . , cr = 1, we have

r∑
j,k=1

ϕ(xj − xk) ≥ 0,

or
rϕ(0) +

∑
j ̸=k

ϕ(xj − xk) ≥ 0.

By (9), ϕ is bounded. It follows that we can integrate both sides of the above
inequality over (Rn)r with respect to the positive measure

f(x1) · · · f(xr)dmn(x1) · · · dmn(xr).

Writing

I =

∫
Rn

f(x)dmn(x),

we obtain

rϕ(0)Ir +
∑
j ̸=k

∫
Rn

· · ·
∫
Rn

ϕ(xj − xk)f(x1) · · · f(xr)dmn(x1) · · · dmn(xr) ≥ 0,

and so, writing

J =

∫
Rn

∫
Rn

ϕ(x− y)f(x)f(y)dmn(x)dmn(y),

we have
rϕ(0)Ir +

∑
j ̸=k

JIr−2 ≥ 0,

or
rϕ(0)Ir + r(r − 1)JIr−2 ≥ 0.

27Vladimir I. Bogachev, Measure Theory, vol. 1, p. 221, Lemma 3.10.19.
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If I = 0, then because f is nonnegative it follows that f is 0 almost everywhere,
in which case J = 0, so the claim is true. If I > 0, then dividing by r(r−1)Ir−2

we obtain
1

r − 1
ϕ(0)I2 + J ≥ 0.

This inequality holds for all r ≥ 2, so taking r → ∞ yields

J ≥ 0,

which is the claim.

For f, g ∈ L1(Rn),

(f ∗ g)(x) =
∫
Rn

f(y)g(x− y)dmn(y).

The support of a function f : Rn → C, denoted suppf , is the closure of the set
{x ∈ Rn : f(x) ̸= 0}. We denote by Cc(Rn) the set of all continuous functions
f : Rn → C such that suppf is a compact set. It is straightforward to check that
an element of Cc(Rn) is uniformly continuous on Rn. The following theorem
is similar to the previous lemma, but applies to functions that need not be
nonnegative.28

Theorem 17. For f : Rn → C, define f̃ : Rn → C by f̃(x) = f(−x). If
ϕ : Rn → C is a continuous positive-definite function, then for all f ∈ Cc(Rn),
we have ∫

Rn

(f ∗ f̃)ψ ≥ 0.

If µ is a complex Borel measure on Rn, the Fourier transform of µ is the
function µ̂ : Rn → C defined by

µ̂(ξ) =

∫
Rn

e−ξdµ, ξ ∈ Rn.

One proves using the dominated convergence theorem that µ̂ is continuous.

Theorem 18. If µ is a finite positive Borel measure on Rn, then µ̂ : Rn → C
is positive-definite.

28Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 85, Proposition 3.35.
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Proof. For ξ1, . . . , ξr ∈ Rn and c1, . . . , cr ∈ C, we have

r∑
j,k=1

cjckµ̂(ξj − ξk) =

r∑
j,k=1

cjck

∫
Rn

e−i(ξj−ξk)·xdµ(x)

=

∫
Rn

r∑
j,k=1

cje
−iξj ·xcke−iξk·xdµ(x)

=

∫
Rn

 r∑
j=1

cje
−iξj ·x

( r∑
k=1

cke−iξk·x

)
dµ(x)

=

∫
Rn

∣∣∣∣∣∣
r∑
j=1

cje
−iξj ·x

∣∣∣∣∣∣
2

dµ(x)

≥ 0.

The following proof of Bochner’s theorem follows an exercise in Rudin.29

Theorem 19 (Bochner). If ϕ : Rn → C is continuous and positive-definite,
then there is some finite positive Borel measure ν on Rn for which ϕ = ν̂.

Proof. Let A be the Banach algebra defined in §4, whose elements are those
complex Borel measures µ on Rn for which there is some f ∈ L1(Rn) and some
α ∈ C such that

dµ = fdmn + αdδ,

where mn is Lebesgue measure on Rn. For f + αδ, g + βδ ∈ A, we have

(f + αδ) ∗ (g + βδ) = (f ∗ g + βf + αg) + αβδ;

we are identifying f ∈ L1(Rn) with the complex Borel measure whose Radon-
Nikodym derivative with respect tomn is f . The norm on A is the total variation
norm of a complex measure; one checks that for f + αδ this is

∥f + αδ∥ = ∥f∥+ |α|,

where ∥f∥ =
∫
Rn |f(x)|dmn(x).

For f ∈ L1(Rn), we define f̃ ∈ L1(Rn) by f̃(x) = f(−x), and we define
∗ : A→ A by

(f + αδ)∗ = f̃ + αδ, f + αδ ∈ A.

29Walter Rudin, Functional Analysis, second ed., p. 303, Exercise 14. Other references
on Bochner’s theorem are the following: Barry Simon, Convexity: An Analytic Viewpoint,
p. 153, Theorem 9.17; Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, vol.
II, p. 293, Theorem 33.3; Mark A. Pinsky, Introduction to Fourier Analysis and Wavelets,
p. 220, Theorem 3.9.16; Walter Rudin, Fourier Analysis on Groups, p. 19, Theorem 1.4.3;
Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 170; Vladimir I.
Bogachev, Measure Theory, vol. II, p. 121, Theorem 7.13.1; Gerald B. Folland, A Course in
Abstract Harmonic Analysis, p. 95, Theorem 4.18.
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On the one hand,

((f + αδ) ∗ (g + βδ))∗ = ((f ∗ g + βf + αg) + αβδ)∗

= f̃ ∗ g + βf̃ + αg̃ + αβδ

= f̃ ∗ g + βf̃ + αg̃ + αβδ,

and

f̃ ∗ g(x) =
∫
Rn

f(y)g(−x− y)dmn(y).

On the other hand,

(g + βδ)∗ ∗ (f + αδ)∗ = (g̃ + βδ) ∗ (f̃ + αδ)

= (g̃ ∗ f̃ + αg̃ + βf̃) + βαδ,

and

(g̃ ∗ f̃)(x) =

∫
Rn

g̃(y)f̃(x− y)dmn(y)

=

∫
Rn

g(−y)f(−x+ y)dmn(y)

=

∫
Rn

g(−y − x)f(y)dmn(y).

Therefore we have

((f + αδ) ∗ (g + βδ))∗ = (g + βδ)∗ ∗ (f + αδ)∗.

Thus ∗ : A→ A is an involution (the other properties demanded of an involution
are immediate).

We define F : A→ C by

F (f + αδ) =

∫
Rn

fϕdmn + αϕ(0), f + αδ ∈ A.

It is apparent that F is linear, and because |ϕ(x)| ≤ ϕ(0) for all x,

|F (f + αδ)| ≤
∣∣∣∣∫

Rn

fϕdmn

∣∣∣∣+ |α|ϕ(0)

≤
∫
Rn

|f ||ϕ|dmn + |α|ϕ(0)

≤ ϕ(0)

∫
Rn

|f |dmn + |α|ϕ(0)

= ϕ(0) ∥f + αδ∥ ,

from which it follows that ∥F∥ = ϕ(0), and in particular that F is bounded.
Let A0 = {f + αδ ∈ A : f ∈ Cc(Rn)}. Because F : A → C is bounded and A0
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is a dense subset of A, to prove that F is a positive linear functional it suffices
to prove that for all f + αδ ∈ A0 we have F ((f + αδ) ∗ (f + αδ)∗) ≥ 0.

For g ∈ Cc(Rn), by Theorem 17 we obtain

F (g ∗ g∗) = F (g ∗ g̃) =
∫
Rn

(g ∗ g̃)ϕdmn ≥ 0. (10)

Define η : Rn → R by

η(x) =

{
exp

(
− 1

1−|x|2

)
|x| < 1

0 |x| ≥ 1,

and for ϵ > 0, define ηϵ : Rn → R by ηϵ(x) = ϵ−nη
(
x
ϵ

)
. Let f + αδ ∈ A0 and

define gϵ = f + αηϵ ∈ Cc(Rn). From (10) we have F (gϵ ∗ g∗ϵ ) ≥ 0 for any ϵ > 0.
On the other hand,

F (gϵ ∗ g∗ϵ ) = F ((f + αηϵ) ∗ (f̃ + αηϵ))

= F (f ∗ f̃ + αf ∗ ηϵ + αηϵ ∗ f̃ + |α|2ηϵ ∗ ηϵ)

= F (f ∗ f̃) + α

∫
Rn

(f ∗ ηϵ)ϕdmn + α

∫
Rn

(ηϵ ∗ f̃)ϕdmn

+|α|2
∫
Rn

(ηϵ ∗ ηϵ)ϕdmn.

We take as granted that∫
Rn

(f ∗ ηϵ)ϕdmn →
∫
Rn

fϕdmn

as ϵ→ 0, that ∫
Rn

(ηϵ ∗ f̃)ϕdmn →
∫
Rn

f̃ϕdmn

as ϵ→ 0, and that ∫
Rn

(ηϵ ∗ ηϵ)ϕdmn → ϕ(0)

as ϵ→ 0. Furthermore,

F ((f + αδ) ∗ (f + αδ)∗) = F ((f + αδ) ∗ (f̃ + αδ))

= F (f ∗ f̃ + αf + αf̃ + |α|2)

Thus
F (gϵ ∗ g∗ϵ ) → F ((f + αδ) ∗ (f + αδ)∗)

as ϵ→ 0. Since F (gϵ ∗ g∗ϵ ) ≥ 0 for all ϵ > 0, it follows that

F ((f + αδ) ∗ (f + αδ)∗) ≥ 0.

Therefore, F : A→ C is a positive linear functional.
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Because F is a positive linear functional and F (e) = F (δ) = 1, we can apply
Theorem 12, according to which there is a regular positive Borel measure µ on
∆ satisfying

F (f + αδ) =

∫
∆

Γ(f + αδ)dµ, f + αδ ∈ A,

and hence, from the definition of F ,∫
Rn

fϕdmn + αϕ(0) =

∫
∆

Γ(f + αδ)dµ, f + α ∈ A.

We state the following again from §4 for easy access. If t ∈ Rn, define
ht : A→ C by

ht(f + αδ) = f̂(t) + α, f + αδ ∈ A,

and also define h∞ : A→ C by

h∞(f + αδ) = α, f + αδ ∈ A.

Let Rn ∪ {∞} be the one-point compactification of Rn. We proved in §4 that
the map T : Rn ∪ {∞} → ∆ defined by T (t) = ht is a homeomorphism. With
ν = (T−1)∗µ we have µ = T∗ν, and then∫

∆

Γ(f + αδ)dµ =

∫
∆

Γ(f)dµ+ α

∫
∆

Γ(δ)dµ

=

∫
∆

Γ(f)d(T∗ν) + α

∫
∆

χ∆dµ

=

∫
Rn∪{∞}

Γ(f) ◦ Tdν + αµ(∆)

=

∫
Rn∪{∞}

Γ(f) ◦ T (t)dν(t) + αF (δ)

=

∫
Rn∪{∞}

ht(f)dν(t) + αϕ(0)

=

∫
Rn

f̂(t)dν(t) + αϕ(0).

Therefore ∫
Rn

fϕdmn + αϕ(0) =

∫
Rn

f̂(t)dν(t) + αϕ(0),

i.e. ∫
Rn

fϕdmn =

∫
Rn

f̂(t)dν(t).

As ∫
Rn

f̂(t)dν(t) =

∫
Rn

(∫
Rn

e−it·xf(x)dmn(x)

)
dν(t)

=

∫
Rn

f(x)

∫
Rn

e−ix·tdν(t)dmn(x)

=

∫
Rn

f(x)ν̂(x)dmn(x),
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we have ∫
Rn

fϕdmn =

∫
Rn

fν̂dmn.

This is true for all f ∈ L1(Rn), from which it follows that ϕ = ν̂.
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