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1 Definitions

For a topological space X, we denote by BX the Borel σ-algebra of X.
We write R = R ∪ {−∞,∞}. With the order topology, R is a compact

metrizable space, and R has the subspace topology inherited from R, namely
the inclusion map is an embedding R → R. It follows that1

BR = {E ∩ R : E ∈ BR}.

If F is a collection of functions X → R on a set X, we define
∨

F : X → R
and

∧
F : X → R by(∨

F
)
(x) = sup{f(x) : f ∈ F}, x ∈ X

and (∧
F
)
(x) = inf{f(x) : f ∈ F}, x ∈ X.

If X is a measurable space and F is a countable collection of measurable func-
tions X → R, it is a fact that

∧
F and

∨
F are measurable X → R.

2 Kolmogorov’s inequality

Kolmogorov’s inequality is the following.2

Theorem 1 (Kolmogorov’s inequality). Suppose that (Ω,S , P ) is a probability
space, that X1, . . . , Xn ∈ L2(P ), that E(X1) = 0, . . . , E(Xn) = 0, and that
X1, . . . , Xn are independent. Let

Sk(ω) =

k∑
j=1

Xj(ω), ω ∈ Ω,

1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 138, Lemma 4.20.

2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 322, Theorem 10.11.
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for 1 ≤ k ≤ n. Then for any λ > 0,

P

({
ω ∈ Ω :

n∨
k=1

|Sk(ω)| ≥ λ

})
≤ 1

λ2

n∑
j=1

V (Xj) =
1

λ2
V (Sn).

3 Gaussian measures on R

For real a and σ > 0, one computes that

1

σ
√
2π

∫
R
exp

(
− (t− a)2

2σ2

)
dt = 1. (1)

Suppose that γ is a Borel probability measure on R. If

γ = δa

for some a ∈ R or has density

p(t, a, σ2) =
1

σ
√
2π

exp

(
− (t− a)2

2σ2

)
, t ∈ R,

for some a ∈ R and some σ > 0, with respect to Lebesgue measure on R, we say
that γ is a Gaussian measure. We say that δa is a Gaussian measure with
mean a and variance 0, and that a Gaussian measure with density p(·, a, σ2)
has mean a and variance σ2. A Gaussian measure with mean 0 and variance
1 is said to be standard.

One calculates that the characteristic function of a Gaussian measure γ
with density p(·, a, σ2) is

γ̃(y) =

∫
R
exp(iyx)dγ(x) = exp

(
iay − 1

2
σ2y2

)
, y ∈ R. (2)

The cumulative distribution function of a standard Gaussian measure
γ is, for t ∈ R,

Φ(t) = γ(−∞, t] =

∫ t

−∞
dγ(s) =

∫ t

−∞
p(s, 0, 1)ds =

∫ t

−∞

1√
2π

exp

(
−s2

2

)
ds.

We define Φ(−∞) = 0 and also define

Φ(∞) =

∫ ∞

−∞

1√
2π

exp

(
−s2

2

)
ds = 1,

using (1).
Φ : R → [0, 1] is strictly increasing, thus Φ−1 : [0, 1] → R makes sense, and

is itself strictly increasing. Then 1− Φ is strictly decreasing. By (1),

1− Φ(t) =

∫ ∞

−∞

1√
2π

exp

(
−s2

2

)
ds−

∫ t

−∞

1√
2π

exp

(
−s2

2

)
ds

=

∫ ∞

t

1√
2π

exp

(
−s2

2

)
ds.
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The following lemma gives an estimate for 1 − Φ(t) that tells us something
substantial as t → +∞, beyond the immediate fact that (1 − Φ)(∞) = 1 −
Φ(∞) = 0.3

Lemma 2. For t > 0,

1√
2π

(
1

t
− 1

t3

)
e−t2/2 ≤ 1− Φ(t) ≤ 1√

2π

1

t
e−t2/2.

Proof. Integrating by parts,

1− Φ(t) =

∫ ∞

t

1√
2π

exp

(
−s2

2

)
ds

=

∫ ∞

t

1

s
√
2π

· s exp
(
−s2

2

)
ds

= − 1

s
√
2π

exp

(
−s2

2

) ∣∣∣∣∞
t

−
∫ ∞

t

1

s2
√
2π

exp

(
−s2

2

)
ds

≤ 1

t
√
2π

exp

(
− t2

2

)
.

On the other hand, using the above work and again integrating by parts,

1− Φ(t) =
1

t
√
2π

exp

(
− t2

2

)
−
∫ ∞

t

1

s3
√
2π

· s exp
(
−s2

2

)
ds

=
1

t
√
2π

exp

(
− t2

2

)
+

1

s3
√
2π

exp

(
−s2

2

) ∣∣∣∣∞
t

+

∫ ∞

t

3

s4
√
2π

exp

(
−s2

2

)
ds

≥ 1

t
√
2π

exp

(
− t2

2

)
− 1

t3
√
2π

exp

(
− t2

2

)
.

The following theorem shows that if the variances of a sequence of inde-
pendent centered random variables are summable then the sequence of random
variables is summable almost surely.4

Theorem 3. Suppose that ξj ∈ L2(Ω,S , P ), j ≥ 1, are independent random
variables each with mean 0. If

∑∞
j=1 V (ξj) < ∞, then

∑∞
j=1 ξj converges almost

surely.

Proof. Define Sn : Ω → R by

Sn(ω) =

n∑
j=1

ξj(ω),

3Vladimir I. Bogachev, Gaussian Measures, p. 2, Lemma 1.1.3.
4Karl R. Stromberg, Probability for Analysts, p. 58, Theorem 4.6.
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define Zn : Ω → [0,∞] by

Zn =

∞∨
j=1

|Sn+j − Sn|,

and define Z : Ω → [0,∞] by

Z =

∞∧
n=1

Zn.

If Sn(ω) converges and ϵ > 0, there is some n such that for all j ≥ 1, |Sn+j(ω)−
Sn(ω)| < ϵ and so Zn(ω) ≤ ϵ and Z(ω) ≤ ϵ. Therefore, if Sn(ω) converges then
Z(ω) = 0. On the other hand, if Z(ω) = 0 and ϵ > 0, there is some n such
that Zn(ω) < ϵ, hence |Sn+j(ω)− Sn(ω)| < ϵ for all j ≥ 1. That is, Sn(ω) is a
Cauchy sequence in R, and hence converges. Therefore

{ω ∈ Ω : Sn(ω) converges} = {ω ∈ Ω : Z(ω) = 0}. (3)

Let ϵ > 0. For any n and k, using Kolmogorov’s inequality with Xj = ξn+j for
j = 1, . . . , k,

P

 k∨
j=1

|Sn+j − Sn| ≥ ϵ

 ≤ 1

ϵ2

k∑
j=1

V (Xj) ≤
1

ϵ2

∞∑
j=n+1

V (ξj).

Because this is true for each k, it follows that

P (Zn ≥ ϵ) ≤ 1

ϵ2

∞∑
j=n+1

V (ξj),

hence, for each n,

P (Z ≥ ϵ) ≤ P (Zn ≥ ϵ) ≤ 1

ϵ2

∞∑
j=n+1

V (ξj).

Because
∑∞

j=1 V (ξj) < ∞,
∑∞

j=n+1 V (ξj) → 0 as n → ∞, so

P (Z ≥ ϵ) = 0.

Because this is true for all ϵ > 0, we get P (Z > 0) = 0, i.e. P (Z = 0) = 1. By
(3), this means that Sn converges almost surely.

The following theorem gives conditions under which the converse of the above
theorem holds.5

5Karl R. Stromberg, Probability for Analysts, p. 59, Theorem 4.7.
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Theorem 4. Suppose that ξj ∈ L2(Ω,S , P ), j ≥ 1, are independent random
variables each with mean 0, and let Sn =

∑n
j=1 ξj . If

P

( ∞∨
n=1

|Sn| < ∞

)
> 0 (4)

and there is some β ∈ [0,∞) such that
∨∞

j=1 |ξj | ≤ β almost surely, then

∞∑
j=1

V (ξj) < ∞.

Proof. By (4), there is some α ∈ [0,∞) such that P (A) > 0, for

A =

{
ω ∈ Ω :

∞∨
n=1

|Sn(ω)| ≤ α

}
.

For p ≥ 1, let

Ap =

{
ω ∈ Ω :

p∨
n=1

|Sn(ω)| ≤ α

}
,

which satisfies Ap ↓ A as p → ∞. For each p, the random variables χApSp and
ξp+1 are independent and the random variables χAp and ξ2p+1 are independent,
whence

E(χAp
S2
p+1) = E(χAp

(Sp + ξp+1)(Sp + ξp+1))

= E(χAp
S2
p + 2χAp

Spξp+1 + χAp
ξ2p+1)

= E(χApS
2
p) + 2E(χApSp)E(ξp+1) + E(χAp)E(ξ2p+1)

= E(χApS
2
p) + P (Ap)V (ξp+1)

≥ E(χAp
S2
p) + P (A)V (ξp+1).

Set Bp = Ap \ Ap+1. For ω ∈ Ap, |Sp(ω)| ≤ α, and for almost all ω ∈ Ω,
|ξp+1(ω)| ≤ β, so for almost all ω ∈ Bp,

|Sp+1(ω)| ≤ |Sp(ω)|+ |ξp+1(ω) ≤ α+ β,

hence

P (A)V (ξp+1) ≤ E((χBp
+ χAp+1

)S2
p+1)− E(χAp

S2
p)

= E(χBp
S2
p+1) + E(χAp+1

S2
p+1)− E(χAp

S2
p)

≤ P (Bp)(α+ β)2 + E(χAp+1S
2
p+1)− E(χApS

2
p).

Adding the inequalities for p = 1, 2, . . . , n− 1, because Bp are pairwise disjoint,

P (A)

n−1∑
p=1

V (ξp+1) = (α+ β)2
n−1∑
p=1

P (Bp) + E(χAnS
2
n)− E(χA1S

2
1)

≤ (α+ β)2 + E(χAn
S2
n)

≤ (α+ β)2 + α2.
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Because this is true for all n and P (A) > 0,

∞∑
p=1

V (ξp+1) < ∞,

and with V (ξ1) < ∞ this completes the proof.

4 Rn

If µ is a finite Borel measure on Rn, we define the characteristic function of
µ by

µ̃(y) =

∫
Rn

ei⟨y,x⟩dµ(x), y ∈ Rn.

A Borel probability measure γ on Rn is said to be Gaussian if for each
f ∈ (Rn)∗, the pushforward measure f∗γ on R is a Gaussian measure on R,
where

(f∗γ)(E) = γ(f−1(E))

for E a Borel set in R.
We now give a characterization of Gaussian measures on Rn and their den-

sities.6 In the following theorem, the vector a ∈ Rn is called the mean of γ
and the linear transformation K ∈ L (Rn) is called the covariance operator
of γ. When a = 0 ∈ Rn and K = idRn , we say that γ is standard.

Theorem 5. A Borel probability measure γ on Rn is Gaussian if and only if
there is some a ∈ Rn and some positive semidefinite K ∈ L (Rn) such that

γ̃(y) = exp

(
i ⟨y, a⟩ − 1

2
⟨Ky, y⟩

)
, y ∈ Rn. (5)

If γ is a Gaussian measure whose covariance operator K is positive definite,
then the density of γ with respect to Lebesgue measure on Rn is

x 7→ 1√
(2π)n detK

exp

(
−1

2

〈
K−1(x− a), x− a

〉)
, x ∈ Rn.

Proof. Suppose that (5) is satisfied. Let f ∈ (Rn)∗, i.e. a linear map Rn → R,
and put ν = f∗γ. Using the change of variables formula, the characteristic
function of ν is

ν̃(t) =

∫
R
eitsdν(s) =

∫
Rn

eitf(x)dγ(x), t ∈ R.

6Vladimir I. Bogachev, Gaussian Measures, p. 3, Proposition 1.2.2; Michel Simonnet,
Measures and Probabilities, p. 303, Theorem 14.5.
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Let v be the unique element of Rn such that f(x) = ⟨v, x⟩ for all x ∈ Rn. Then

ν̃(t) =

∫
Rn

ei⟨tv,x⟩dγ(x) = γ̃(tv).

so by (5),

ν̃(t) = exp

(
i ⟨tv, a⟩ − 1

2
⟨Ktv, tv⟩

)
= exp

(
if(a)t− 1

2
⟨Kv, v⟩ t2

)
.

This implies that ν is a Gaussian measure on R with mean f(a) and variance
⟨Kv, v⟩: if ⟨Kv, v⟩ = 0 then ν = δf(a), and if ⟨Kv, v⟩ > 0 then ν has density

1√
⟨Kv, v⟩

√
2π

exp

(
− (s− f(a))2

2 ⟨Kv, v⟩

)
, s ∈ R,

with respect to Lebesgue measure on R. That is, for any f ∈ (Rn)∗, the push-
forward measure f∗γ is a Gaussian measure on R, which is what it means for γ
to be a Gaussian measure on Rn.

Suppose that γ is Gaussian and let f ∈ (Rn)∗. Then the pushforward
measure f∗γ is a Gaussian measure on R. Let a(f) be the mean of f∗γ and let
σ2(f) be the variance of f∗γ, and let vf be the unique element of Rn such that
f(x) = ⟨x, vf ⟩ for all x ∈ Rn. Using the change of variables formula,

a(f) =

∫
R
td(f∗γ)(t) =

∫
Rn

f(x)dγ(x)

and

σ2(f) =

∫
R
(t− a(f))2d(f∗γ)(t)

=

∫
Rn

(f(x)− a(f))2dγ(x)

=

∫
Rn

(f(x)2 − 2f(x)a(f) + a(f)2)dγ(x).

Because f 7→ a(f) is linear (Rn)∗ → R, there is a unique a ∈ Rn = (Rn)∗∗ such
that

a(f) = ⟨vf , a⟩ , f ∈ (Rn)∗.

For f, g ∈ (Rn)∗,

σ2(f + g) =

∫
Rn

(f(x)2 + 2f(x)g(x) + g(x)2

− 2f(x)a(f)− 2f(x)a(g)− 2g(x)a(f)− 2g(x)a(g)

+ a(f)2 + 2a(f)a(g) + a(g)2)dγ(x),
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so

σ2(f + g)− σ2(f)− σ2(g) =

∫
Rn

(2f(x)g(x)− 2f(x)a(g)− 2g(x)a(f)

+ 2a(f)a(g))dγ(x).

B(f, g) = 1
2 (σ

2(f + g)−σ2(f)−σ2(g)) is a symmetric bilinear form on Rn, and

B(f, f) = 2

∫
Rn

(f(x)− a(f))2dγ(x) ≥ 0,

namely, B is positive semidefinite. It follows that there is a unique positive
semidefinite K ∈ L (Rn) such that B(f, g) = ⟨Kvf , vg⟩ for all f, g ∈ (Rn)∗. For
y ∈ Rn and for vf = y, using the change of variables formula, using the fact
that f∗γ is a Gaussian measure on R with mean

a(f) = ⟨vf , a⟩ = ⟨y, a⟩

and variance
σ2(f) = B(f, f) = ⟨Kvf , vf ⟩ = ⟨Ky, y⟩

and using (2),

γ̃(y) =

∫
Rn

eif(x)dγ(x)

=

∫
R
eitd(f∗γ)(t)

= exp

(
i ⟨y, a⟩ · 1− 1

2
⟨Ky, y⟩ · 12

)
= exp

(
i ⟨y, a⟩ − 1

2
⟨Ky, y⟩

)
,

which shows that (5) is satisfied.
Suppose that γ is a Gaussian measure and further that the covariance op-

erator K is positive definite. By the spectral theorem, there is an orthonormal
basis {e1, . . . , en} for Rn such that ⟨Kej , ej⟩ > 0 for each 1 ≤ j ≤ n. Write
⟨Kej , ej⟩ = σ2

j , and for y ∈ Rn set yj = ⟨y, ej⟩, with which y = y1e1+ · · ·+ynen
and then

⟨Ky, y⟩ = ⟨y1Ke1 + · · ·+ ynKen, y1e1 + · · ·+ ynen⟩
=
〈
y1σ

2
1e1 + · · ·+ ynσ

2
nen, y1e1 + · · ·+ ynen

〉
= σ2

1y
2
1 + · · ·+ σ2

ny
2
n.

And

⟨y, a⟩ = ⟨y1e1 + · · ·+ ynen, a1e1 + · · ·+ anen⟩ = a1y1 + · · ·+ anyn.
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Let γj be the Gaussian measure on R with mean aj and variance σ2
j . Because

σ2
j > 0, the measure γj has density p(·, aj , σ2

j ) with respect to Lebesgue measure
on R, and thus

γ̃(y) = exp

(
i ⟨y, a⟩ − 1

2
⟨Ky, y⟩

)

= exp

i

n∑
j=1

ajyj −
1

2

n∑
j=1

σ2
j y

2
j


=

n∏
j=1

exp

(
iajyj −

1

2
σ2
j y

2
j

)

=

n∏
j=1

γ̃j(yj)

=

n∏
j=1

∫
R
exp(iyjt)dγj(t)

=

n∏
j=1

∫
R
exp(iyjt)p(t, aj , σ

2
j )dt

=

∫
Rn

n∏
j=1

exp(iyjxj)p(xj , aj , σ
2
j )dx

=

∫
Rn

ei⟨y,x⟩
n∏

j=1

p(xj , aj , σ
2
j )dx.

This implies that γ has density

x 7→
n∏

j=1

p(xj , aj , σ
2
j ), x ∈ Rn,

with respect to Lebesgue measure on Rn. Moreover,

〈
K−1(x− a), x− a

〉
=

〈
n∑

j=1

σ−2
j (xj − aj)ej ,

n∑
j=1

(xj − aj)ej

〉

=

n∑
j=1

(xj − aj)
2

σ2
j

,

so we have, as detK =
∏n

j=1 σ
2
j ,

n∏
j=1

p(xj , aj , σ
2
j ) =

n∏
j=1

1

σj

√
2π

exp

(
− (xj − aj)

2

2σ2
j

)

=
1√

(2π)n detK
exp

(
−1

2

〈
K−1(x− a), x− a

〉)
.
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Because R is a second-countable topological space, the Borel σ-algebra BRn

is equal to the product σ-algebra
⊗n

j=1 BR. The density of the standard Gaus-
sian measure γn with respect to Lebesgue measure on Rn is, by Theorem 5,

x 7→ 1√
(2π)n

exp

(
−1

2
⟨x, x⟩

)
, x ∈ Rn.

It follows that γn is equal to the product measure
∏n

j=1 γ1, and thus that the

probability space (Rn,BRn , γn) is equal to the product
∏n

j=1(R,BR, γ1).

For f1, . . . , fn ∈ L2(γ1), we define f1 ⊗ · · · ⊗ fn ∈ L2(γn), called the tensor
product of f1, . . . , fn, by

(f1 ⊗ · · · ⊗ fn)(x) =

n∏
j=1

fj(xj), x = (x1, . . . , xn) ∈ Rn.

It is straightforward to check that for f1, . . . , fn, g1, . . . , gn ∈ L2(γ1),

⟨f1 ⊗ · · · ⊗ fn, g1 ⊗ · · · ⊗ gn⟩L2(γn)
=

n∏
j=1

⟨fj , gj⟩L2(γ1)
.

One proves that the linear span of the collection of all tensor products is dense
in L2(γn), and that {vk : k ≥ 0} is an orthonormal basis for L2(γ1), then

{vk1
⊗ · · · ⊗ vkn

: (k1, . . . , kn) ∈ Zn
≥0} (6)

is an orthonormal basis for L2(γn).
We will later use the following statement about centered Gaussian measures.7

Theorem 6. Let γ be a Gaussian measure on Rn with mean 0 and let θ ∈ R.
Then the pushforward of the product measure γ × γ on Rn × Rn under the
mapping (u, v) 7→ u sin θ + v cos θ, Rn × Rn → Rn, is equal to γ.

Proof. Let µ be the pushforward of γ × γ under the above mapping. and let
K ∈ L (Rn) be the covariance operator of γ. For y ∈ Rn, using the change of
variables formula,∫

Rn

exp (i ⟨y, x⟩) dµ(x) =
∫
Rn×Rn

exp (i ⟨y, u sin θ + v cos θ⟩) d(γ × γ)(u, v)

=

(∫
Rn

exp (i ⟨y sin θ, u⟩) dγ(u)
)

·
(∫

Rn

exp (i ⟨y cos θ, v⟩) dγ(v)
)

= γ̃(y sin θ)γ̃(y cos θ).

7Vladimir I. Bogachev, Gaussian Measures, p. 5, Lemma 1.2.5.

10



By Theorem 5,

γ̃(y sin θ)γ̃(y cos θ) = exp

(
−1

2
⟨Ky sin θ, y sin θ⟩

)
exp

(
−1

2
⟨Ky cos θ, y cos θ⟩

)
= exp

(
−1

2
sin2(θ) ⟨Ky, y⟩ − 1

2
cos2(θ) ⟨Ky, y⟩

)
= exp

(
−1

2
⟨Ky, y⟩

)
.

Thus, the characteristic function of µ is

µ̃(y) = exp

(
−1

2
⟨Ky, y⟩

)
, y ∈ Rn,

which implies that µ is equal to the Gaussian measure with mean 0 and covari-
ance operator K, i.e., µ = γ.

5 Hermite polynomials

For k ≥ 0, we define the Hermite polynomial Hk by

Hk(t) =
(−1)k√

k!
exp

(
t2

2

)
dk

dtk
exp

(
− t2

2

)
, t ∈ R.

It is apparent that Hk(t) is a polynomial of degree k.

Theorem 7. For real λ and t,

exp

(
λt− 1

2
λ2

)
=

∞∑
k=0

1√
k!
Hk(t)λ

k.

Proof. For u ∈ C, let g(u) = exp
(
− 1

2u
2
)
. For t ∈ R,

g(u) =

∞∑
k=0

g(k)(t)

k!
(u− t)k

=

∞∑
k=0

√
k!

(−1)k
exp

(
− t2

2

)
Hk(t)

1

k!
(u− t)k

= exp

(
− t2

2

) ∞∑
k=0

(−1)k√
k!

Hk(t)(u− t)k.
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Therefore, for real λ and t,

exp

(
λt− 1

2
λ2

)
= exp

(
1

2
t2 − 1

2
(λ− t)2

)
= exp

(
1

2
t2
)
g(λ− t)

= exp

(
1

2
t2
)
g(t− λ)

= exp

(
1

2
t2
)
exp

(
− t2

2

) ∞∑
k=0

(−1)k√
k!

Hk(t)(−λ)k

=

∞∑
k=0

1√
k!
Hk(t)λ

k.

Theorem 8. Let γ1 be the standard Gaussian measure on R, with density

p(t, 0, 1) = 1√
2π

exp
(
− t2

2

)
. Then

{Hk : k ≥ 0}

is an orthonormal basis for L2(γ1).

Proof. For λ, µ ∈ R, on the one hand, using (1) with a = λ+ µ and σ = 1,∫
R
exp

(
λt− 1

2
λ2

)
exp

(
µt− 1

2
µ2

)
dγ1(t)

=eλµ
∫
R

1√
2π

exp

(
−1

2
(t− (λ+ µ))2

)
dt

=eλµ.

On the other hand, using Theorem 7,∫
R
exp

(
λt− 1

2
λ2

)
exp

(
µt− 1

2
µ2

)
dγ1(t)

=

∫
R

( ∞∑
k=0

1√
k!
Hk(t)λ

k

)( ∞∑
l=0

1√
l!
Hl(t)µ

l

)
dγ1(t)

=

∫
R

∑
k,l≥0

1√
k!l!

λkµlHk(t)Hl(t)dγ1(t)

=
∑
k,l≥0

1√
k!l!

λkµl ⟨Hk, Hl⟩L2(γ1)
.

Therefore ∑
k,l≥0

1√
k!l!

λkµl ⟨Hk, Hl⟩L2(γ1)
=

∞∑
k=0

1

k!
λkµk.

12



From this, we get that if k ̸= l then 1√
k!l!

⟨Hk, Hl⟩L2(γ1)
= 0, i.e.

⟨Hk, Hl⟩L2(γ1)
= 0.

If k = l, then 1√
k!l!

⟨Hk, Hl⟩L2(γ1)
= 1

k! , i.e.

⟨Hk, Hk⟩L2(γ1)
= 1.

Therefore, {Hk : k ≥ 0} is an orthonormal set in L2(γ1).
Suppose that f ∈ L2(γ1) satisfies ⟨f,Hk⟩L2(γ1)

= 0 for each k ≥ 0. Because

Hk(t) is a polynomial of degree k, for each k ≥ 0 we have

span{H0, H1, H2, . . . ,Hk} = span{1, t, t2, . . . , tk}.

Hence for each k ≥ 0,
〈
f, tk

〉
L2(γ1)

= 0. One then proves that span{1, t, t2, . . .}
is dense in L2(γ1), from which it follows that the linear span of the Hermite
polynomials is dense in L2(γ1) and thus that they are an orthonormal basis.

Lemma 9. For k ≥ 1,

H ′
k(t) =

√
kHk−1(t), H ′

k(t) = tHk(t)−
√
k + 1Hk+1(t).

Proof. Theorem 7 says

exp

(
λt− 1

2
λ2

)
=

∞∑
k=0

1√
k!
Hk(t)λ

k.

On the one hand,

d

dt
exp

(
λt− 1

2
λ2

)
= λ exp

(
λt− 1

2
λ2

)
=

∞∑
k=0

1√
k!
Hk(t)λ

k+1

=

∞∑
k=1

1√
(k − 1)!

Hk−1(t)λ
k.

On the other hand,

d

dt
exp

(
λt− 1

2
λ2

)
=

∞∑
k=0

1√
k!
H ′

k(t)λ
k.

Therefore, H ′
0(t) = 0, and for k ≥ 1,

1√
(k − 1)!

Hk−1(t) =
1√
k!
H ′

k(t),

i.e.,
H ′

k(t) =
√
kHk−1(t).

13



For α = (k1, . . . , kn) ∈ Zn
≥0, we define the Hermite polynomial Hα by

Hα(x) = Hk1(x1) · · ·Hkn(xn), x = (x1, . . . , xn) ∈ Rn.

Because the collection of all Hermite polynomials Hk is an orthonormal basis
for the Hilbert space L2(γ1), following (6) we have that the collection of all
Hermite polynomials Hα is an orthonormal basis for the Hilbert space L2(γn).

Theorem 10. For γn the standard Gaussian measure on Rn, with mean 0 ∈ Rn

and covariance operator idRn , the collection

{Hα : α ∈ Zn
≥0}

is an orthonormal basis for L2(γn).

For α = (k1, . . . , kn) ∈ Zn
≥0, write |α| = k1 + · · ·+ kn. For k ≥ 0, we define

Xk = span{Hα : |α| = k},

which is a subspace of L2(γn) of dimension(
k + n− 1

k

)
.

As Xk is a finite dimensional subspace of L2(γn), it is closed. L2(γn) is equal
to the orthogonal direct sum of the Xk:

L2(γn) =

∞⊕
k=0

Xk.

Let
Ik : L2(γn) → Xk

be the orthogonal projection onto Xk.

6 Ornstein-Uhlenbeck semigroup

Let γ be a Gaussian measure on Rn with mean 0 and covariance operator K.
For t ≥ 0, we define Mt : Rn × Rn → Rn by

Mt(u, v) = e−tu+
√
1− e−2tv, (x, y) ∈ Rn × Rn.

By Theorem 6, Mt∗(γ × γ) = γ. Therefore, for p ≥ 1 and f ∈ Lp(γ), using the
change of variables formula,∫

Rn

|f(x)|pdγ(x) =
∫
Rn×Rn

|f(Mt(u, v))|pd(γ × γ)(u, v).

14



Applying Fubini’s theorem, the function

u 7→
∫
Rn

|f(Mt(u, v))|pdγ(v) =
∫
Rn

|f(e−tu+
√

1− e−2tv)|pdγ(v)

belongs to L1(γ). We define theOrnstein-Uhlenbeck semigroup {Tt : t ≥ 0}
on Lp(γ), p ≥ 1, by

Tt(f)(u) =

∫
Rn

f(Mt(u, v))dγ(v) =

∫
Rn

f
(
e−tu+

√
1− e−2tv

)
dγ(v),

for u ∈ Rn.

Theorem 11. Let γ be a Gaussian measure on Rn with mean 0. If f ∈ L1(γ),
then ∫

Rn

(Ttf)(x)dγ(x) =

∫
Rn

f(x)dγ(x).

Proof. Using Fubini’s theorem, then the change of variables formula, then The-
orem 6, ∫

Rn

(Ttf)(u)dγ(u) =

∫
Rn

(∫
Rn

f(Mt(u, v))dγ(v)

)
dγ(u)

=

∫
Rn×Rn

f(Mt(u, v))d(γ × γ)(u, v)

=

∫
Rn

f(x)d(Mt∗(γ × γ))(x)

=

∫
Rn

f(x)dγ(x).

Theorem 12. Let γ be a Gaussian measure on Rn with mean 0. For p ≥ 1 and
t ≥ 0, Tt is a bounded linear operator Lp(γ) → Lp(γ) with operator norm 1.

Proof. For f ∈ Lp(γ), using Jensen’s inequality and then Theorem 11,

∥Ttf∥pLp(γ) =

∫
Rn

∣∣∣∣∫
Rn

f(Mt(u, v))dγ(v)

∣∣∣∣p dγ(u)
≤
∫
Rn

(∫
Rn

|f(Mt(u, v))|pdγ(v)
)
dγ(u)

=

∫
Rn

Tt(|f |p)(u)dγ(u)

=

∫
Rn

|f |p(u)dγ(u)

= ∥f∥pLp(γ) ,

15



i.e. ∥Ttf∥Lp(µ) ≤ ∥f∥Lp(µ). This shows that the operator norm of Tt is ≤ 1.
But, as γ is a probability measure,

Tt1 =

∫
Rn

1dγ(v) = 1,

so Tt has operator norm 1.

For a Banach space E, we denote by B(E) the set of bounded linear oper-
ators E → E. The strong operator topology on E is the coarsest topology
on E such that for each x ∈ E, the map A 7→ Ax is continuous B(E) → E. To
say that a map Q : [0,∞) → B(E) is strongly continuous means that for
each t ∈ [0,∞), Q(s) → Qt in the strong operator topology as s → t, i.e., for
each x ∈ E, Q(s)x → Q(t)x in E.

A one-parameter semigroup in B(E) is a map Q : [0,∞) → B(E) such
that (i) Q(0) = idE and (ii) for s, t ≥ 0, Q(s + t) = Q(s) ◦ Q(t). For a one-
parameter semigroup to be strongly continuous, one proves that it is equivalent
that Q(t) → idE in the strong operator topology as t ↓ 0, i.e. for each x ∈ E,
Q(t)x → x.8

We now establish that the {Tt : t ≥ 0} is indeed a one-parameter semigroup
and that it is strongly continuous.9

Theorem 13. Suppose µ is a Gaussian measure on Rn with mean 0 and let
p ≥ 1. Then {Tt : t ≥ 0} is a strongly continuous one-parameter semigroup in
B(Lp(γ)).

Proof. For f ∈ Lp(γ), because γ is a probability measure,

T0(f)(u) =

∫
Rn

f(u)dγ(v) = f(u),

hence T0 = idLp(µ). For s, t ≥ 0, define P : Rn × Rn → Rn by

P (u, v) = e−s

√
1− e−2t

√
1− e−2t−2s

u+

√
1− e−2s

√
1− e−2t−2s

v.

8Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
9Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.
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By Theorem 6, P∗(γ × γ) = γ, whence

(Tt(Tsf))(x)

=

∫
Rn

(Tsf)
(
e−tx+

√
1− e−2ty

)
dγ(y)

=

∫
Rn

(∫
Rn

f
(
e−s

(
e−tx+

√
1− e−2ty

)
+
√
1− e−2sw

)
dγ(w)

)
dγ(y)

=

∫
Rn×Rn

f
(
e−s−tx+

√
1− e−2t−2sP (y, w)

)
d(γ × γ)(y, w)

=

∫
Rn×Rn

(f ◦Ms+t)(x, P (y, w))d(γ × γ)(y, w)

=

∫
Rn

(f ◦Ms+t)(x, z)dγ(z)

=Ts+t(f)(x),

hence Tt ◦ Ts = Ts+t. This establishes that {Tt : t ≥ 0} is a semigroup.
For f ∈ Cb(Rn), u ∈ Rn, and v ∈ Rn, as t ↓ 0 we have

f
(
e−tu+

√
1− e−2tv

)
− f(u) → 0,

thus by the dominated convergence theorem, since∣∣∣f (e−tu+
√
1− e−2tv

)
− f(u)

∣∣∣ ≤ 2 ∥f∥∞

and γ is a probability measure, we have∫
Rn

(
f
(
e−tu+

√
1− e−2tv

)
− f(u)

)
dγ(v) → 0,

and hence

(Ttf − T0f)(u) =

∫
Rn

f
(
e−tu+

√
1− e−2tv

)
dγ(v)−

∫
Rn

f(u)dγ(v)

=

∫
Rn

(
f
(
e−tu+

√
1− e−2tv

)
− f(u)

)
dγ(v)

→ 0.

Because this is true for each u ∈ Rn and

|(Ttf − T0f)(u)| ≤
∫
Rn

2 ∥f∥∞ dγ(v) = 2 ∥f∥∞ ,

by the dominated convergence theorem we then have

∥Ttf − T0f∥Lp(γ) → 0. (7)
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Now let f ∈ Lp(γ). There is a sequence fj ∈ Cb(Rn) satisfying ∥fj − f∥Lp(γ) →
0, with ∥fj∥Lp(γ) ≤ 2 ∥f∥Lp(γ) for all j. For any t ≥ 0,

∥Ttf − T0f∥Lp(γ) ≤ ∥Ttf − Ttfj∥Lp(γ) + ∥Ttfj − T0fj∥Lp(γ) + ∥T0fj − T0f∥Lp(γ)

= ∥Tt(f − fj)∥Lp(γ) + ∥Ttf − T0fj∥Lp(γ) + ∥fj − f∥Lp(γ)

≤ ∥f − fj∥Lp(γ) + ∥Ttf − T0fj∥Lp(γ) + ∥fj − f∥Lp(γ) .

Let ϵ > 0 and let j be so large that ∥f − fj∥Lp(γ) < ϵ. Because fj ∈ Cb(Rn), by

(7) there is some δ > 0 such that when 0 < t < δ, ∥Ttfj − fj∥Lp(γ) < ϵ. Then

when 0 < t < δ,
∥Ttf − T0f∥Lp(γ) ≤ ϵ+ ϵ+ ϵ,

which shows that for each f ∈ Lp(γ), ∥Ttf − T0f∥Lp(γ) as t ↓ 0, which suffices

to establish that {Tt : t ≥ 0} is strongly continuous [0,∞) → B(Lp(γ)).

For t > 0, we define Lt ∈ B(Lp(γ)) by

Ltf =
1

t
(Ttf − f), f ∈ Lp(γ).

We define D(L) to be the set of those f ∈ Lp(γ) such that Ltf converges to
some element of Lp(γ) as t ↓ 0, and we define L : D(L) → Lp(γ). This is
the infinitesimal generator of the semigroup {Tt : t ≥ 0}, and the infinitesi-
mal generator L of the Ornstein-Uhlenbeck semigroup is called the Ornstein-
Uhlenbeck operator. Because the Ornstein-Uhlenbeck semigroup is strongly
continuous, we get the following.10

Theorem 14. Suppose µ is a Gaussian measure on Rn with mean 0, let p ≥ 1,
and let L be the infinitesimal generator of the Ornstein-Uhlenbeck semigroup
{Tt : t ≥ 0}. Then:

1. D(L) is a dense linear subspace of Lp(γ) and L : D(L) → Lp(γ) is a closed
operator.

2. For each f ∈ D(L) and for each t ≥ 0,

d

dt
(Ttf) = (L ◦ Tt)f = (Tt ◦ L)f.

3. For f ∈ Lp(γ) and K a compact subset of [0,∞), (exp(tLϵ)f → Ttf as
ϵ ↓ 0 uniformly for t ∈ K.

4. For λ ∈ C with Reλ > 0, R(λ) : Lp(γ) → Lp(γ) defined by

R(λ)f =

∫ ∞

0

e−λtTtfdt, f ∈ Lp(γ),

10Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
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belongs to B(Lp(γ)), the range of R(λ) is equal to D(L), and

((λI − L) ◦R(λ))f = f, f ∈ Lp(γ), (R(λ) ◦ (λI − L))f = D(L),

where I is the identity operator on Lp(γ).

We remind ourselves that if H is a Hilbert space with inner product ⟨·, ·⟩,
an element A of B(H) is said to be a positive operator when ⟨Ax, x⟩ ≥ 0 for
all x ∈ H. We prove that each Tt is a positive operator on the Hilbert space
L2(γ).11

Theorem 15. Suppose µ is a Gaussian measure on Rn with mean 0. For each
t ≥ 0, Tt ∈ B(L2(µ)) is a positive operator.

Proof. For t ≥ 0, define Nt : Rn × Rn → Rn × Rn by

Ot(x, y) =
(
e−tx+

√
1− e−2ty,−

√
1− e−2tx+ e−ty

)
, (x, y) ∈ Rn × Rn,

whose transpose is the linear operator N∗
t : Rn × Rn → Rn × Rn defined by

O∗
t (u, v) =

(
e−tu−

√
1− e−2tv,

√
1− e−2tu+ e−tv

)
, (u, v) ∈ Rn × Rn.

For (x, y) ∈ Rn × Rn, we calculate∫
Rn×Rn

ei⟨(x,y),(u,v)⟩d(Ot∗(γ × γ))(u, v)

=

∫
Rn×Rn

ei⟨(x,y),Ot(u,v)⟩d(γ × γ)(u, v)

=

∫
Rn×Rn

ei⟨O
∗
t (x,y),(u,v)⟩d(γ × γ)(u, v)

=γ̃ × γ(O∗
t (x, y))

=γ̃ × γ(e−tx−
√

1− e−2ty,
√
1− e−2tx+ e−ty)

=γ̃(e−tx−
√
1− e−2ty)γ̃(

√
1− e−2tx+ e−ty)

= exp

(
−1

2

〈
K(e−tx−

√
1− e−2ty), e−tx−

√
1− e−2ty

〉)
· exp

(
−1

2

〈
K(
√
1− e−2tx+ e−ty),

√
1− e−2tx+ e−ty

〉)
=exp

(
−1

2
⟨Kx, x⟩ − 1

2
⟨Ky, y⟩

)
=γ̃(x)γ̃(y)

=γ̃ × γ(x, y),

11Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.
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which shows that Ot∗(γ × γ) and γ × γ have equal characteristic functions and
hence are themselves equal.

For f, g ∈ L2(γ) and t ≥ 0,

⟨Ttf, g⟩L2(γ) =

∫
Rn

(Ttf)(x)g(x)dµ(x)

=

∫
Rn×Rn

f
(
e−tx+

√
1− e−2ty

)
g(x)d(γ × γ)(x, y)

=

∫
Rn×Rn

(f ◦ π1 ◦Ot)(x, y)(g ◦ π1 ◦O−1
t ◦Ot)(x, y)d(γ × γ)(x, y)

=

∫
Rn×Rn

(f ◦ π1)(u, v)(g ◦ π1 ◦O−1
t )(u, v)d(Ot∗(γ × γ))(u, v)

=

∫
Rn×Rn

(f ◦ π1)(u, v)(g ◦ π1 ◦O−1
t )(u, v)d(γ × γ)(u, v)

=

∫
Rn×Rn

f(u)g
(
e−tu−

√
1− e−2tv

)
d(γ × γ)(u, v)

=

∫
Rn

f(u)

(∫
Rn

g(Mt(u,−v))dγ(v)

)
dγ(u)

=

∫
Rn

f(u)

(∫
Rn

g(Mt(u, v))dγ(v)

)
dγ(u)

=

∫
Rn

f(u)(Ttg)(u)dγ(u)

= ⟨f, Ttg⟩L2(γ) ,

which establishes that Tt is a self-adjoint operator on L2(γ).
Furthermore, using that Tt = Tt/2 ◦ Tt/2 and that Tt/2 is self-adjoint,

⟨Ttf, f⟩L2(γ) =
〈
Tt/2Tt/2f, f

〉
L2(γ)

=
〈
Tt/2f, T

∗
t/2f

〉
L2(γ)

=
〈
Tt/2f, Tt/2f

〉
L2(γ)

,

which is ≥ 0, which establishes that Tt is a positive operator on L2(γ).

We now write the Ornstein-Uhlenbeck semigroup using the orthogonal pro-
jections Ik : L2(γn) → Xk, where γn is the standard Gaussian measure on Rn.12

Theorem 16. For each t ≥ 0 and f ∈ L2(γn),

Ttf =

∞∑
k=0

e−ktIk(f).

Proof. Define St : L
2(γn) → L2(γn) by Stf =

∑∞
k=0 e

−ktIk(f), which satisfies,
using that the subspaces Xk are pairwise orthogonal,

∥Stf∥2L2(γn)
=

∞∑
k=0

e−kt ∥Ik(f)∥2L2(γn)
≤

∞∑
k=0

∥Ik(f)∥2L2(γn)
= ∥f∥2L2(γn)

,

12Vladimir I. Bogachev, Gaussian Measures, p. 11, Theorem 1.4.4.
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so St ∈ B(L2(γn)). To prove that Tt = St, it suffices to prove that TtHα = StHα

for each Hermite polynomial, which are an orthonormal basis for L2(γn). For
α = (k1, . . . , kn) with k = |α| = k1 + · · ·+ kn,

StHα = e−ktHα,

and

(TtHα)(x) =

∫
Rn

Hα

(
e−tx+

√
1− e−2ty

)
dγn(y)

=

∫
Rn

n∏
j=1

Hkj

(
e−txj +

√
1− e−2tyj

)
dγn(y)

=

n∏
j=1

∫
R
Hkj

(
e−txj +

√
1− e−2tyj

)
dγ1(yj).

To prove that TtHα = e−ktHα, it thus suffices to prove that for any t, for any
kj , and for any xj ,∫

R
Hkj

(
e−txj +

√
1− e−2tyj

)
dγ1(yj) = e−kjtHkj

(xj). (8)

For kj = 0, as H0 = 1 and γ1 is a probability measure, (8) is true. Suppose that
(8) is true for ≤ kj . That is, for each 0 ≤ h ≤ kj , TtHh = e−htHh. For any l,
because the Hermite polynomial Hl is a polynomial of degree l, one checks that
TtHl(xj) is a polynomial of degree l: using the binomial formula,∫

R
(e−txj +

√
1− e−2tyj)

l exp

(
−
y2j
2

)
dγ1(yj)

is a polynomial in xj of degree l. Hence TtHl a linear combination ofH0, H1, . . . ,Hl.
For 0 ≤ h ≤ kj ,〈

TtHkj+1, Hh

〉
L2(γ1)

=
〈
Hkj+1, TtHh

〉
L2(γ1)

=
〈
Hkj+1, e

−htHh

〉
L2(γ1)

= 0.

Therefore there is some c ∈ R such that TtHkj+1 = cHkj+1. Then check that

c = e−(kj+1)t.

We now give an explicit expression for the domain D(L) of the Ornstein-
Uhlenbeck operator L and for L applied to an element of its domain.13

Theorem 17.

D(L) =

{
f ∈ L2(γn) :

∞∑
k=0

k2 ∥Ik(f)∥2L2(γn)
< ∞

}
.

For f ∈ D(L),

Lf = −
∞∑
k=0

kIf (f).

13Vladimir I. Bogachev, Gaussian Measures, p. 12, Proposition 1.4.5.
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Proof. Let f ∈ D(L), i.e. Ttf−f
t → Lf in L2(γn) as t ↓ 0. For any k ≥ 0, using

Theorem 16,

IkLf = Ik

(
lim
t↓0

Ttf − f

t

)
= lim

t↓0

IkTtf − Ikf

t

= lim
t↓0

TtIkf − Ikf

t

= lim
t↓0

e−ktIkf − Ikf

t

=

(
lim
t↓0

e−kt − 1

t

)
Ikf

=
(
e−kt

)′ ∣∣
t=0

Ikf

= −kIkf.

Using this,

∞∑
k=0

k2 ∥Ikf∥2L2(γn)
=

∞∑
k=0

∥IkLf∥2L2(γn)

=

∥∥∥∥∥
∞∑
k=0

IkLf

∥∥∥∥∥
2

L2(γn)

= ∥Lf∥2L2(γn)

< ∞.

Moreover,

Lf = L

( ∞∑
k=0

Ikf

)
=

∞∑
k=0

LIkf =

∞∑
k=0

IkLf =

∞∑
k=0

−kIf .

Let f ∈ L2(γn) satisfy

∞∑
k=0

k2 ∥Ikf∥2L2(γn)
< ∞.

For t > 0,∥∥∥∥∥Ttf − f

t
+

∞∑
k=0

kIkf

∥∥∥∥∥
2

L2(γn)

=

∥∥∥∥∥
∞∑
k=0

(
e−ktIkf − Ikf

t
+ kIkf

)∥∥∥∥∥
2

L2(γn)

=

∞∑
k=0

∣∣∣∣e−kt − 1

t
+ k

∣∣∣∣2 ∥Ikf∥2L2(γn)
.
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For t > 0 and k ≥ 0,
|t−1(e−kt − 1)| ≤ k,

and thus

∞∑
k=0

∣∣∣∣e−kt − 1

t
+ k

∣∣∣∣2 ∥Ikf∥2L2(γn)
≤

∞∑
k=0

(2k)2 ∥Ikf∥2L2(γn)
< ∞.

For each k ≥ 0, as t ↓ 0,
e−kt − 1

t
+ k → 0,

thus as t ↓ 0,
∞∑
k=0

∣∣∣∣e−kt − 1

t
+ k

∣∣∣∣2 ∥Ikf∥2L2(γn)
→ 0

and hence ∥∥∥∥∥Ttf − f

t
+

∞∑
k=0

kIkf

∥∥∥∥∥
2

L2(γn)

→ 0.

This means that Ttf−f
t converges in L2(γn) to −

∑∞
k=0 kIkf as t ↓ 0, and since

Ttf−f
t converges, f ∈ D(L).
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