Gaussian measures, Hermite polynomials, and the Ornstein-Uhlenbeck semigroup

Jordan Bell

June 27, 2015

1 Definitions

For a topological space X, we denote by \mathscr{B}_{X} the Borel σ-algebra of X.
We write $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$. With the order topology, $\overline{\mathbb{R}}$ is a compact metrizable space, and \mathbb{R} has the subspace topology inherited from $\overline{\mathbb{R}}$, namely the inclusion map is an embedding $\mathbb{R} \rightarrow \overline{\mathbb{R}}$. It follows that ${ }^{1}$

$$
\mathscr{B}_{\mathbb{R}}=\left\{E \cap \mathbb{R}: E \in \mathscr{B}_{\overline{\mathbb{R}}}\right\} .
$$

If \mathscr{F} is a collection of functions $X \rightarrow \overline{\mathbb{R}}$ on a set X, we define $\bigvee \mathscr{F}: X \rightarrow \overline{\mathbb{R}}$ and $\bigwedge \mathscr{F}: X \rightarrow \overline{\mathbb{R}}$ by

$$
(\bigvee \mathscr{F})(x)=\sup \{f(x): f \in \mathscr{F}\}, \quad x \in X
$$

and

$$
(\bigwedge \mathscr{F})(x)=\inf \{f(x): f \in \mathscr{F}\}, \quad x \in X .
$$

If X is a measurable space and \mathscr{F} is a countable collection of measurable functions $X \rightarrow \overline{\mathbb{R}}$, it is a fact that $\bigwedge \mathscr{F}$ and $\bigvee \mathscr{F}$ are measurable $X \rightarrow \overline{\mathbb{R}}$.

2 Kolmogorov's inequality

Kolmogorov's inequality is the following. ${ }^{2}$
Theorem 1 (Kolmogorov's inequality). Suppose that (Ω, \mathscr{S}, P) is a probability space, that $X_{1}, \ldots, X_{n} \in L^{2}(P)$, that $E\left(X_{1}\right)=0, \ldots, E\left(X_{n}\right)=0$, and that X_{1}, \ldots, X_{n} are independent. Let

$$
S_{k}(\omega)=\sum_{j=1}^{k} X_{j}(\omega), \quad \omega \in \Omega
$$

[^0]for $1 \leq k \leq n$. Then for any $\lambda>0$,
$$
P\left(\left\{\omega \in \Omega: \bigvee_{k=1}^{n}\left|S_{k}(\omega)\right| \geq \lambda\right\}\right) \leq \frac{1}{\lambda^{2}} \sum_{j=1}^{n} V\left(X_{j}\right)=\frac{1}{\lambda^{2}} V\left(S_{n}\right)
$$

3 Gaussian measures on R

For real a and $\sigma>0$, one computes that

$$
\begin{equation*}
\frac{1}{\sigma \sqrt{2 \pi}} \int_{\mathbb{R}} \exp \left(-\frac{(t-a)^{2}}{2 \sigma^{2}}\right) d t=1 \tag{1}
\end{equation*}
$$

Suppose that γ is a Borel probability measure on \mathbb{R}. If

$$
\gamma=\delta_{a}
$$

for some $a \in \mathbb{R}$ or has density

$$
p\left(t, a, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(t-a)^{2}}{2 \sigma^{2}}\right), \quad t \in \mathbb{R}
$$

for some $a \in \mathbb{R}$ and some $\sigma>0$, with respect to Lebesgue measure on \mathbb{R}, we say that γ is a Gaussian measure. We say that δ_{a} is a Gaussian measure with mean a and variance 0 , and that a Gaussian measure with density $p\left(\cdot, a, \sigma^{2}\right)$ has mean a and variance σ^{2}. A Gaussian measure with mean 0 and variance 1 is said to be standard.

One calculates that the characteristic function of a Gaussian measure γ with density $p\left(\cdot, a, \sigma^{2}\right)$ is

$$
\begin{equation*}
\widetilde{\gamma}(y)=\int_{\mathbb{R}} \exp (i y x) d \gamma(x)=\exp \left(i a y-\frac{1}{2} \sigma^{2} y^{2}\right), \quad y \in \mathbb{R} \tag{2}
\end{equation*}
$$

The cumulative distribution function of a standard Gaussian measure γ is, for $t \in \mathbb{R}$,

$$
\Phi(t)=\gamma(-\infty, t]=\int_{-\infty}^{t} d \gamma(s)=\int_{-\infty}^{t} p(s, 0,1) d s=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s
$$

We define $\Phi(-\infty)=0$ and also define

$$
\Phi(\infty)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s=1
$$

using (1).
$\Phi: \overline{\mathbb{R}} \rightarrow[0,1]$ is strictly increasing, thus $\Phi^{-1}:[0,1] \rightarrow \overline{\mathbb{R}}$ makes sense, and is itself strictly increasing. Then $1-\Phi$ is strictly decreasing. By (1),

$$
\begin{aligned}
1-\Phi(t) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s-\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s \\
& =\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s
\end{aligned}
$$

The following lemma gives an estimate for $1-\Phi(t)$ that tells us something substantial as $t \rightarrow+\infty$, beyond the immediate fact that $(1-\Phi)(\infty)=1-$ $\Phi(\infty)=0 .{ }^{3}$
Lemma 2. For $t>0$,

$$
\frac{1}{\sqrt{2 \pi}}\left(\frac{1}{t}-\frac{1}{t^{3}}\right) e^{-t^{2} / 2} \leq 1-\Phi(t) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{t} e^{-t^{2} / 2}
$$

Proof. Integrating by parts,

$$
\begin{aligned}
1-\Phi(t) & =\int_{t}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s \\
& =\int_{t}^{\infty} \frac{1}{s \sqrt{2 \pi}} \cdot s \exp \left(-\frac{s^{2}}{2}\right) d s \\
& =-\left.\frac{1}{s \sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right)\right|_{t} ^{\infty}-\int_{t}^{\infty} \frac{1}{s^{2} \sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s \\
& \leq \frac{1}{t \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)
\end{aligned}
$$

On the other hand, using the above work and again integrating by parts,

$$
\begin{aligned}
1-\Phi(t) & =\frac{1}{t \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)-\int_{t}^{\infty} \frac{1}{s^{3} \sqrt{2 \pi}} \cdot s \exp \left(-\frac{s^{2}}{2}\right) d s \\
& =\frac{1}{t \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)+\left.\frac{1}{s^{3} \sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right)\right|_{t} ^{\infty} \\
& +\int_{t}^{\infty} \frac{3}{s^{4} \sqrt{2 \pi}} \exp \left(-\frac{s^{2}}{2}\right) d s \\
& \geq \frac{1}{t \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)-\frac{1}{t^{3} \sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right) .
\end{aligned}
$$

The following theorem shows that if the variances of a sequence of independent centered random variables are summable then the sequence of random variables is summable almost surely. ${ }^{4}$
Theorem 3. Suppose that $\xi_{j} \in L^{2}(\Omega, \mathscr{S}, P), j \geq 1$, are independent random variables each with mean 0 . If $\sum_{j=1}^{\infty} V\left(\xi_{j}\right)<\infty$, then $\sum_{j=1}^{\infty} \xi_{j}$ converges almost surely.
Proof. Define $S_{n}: \Omega \rightarrow \mathbb{R}$ by

$$
S_{n}(\omega)=\sum_{j=1}^{n} \xi_{j}(\omega)
$$

[^1]define $Z_{n}: \Omega \rightarrow[0, \infty]$ by
$$
Z_{n}=\bigvee_{j=1}^{\infty}\left|S_{n+j}-S_{n}\right|
$$
and define $Z: \Omega \rightarrow[0, \infty]$ by
$$
Z=\bigwedge_{n=1}^{\infty} Z_{n}
$$

If $S_{n}(\omega)$ converges and $\epsilon>0$, there is some n such that for all $j \geq 1, \mid S_{n+j}(\omega)-$ $S_{n}(\omega) \mid<\epsilon$ and so $Z_{n}(\omega) \leq \epsilon$ and $Z(\omega) \leq \epsilon$. Therefore, if $S_{n}(\omega)$ converges then $Z(\omega)=0$. On the other hand, if $Z(\omega)=0$ and $\epsilon>0$, there is some n such that $Z_{n}(\omega)<\epsilon$, hence $\left|S_{n+j}(\omega)-S_{n}(\omega)\right|<\epsilon$ for all $j \geq 1$. That is, $S_{n}(\omega)$ is a Cauchy sequence in \mathbb{R}, and hence converges. Therefore

$$
\begin{equation*}
\left\{\omega \in \Omega: S_{n}(\omega) \text { converges }\right\}=\{\omega \in \Omega: Z(\omega)=0\} . \tag{3}
\end{equation*}
$$

Let $\epsilon>0$. For any n and k, using Kolmogorov's inequality with $X_{j}=\xi_{n+j}$ for $j=1, \ldots, k$,

$$
P\left(\bigvee_{j=1}^{k}\left|S_{n+j}-S_{n}\right| \geq \epsilon\right) \leq \frac{1}{\epsilon^{2}} \sum_{j=1}^{k} V\left(X_{j}\right) \leq \frac{1}{\epsilon^{2}} \sum_{j=n+1}^{\infty} V\left(\xi_{j}\right)
$$

Because this is true for each k, it follows that

$$
P\left(Z_{n} \geq \epsilon\right) \leq \frac{1}{\epsilon^{2}} \sum_{j=n+1}^{\infty} V\left(\xi_{j}\right)
$$

hence, for each n,

$$
P(Z \geq \epsilon) \leq P\left(Z_{n} \geq \epsilon\right) \leq \frac{1}{\epsilon^{2}} \sum_{j=n+1}^{\infty} V\left(\xi_{j}\right) .
$$

Because $\sum_{j=1}^{\infty} V\left(\xi_{j}\right)<\infty, \sum_{j=n+1}^{\infty} V\left(\xi_{j}\right) \rightarrow 0$ as $n \rightarrow \infty$, so

$$
P(Z \geq \epsilon)=0
$$

Because this is true for all $\epsilon>0$, we get $P(Z>0)=0$, i.e. $P(Z=0)=1$. By (3), this means that S_{n} converges almost surely.

The following theorem gives conditions under which the converse of the above theorem holds. ${ }^{5}$

[^2]Theorem 4. Suppose that $\xi_{j} \in L^{2}(\Omega, \mathscr{S}, P), j \geq 1$, are independent random variables each with mean 0 , and let $S_{n}=\sum_{j=1}^{n} \xi_{j}$. If

$$
\begin{equation*}
P\left(\bigvee_{n=1}^{\infty}\left|S_{n}\right|<\infty\right)>0 \tag{4}
\end{equation*}
$$

and there is some $\beta \in[0, \infty)$ such that $\bigvee_{j=1}^{\infty}\left|\xi_{j}\right| \leq \beta$ almost surely, then

$$
\sum_{j=1}^{\infty} V\left(\xi_{j}\right)<\infty
$$

Proof. By (4), there is some $\alpha \in[0, \infty)$ such that $P(A)>0$, for

$$
A=\left\{\omega \in \Omega: \bigvee_{n=1}^{\infty}\left|S_{n}(\omega)\right| \leq \alpha\right\}
$$

For $p \geq 1$, let

$$
A_{p}=\left\{\omega \in \Omega: \bigvee_{n=1}^{p}\left|S_{n}(\omega)\right| \leq \alpha\right\}
$$

which satisfies $A_{p} \downarrow A$ as $p \rightarrow \infty$. For each p, the random variables $\chi_{A_{p}} S_{p}$ and ξ_{p+1} are independent and the random variables $\chi_{A_{p}}$ and ξ_{p+1}^{2} are independent, whence

$$
\begin{aligned}
E\left(\chi_{A_{p}} S_{p+1}^{2}\right) & =E\left(\chi_{A_{p}}\left(S_{p}+\xi_{p+1}\right)\left(S_{p}+\xi_{p+1}\right)\right) \\
& =E\left(\chi_{A_{p}} S_{p}^{2}+2 \chi_{A_{p}} S_{p} \xi_{p+1}+\chi_{A_{p}} \xi_{p+1}^{2}\right) \\
& =E\left(\chi_{A_{p}} S_{p}^{2}\right)+2 E\left(\chi_{A_{p}} S_{p}\right) E\left(\xi_{p+1}\right)+E\left(\chi_{A_{p}}\right) E\left(\xi_{p+1}^{2}\right) \\
& =E\left(\chi_{A_{p}} S_{p}^{2}\right)+P\left(A_{p}\right) V\left(\xi_{p+1}\right) \\
& \geq E\left(\chi_{A_{p}} S_{p}^{2}\right)+P(A) V\left(\xi_{p+1}\right) .
\end{aligned}
$$

Set $B_{p}=A_{p} \backslash A_{p+1}$. For $\omega \in A_{p},\left|S_{p}(\omega)\right| \leq \alpha$, and for almost all $\omega \in \Omega$, $\left|\xi_{p+1}(\omega)\right| \leq \beta$, so for almost all $\omega \in B_{p}$,

$$
\left|S_{p+1}(\omega)\right| \leq\left|S_{p}(\omega)\right|+\mid \xi_{p+1}(\omega) \leq \alpha+\beta
$$

hence

$$
\begin{aligned}
P(A) V\left(\xi_{p+1}\right) & \leq E\left(\left(\chi_{B_{p}}+\chi_{A_{p+1}}\right) S_{p+1}^{2}\right)-E\left(\chi_{A_{p}} S_{p}^{2}\right) \\
& =E\left(\chi_{B_{p}} S_{p+1}^{2}\right)+E\left(\chi_{A_{p+1}} S_{p+1}^{2}\right)-E\left(\chi_{A_{p}} S_{p}^{2}\right) \\
& \leq P\left(B_{p}\right)(\alpha+\beta)^{2}+E\left(\chi_{A_{p+1}} S_{p+1}^{2}\right)-E\left(\chi_{A_{p}} S_{p}^{2}\right) .
\end{aligned}
$$

Adding the inequalities for $p=1,2, \ldots, n-1$, because B_{p} are pairwise disjoint,

$$
\begin{aligned}
P(A) \sum_{p=1}^{n-1} V\left(\xi_{p+1}\right) & =(\alpha+\beta)^{2} \sum_{p=1}^{n-1} P\left(B_{p}\right)+E\left(\chi_{A_{n}} S_{n}^{2}\right)-E\left(\chi_{A_{1}} S_{1}^{2}\right) \\
& \leq(\alpha+\beta)^{2}+E\left(\chi_{A_{n}} S_{n}^{2}\right) \\
& \leq(\alpha+\beta)^{2}+\alpha^{2}
\end{aligned}
$$

Because this is true for all n and $P(A)>0$,

$$
\sum_{p=1}^{\infty} V\left(\xi_{p+1}\right)<\infty
$$

and with $V\left(\xi_{1}\right)<\infty$ this completes the proof.

$4 \mathrm{R}^{\mathrm{n}}$

If μ is a finite Borel measure on \mathbb{R}^{n}, we define the characteristic function of μ by

$$
\widetilde{\mu}(y)=\int_{\mathbb{R}^{n}} e^{i\langle y, x\rangle} d \mu(x), \quad y \in \mathbb{R}^{n}
$$

A Borel probability measure γ on \mathbb{R}^{n} is said to be Gaussian if for each $f \in\left(\mathbb{R}^{n}\right)^{*}$, the pushforward measure $f_{*} \gamma$ on \mathbb{R} is a Gaussian measure on \mathbb{R}, where

$$
\left(f_{*} \gamma\right)(E)=\gamma\left(f^{-1}(E)\right)
$$

for E a Borel set in \mathbb{R}.
We now give a characterization of Gaussian measures on \mathbb{R}^{n} and their densities. ${ }^{6}$ In the following theorem, the vector $a \in \mathbb{R}^{n}$ is called the mean of γ and the linear transformation $K \in \mathscr{L}\left(\mathbb{R}^{n}\right)$ is called the covariance operator of γ. When $a=0 \in \mathbb{R}^{n}$ and $K=\operatorname{id}_{\mathbb{R}^{n}}$, we say that γ is standard.

Theorem 5. A Borel probability measure γ on \mathbb{R}^{n} is Gaussian if and only if there is some $a \in \mathbb{R}^{n}$ and some positive semidefinite $K \in \mathscr{L}\left(\mathbb{R}^{n}\right)$ such that

$$
\begin{equation*}
\widetilde{\gamma}(y)=\exp \left(i\langle y, a\rangle-\frac{1}{2}\langle K y, y\rangle\right), \quad y \in \mathbb{R}^{n} \tag{5}
\end{equation*}
$$

If γ is a Gaussian measure whose covariance operator K is positive definite, then the density of γ with respect to Lebesgue measure on \mathbb{R}^{n} is

$$
x \mapsto \frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} K}} \exp \left(-\frac{1}{2}\left\langle K^{-1}(x-a), x-a\right\rangle\right), \quad x \in \mathbb{R}^{n} .
$$

Proof. Suppose that (5) is satisfied. Let $f \in\left(\mathbb{R}^{n}\right)^{*}$, i.e. a linear map $\mathbb{R}^{n} \rightarrow \mathbb{R}$, and put $\nu=f_{*} \gamma$. Using the change of variables formula, the characteristic function of ν is

$$
\widetilde{\nu}(t)=\int_{\mathbb{R}} e^{i t s} d \nu(s)=\int_{\mathbb{R}^{n}} e^{i t f(x)} d \gamma(x), \quad t \in \mathbb{R}
$$

[^3]Let v be the unique element of \mathbb{R}^{n} such that $f(x)=\langle v, x\rangle$ for all $x \in \mathbb{R}^{n}$. Then

$$
\widetilde{\nu}(t)=\int_{\mathbb{R}^{n}} e^{i\langle t v, x\rangle} d \gamma(x)=\widetilde{\gamma}(t v) .
$$

so by (5),

$$
\widetilde{\nu}(t)=\exp \left(i\langle t v, a\rangle-\frac{1}{2}\langle K t v, t v\rangle\right)=\exp \left(i f(a) t-\frac{1}{2}\langle K v, v\rangle t^{2}\right) .
$$

This implies that ν is a Gaussian measure on \mathbb{R} with mean $f(a)$ and variance $\langle K v, v\rangle$: if $\langle K v, v\rangle=0$ then $\nu=\delta_{f(a)}$, and if $\langle K v, v\rangle>0$ then ν has density

$$
\frac{1}{\sqrt{\langle K v, v\rangle} \sqrt{2 \pi}} \exp \left(-\frac{(s-f(a))^{2}}{2\langle K v, v\rangle}\right), \quad s \in \mathbb{R}
$$

with respect to Lebesgue measure on \mathbb{R}. That is, for any $f \in\left(\mathbb{R}^{n}\right)^{*}$, the pushforward measure $f_{*} \gamma$ is a Gaussian measure on \mathbb{R}, which is what it means for γ to be a Gaussian measure on \mathbb{R}^{n}.

Suppose that γ is Gaussian and let $f \in\left(\mathbb{R}^{n}\right)^{*}$. Then the pushforward measure $f_{*} \gamma$ is a Gaussian measure on \mathbb{R}. Let $a(f)$ be the mean of $f_{*} \gamma$ and let $\sigma^{2}(f)$ be the variance of $f_{*} \gamma$, and let v_{f} be the unique element of \mathbb{R}^{n} such that $f(x)=\left\langle x, v_{f}\right\rangle$ for all $x \in \mathbb{R}^{n}$. Using the change of variables formula,

$$
a(f)=\int_{\mathbb{R}} t d\left(f_{*} \gamma\right)(t)=\int_{\mathbb{R}^{n}} f(x) d \gamma(x)
$$

and

$$
\begin{aligned}
\sigma^{2}(f) & =\int_{\mathbb{R}}(t-a(f))^{2} d\left(f_{*} \gamma\right)(t) \\
& =\int_{\mathbb{R}^{n}}(f(x)-a(f))^{2} d \gamma(x) \\
& =\int_{\mathbb{R}^{n}}\left(f(x)^{2}-2 f(x) a(f)+a(f)^{2}\right) d \gamma(x) .
\end{aligned}
$$

Because $f \mapsto a(f)$ is linear $\left(\mathbb{R}^{n}\right)^{*} \rightarrow \mathbb{R}$, there is a unique $a \in \mathbb{R}^{n}=\left(\mathbb{R}^{n}\right)^{* *}$ such that

$$
a(f)=\left\langle v_{f}, a\right\rangle, \quad f \in\left(\mathbb{R}^{n}\right)^{*}
$$

For $f, g \in\left(\mathbb{R}^{n}\right)^{*}$,

$$
\begin{aligned}
\sigma^{2}(f+g) & =\int_{\mathbb{R}^{n}}\left(f(x)^{2}+2 f(x) g(x)+g(x)^{2}\right. \\
& -2 f(x) a(f)-2 f(x) a(g)-2 g(x) a(f)-2 g(x) a(g) \\
& \left.+a(f)^{2}+2 a(f) a(g)+a(g)^{2}\right) d \gamma(x),
\end{aligned}
$$

SO

$$
\begin{aligned}
\sigma^{2}(f+g)-\sigma^{2}(f)-\sigma^{2}(g) & =\int_{\mathbb{R}^{n}}(2 f(x) g(x)-2 f(x) a(g)-2 g(x) a(f) \\
& +2 a(f) a(g)) d \gamma(x)
\end{aligned}
$$

$B(f, g)=\frac{1}{2}\left(\sigma^{2}(f+g)-\sigma^{2}(f)-\sigma^{2}(g)\right)$ is a symmetric bilinear form on \mathbb{R}^{n}, and

$$
B(f, f)=2 \int_{\mathbb{R}^{n}}(f(x)-a(f))^{2} d \gamma(x) \geq 0
$$

namely, B is positive semidefinite. It follows that there is a unique positive semidefinite $K \in \mathscr{L}\left(\mathbb{R}^{n}\right)$ such that $B(f, g)=\left\langle K v_{f}, v_{g}\right\rangle$ for all $f, g \in\left(\mathbb{R}^{n}\right)^{*}$. For $y \in \mathbb{R}^{n}$ and for $v_{f}=y$, using the change of variables formula, using the fact that $f_{*} \gamma$ is a Gaussian measure on \mathbb{R} with mean

$$
a(f)=\left\langle v_{f}, a\right\rangle=\langle y, a\rangle
$$

and variance

$$
\sigma^{2}(f)=B(f, f)=\left\langle K v_{f}, v_{f}\right\rangle=\langle K y, y\rangle
$$

and using (2),

$$
\begin{aligned}
\widetilde{\gamma}(y) & =\int_{\mathbb{R}^{n}} e^{i f(x)} d \gamma(x) \\
& =\int_{\mathbb{R}} e^{i t} d\left(f_{*} \gamma\right)(t) \\
& =\exp \left(i\langle y, a\rangle \cdot 1-\frac{1}{2}\langle K y, y\rangle \cdot 1^{2}\right) \\
& =\exp \left(i\langle y, a\rangle-\frac{1}{2}\langle K y, y\rangle\right),
\end{aligned}
$$

which shows that (5) is satisfied.
Suppose that γ is a Gaussian measure and further that the covariance operator K is positive definite. By the spectral theorem, there is an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for \mathbb{R}^{n} such that $\left\langle K e_{j}, e_{j}\right\rangle>0$ for each $1 \leq j \leq n$. Write $\left\langle K e_{j}, e_{j}\right\rangle=\sigma_{j}^{2}$, and for $y \in \mathbb{R}^{n}$ set $y_{j}=\left\langle y, e_{j}\right\rangle$, with which $y=y_{1} e_{1}+\cdots+y_{n} e_{n}$ and then

$$
\begin{aligned}
\langle K y, y\rangle & =\left\langle y_{1} K e_{1}+\cdots+y_{n} K e_{n}, y_{1} e_{1}+\cdots+y_{n} e_{n}\right\rangle \\
& =\left\langle y_{1} \sigma_{1}^{2} e_{1}+\cdots+y_{n} \sigma_{n}^{2} e_{n}, y_{1} e_{1}+\cdots+y_{n} e_{n}\right\rangle \\
& =\sigma_{1}^{2} y_{1}^{2}+\cdots+\sigma_{n}^{2} y_{n}^{2} .
\end{aligned}
$$

And

$$
\langle y, a\rangle=\left\langle y_{1} e_{1}+\cdots+y_{n} e_{n}, a_{1} e_{1}+\cdots+a_{n} e_{n}\right\rangle=a_{1} y_{1}+\cdots+a_{n} y_{n}
$$

Let γ_{j} be the Gaussian measure on \mathbb{R} with mean a_{j} and variance σ_{j}^{2}. Because $\sigma_{j}^{2}>0$, the measure γ_{j} has density $p\left(\cdot, a_{j}, \sigma_{j}^{2}\right)$ with respect to Lebesgue measure on \mathbb{R}, and thus

$$
\begin{aligned}
\widetilde{\gamma}(y) & =\exp \left(i\langle y, a\rangle-\frac{1}{2}\langle K y, y\rangle\right) \\
& =\exp \left(i \sum_{j=1}^{n} a_{j} y_{j}-\frac{1}{2} \sum_{j=1}^{n} \sigma_{j}^{2} y_{j}^{2}\right) \\
& =\prod_{j=1}^{n} \exp \left(i a_{j} y_{j}-\frac{1}{2} \sigma_{j}^{2} y_{j}^{2}\right) \\
& =\prod_{j=1}^{n} \widetilde{\gamma}_{j}\left(y_{j}\right) \\
& =\prod_{j=1}^{n} \int_{\mathbb{R}} \exp \left(i y_{j} t\right) d \gamma_{j}(t) \\
& =\prod_{j=1}^{n} \int_{\mathbb{R}} \exp \left(i y_{j} t\right) p\left(t, a_{j}, \sigma_{j}^{2}\right) d t \\
& =\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} \exp \left(i y_{j} x_{j}\right) p\left(x_{j}, a_{j}, \sigma_{j}^{2}\right) d x \\
& =\int_{\mathbb{R}^{n}} e^{i\langle y, x\rangle} \prod_{j=1}^{n} p\left(x_{j}, a_{j}, \sigma_{j}^{2}\right) d x .
\end{aligned}
$$

This implies that γ has density

$$
x \mapsto \prod_{j=1}^{n} p\left(x_{j}, a_{j}, \sigma_{j}^{2}\right), \quad x \in \mathbb{R}^{n}
$$

with respect to Lebesgue measure on \mathbb{R}^{n}. Moreover,

$$
\begin{aligned}
\left\langle K^{-1}(x-a), x-a\right\rangle & =\left\langle\sum_{j=1}^{n} \sigma_{j}^{-2}\left(x_{j}-a_{j}\right) e_{j}, \sum_{j=1}^{n}\left(x_{j}-a_{j}\right) e_{j}\right\rangle \\
& =\sum_{j=1}^{n} \frac{\left(x_{j}-a_{j}\right)^{2}}{\sigma_{j}^{2}},
\end{aligned}
$$

so we have, as $\operatorname{det} K=\prod_{j=1}^{n} \sigma_{j}^{2}$,

$$
\begin{aligned}
\prod_{j=1}^{n} p\left(x_{j}, a_{j}, \sigma_{j}^{2}\right) & =\prod_{j=1}^{n} \frac{1}{\sigma_{j} \sqrt{2 \pi}} \exp \left(-\frac{\left(x_{j}-a_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right) \\
& =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det} K}} \exp \left(-\frac{1}{2}\left\langle K^{-1}(x-a), x-a\right\rangle\right)
\end{aligned}
$$

Because \mathbb{R} is a second-countable topological space, the Borel σ-algebra $\mathscr{B}_{\mathbb{R}^{n}}$ is equal to the product σ-algebra $\bigotimes_{j=1}^{n} \mathscr{B}_{\mathbb{R}}$. The density of the standard Gaussian measure γ_{n} with respect to Lebesgue measure on \mathbb{R}^{n} is, by Theorem 5,

$$
x \mapsto \frac{1}{\sqrt{(2 \pi)^{n}}} \exp \left(-\frac{1}{2}\langle x, x\rangle\right), \quad x \in \mathbb{R}^{n}
$$

It follows that γ_{n} is equal to the product measure $\prod_{j=1}^{n} \gamma_{1}$, and thus that the probability space $\left(\mathbb{R}^{n}, \mathscr{B}_{\mathbb{R}^{n}}, \gamma_{n}\right)$ is equal to the product $\prod_{j=1}^{n}\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}, \gamma_{1}\right)$.

For $f_{1}, \ldots, f_{n} \in L^{2}\left(\gamma_{1}\right)$, we define $f_{1} \otimes \cdots \otimes f_{n} \in L^{2}\left(\gamma_{n}\right)$, called the tensor product of f_{1}, \ldots, f_{n}, by

$$
\left(f_{1} \otimes \cdots \otimes f_{n}\right)(x)=\prod_{j=1}^{n} f_{j}\left(x_{j}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

It is straightforward to check that for $f_{1}, \ldots, f_{n}, g_{1}, \ldots, g_{n} \in L^{2}\left(\gamma_{1}\right)$,

$$
\left\langle f_{1} \otimes \cdots \otimes f_{n}, g_{1} \otimes \cdots \otimes g_{n}\right\rangle_{L^{2}\left(\gamma_{n}\right)}=\prod_{j=1}^{n}\left\langle f_{j}, g_{j}\right\rangle_{L^{2}\left(\gamma_{1}\right)}
$$

One proves that the linear span of the collection of all tensor products is dense in $L^{2}\left(\gamma_{n}\right)$, and that $\left\{v_{k}: k \geq 0\right\}$ is an orthonormal basis for $L^{2}\left(\gamma_{1}\right)$, then

$$
\begin{equation*}
\left\{v_{k_{1}} \otimes \cdots \otimes v_{k_{n}}:\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}\right\} \tag{6}
\end{equation*}
$$

is an orthonormal basis for $L^{2}\left(\gamma_{n}\right)$.
We will later use the following statement about centered Gaussian measures. ${ }^{7}$
Theorem 6. Let γ be a Gaussian measure on \mathbb{R}^{n} with mean 0 and let $\theta \in \mathbb{R}$. Then the pushforward of the product measure $\gamma \times \gamma$ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ under the mapping $(u, v) \mapsto u \sin \theta+v \cos \theta, \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, is equal to γ.
Proof. Let μ be the pushforward of $\gamma \times \gamma$ under the above mapping. and let $K \in \mathscr{L}\left(\mathbb{R}^{n}\right)$ be the covariance operator of γ. For $y \in \mathbb{R}^{n}$, using the change of variables formula,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \exp (i\langle y, x\rangle) d \mu(x) & =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \exp (i\langle y, u \sin \theta+v \cos \theta\rangle) d(\gamma \times \gamma)(u, v) \\
& =\left(\int_{\mathbb{R}^{n}} \exp (i\langle y \sin \theta, u\rangle) d \gamma(u)\right) \\
& \cdot\left(\int_{\mathbb{R}^{n}} \exp (i\langle y \cos \theta, v\rangle) d \gamma(v)\right) \\
& =\widetilde{\gamma}(y \sin \theta) \widetilde{\gamma}(y \cos \theta)
\end{aligned}
$$

[^4]By Theorem 5,

$$
\begin{aligned}
\widetilde{\gamma}(y \sin \theta) \widetilde{\gamma}(y \cos \theta) & =\exp \left(-\frac{1}{2}\langle K y \sin \theta, y \sin \theta\rangle\right) \exp \left(-\frac{1}{2}\langle K y \cos \theta, y \cos \theta\rangle\right) \\
& =\exp \left(-\frac{1}{2} \sin ^{2}(\theta)\langle K y, y\rangle-\frac{1}{2} \cos ^{2}(\theta)\langle K y, y\rangle\right) \\
& =\exp \left(-\frac{1}{2}\langle K y, y\rangle\right)
\end{aligned}
$$

Thus, the characteristic function of μ is

$$
\widetilde{\mu}(y)=\exp \left(-\frac{1}{2}\langle K y, y\rangle\right), \quad y \in \mathbb{R}^{n}
$$

which implies that μ is equal to the Gaussian measure with mean 0 and covariance operator K, i.e., $\mu=\gamma$.

5 Hermite polynomials

For $k \geq 0$, we define the Hermite polynomial H_{k} by

$$
H_{k}(t)=\frac{(-1)^{k}}{\sqrt{k!}} \exp \left(\frac{t^{2}}{2}\right) \frac{d^{k}}{d t^{k}} \exp \left(-\frac{t^{2}}{2}\right), \quad t \in \mathbb{R}
$$

It is apparent that $H_{k}(t)$ is a polynomial of degree k.
Theorem 7. For real λ and t,

$$
\exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right)=\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}(t) \lambda^{k} .
$$

Proof. For $u \in \mathbb{C}$, let $g(u)=\exp \left(-\frac{1}{2} u^{2}\right)$. For $t \in \mathbb{R}$,

$$
\begin{aligned}
g(u) & =\sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{k!}(u-t)^{k} \\
& =\sum_{k=0}^{\infty} \frac{\sqrt{k!}}{(-1)^{k}} \exp \left(-\frac{t^{2}}{2}\right) H_{k}(t) \frac{1}{k!}(u-t)^{k} \\
& =\exp \left(-\frac{t^{2}}{2}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k!}} H_{k}(t)(u-t)^{k} .
\end{aligned}
$$

Therefore, for real λ and t,

$$
\begin{aligned}
\exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right) & =\exp \left(\frac{1}{2} t^{2}-\frac{1}{2}(\lambda-t)^{2}\right) \\
& =\exp \left(\frac{1}{2} t^{2}\right) g(\lambda-t) \\
& =\exp \left(\frac{1}{2} t^{2}\right) g(t-\lambda) \\
& =\exp \left(\frac{1}{2} t^{2}\right) \exp \left(-\frac{t^{2}}{2}\right) \sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{k!}} H_{k}(t)(-\lambda)^{k} \\
& =\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}(t) \lambda^{k} .
\end{aligned}
$$

Theorem 8. Let γ_{1} be the standard Gaussian measure on \mathbb{R}, with density $p(t, 0,1)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right)$. Then

$$
\left\{H_{k}: k \geq 0\right\}
$$

is an orthonormal basis for $L^{2}\left(\gamma_{1}\right)$.
Proof. For $\lambda, \mu \in \mathbb{R}$, on the one hand, using (1) with $a=\lambda+\mu$ and $\sigma=1$,

$$
\begin{aligned}
& \int_{\mathbb{R}} \exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right) \exp \left(\mu t-\frac{1}{2} \mu^{2}\right) d \gamma_{1}(t) \\
= & e^{\lambda \mu} \int_{\mathbb{R}} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}(t-(\lambda+\mu))^{2}\right) d t \\
= & e^{\lambda \mu} .
\end{aligned}
$$

On the other hand, using Theorem 7,

$$
\begin{aligned}
& \int_{\mathbb{R}} \exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right) \exp \left(\mu t-\frac{1}{2} \mu^{2}\right) d \gamma_{1}(t) \\
= & \int_{\mathbb{R}}\left(\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}(t) \lambda^{k}\right)\left(\sum_{l=0}^{\infty} \frac{1}{\sqrt{l!}} H_{l}(t) \mu^{l}\right) d \gamma_{1}(t) \\
= & \int_{\mathbb{R}} \sum_{k, l \geq 0} \frac{1}{\sqrt{k!l!}} \lambda^{k} \mu^{l} H_{k}(t) H_{l}(t) d \gamma_{1}(t) \\
= & \sum_{k, l \geq 0} \frac{1}{\sqrt{k!l!}} \lambda^{k} \mu^{l}\left\langle H_{k}, H_{l}\right\rangle_{L^{2}\left(\gamma_{1}\right)} .
\end{aligned}
$$

Therefore

$$
\sum_{k, l \geq 0} \frac{1}{\sqrt{k!l!}} \lambda^{k} \mu^{l}\left\langle H_{k}, H_{l}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=\sum_{k=0}^{\infty} \frac{1}{k!} \lambda^{k} \mu^{k} .
$$

From this, we get that if $k \neq l$ then $\frac{1}{\sqrt{k!l!}}\left\langle H_{k}, H_{l}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=0$, i.e.

$$
\left\langle H_{k}, H_{l}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=0
$$

If $k=l$, then $\frac{1}{\sqrt{k!!!}}\left\langle H_{k}, H_{l}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=\frac{1}{k!}$, i.e.

$$
\left\langle H_{k}, H_{k}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=1
$$

Therefore, $\left\{H_{k}: k \geq 0\right\}$ is an orthonormal set in $L^{2}\left(\gamma_{1}\right)$.
Suppose that $f \in L^{2}\left(\gamma_{1}\right)$ satisfies $\left\langle f, H_{k}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=0$ for each $k \geq 0$. Because $H_{k}(t)$ is a polynomial of degree k, for each $k \geq 0$ we have

$$
\operatorname{span}\left\{H_{0}, H_{1}, H_{2}, \ldots, H_{k}\right\}=\operatorname{span}\left\{1, t, t^{2}, \ldots, t^{k}\right\}
$$

Hence for each $k \geq 0,\left\langle f, t^{k}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=0$. One then proves that $\operatorname{span}\left\{1, t, t^{2}, \ldots\right\}$ is dense in $L^{2}\left(\gamma_{1}\right)$, from which it follows that the linear span of the Hermite polynomials is dense in $L^{2}\left(\gamma_{1}\right)$ and thus that they are an orthonormal basis.

Lemma 9. For $k \geq 1$,

$$
H_{k}^{\prime}(t)=\sqrt{k} H_{k-1}(t), \quad H_{k}^{\prime}(t)=t H_{k}(t)-\sqrt{k+1} H_{k+1}(t)
$$

Proof. Theorem 7 says

$$
\exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right)=\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}(t) \lambda^{k}
$$

On the one hand,

$$
\begin{aligned}
\frac{d}{d t} \exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right) & =\lambda \exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right) \\
& =\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}(t) \lambda^{k+1} \\
& =\sum_{k=1}^{\infty} \frac{1}{\sqrt{(k-1)!}} H_{k-1}(t) \lambda^{k}
\end{aligned}
$$

On the other hand,

$$
\frac{d}{d t} \exp \left(\lambda t-\frac{1}{2} \lambda^{2}\right)=\sum_{k=0}^{\infty} \frac{1}{\sqrt{k!}} H_{k}^{\prime}(t) \lambda^{k}
$$

Therefore, $H_{0}^{\prime}(t)=0$, and for $k \geq 1$,

$$
\frac{1}{\sqrt{(k-1)!}} H_{k-1}(t)=\frac{1}{\sqrt{k!}} H_{k}^{\prime}(t)
$$

i.e.,

$$
H_{k}^{\prime}(t)=\sqrt{k} H_{k-1}(t)
$$

For $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we define the Hermite polynomial H_{α} by

$$
H_{\alpha}(x)=H_{k_{1}}\left(x_{1}\right) \cdots H_{k_{n}}\left(x_{n}\right), \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} .
$$

Because the collection of all Hermite polynomials H_{k} is an orthonormal basis for the Hilbert space $L^{2}\left(\gamma_{1}\right)$, following (6) we have that the collection of all Hermite polynomials H_{α} is an orthonormal basis for the Hilbert space $L^{2}\left(\gamma_{n}\right)$.

Theorem 10. For γ_{n} the standard Gaussian measure on \mathbb{R}^{n}, with mean $0 \in \mathbb{R}^{n}$ and covariance operator $\operatorname{id}_{\mathbb{R}^{n}}$, the collection

$$
\left\{H_{\alpha}: \alpha \in \mathbb{Z}_{\geq 0}^{n}\right\}
$$

is an orthonormal basis for $L^{2}\left(\gamma_{n}\right)$.
For $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, write $|\alpha|=k_{1}+\cdots+k_{n}$. For $k \geq 0$, we define

$$
\mathcal{X}_{k}=\operatorname{span}\left\{H_{\alpha}:|\alpha|=k\right\},
$$

which is a subspace of $L^{2}\left(\gamma_{n}\right)$ of dimension

$$
\binom{k+n-1}{k} .
$$

As \mathcal{X}_{k} is a finite dimensional subspace of $L^{2}\left(\gamma_{n}\right)$, it is closed. $L^{2}\left(\gamma_{n}\right)$ is equal to the orthogonal direct sum of the \mathcal{X}_{k} :

$$
L^{2}\left(\gamma_{n}\right)=\bigoplus_{k=0}^{\infty} \mathcal{X}_{k} .
$$

Let

$$
I_{k}: L^{2}\left(\gamma_{n}\right) \rightarrow \mathcal{X}_{k}
$$

be the orthogonal projection onto \mathcal{X}_{k}.

6 Ornstein-Uhlenbeck semigroup

Let γ be a Gaussian measure on \mathbb{R}^{n} with mean 0 and covariance operator K. For $t \geq 0$, we define $M_{t}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
M_{t}(u, v)=e^{-t} u+\sqrt{1-e^{-2 t}} v, \quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

By Theorem $6, M_{t *}(\gamma \times \gamma)=\gamma$. Therefore, for $p \geq 1$ and $f \in L^{p}(\gamma)$, using the change of variables formula,

$$
\int_{\mathbb{R}^{n}}|f(x)|^{p} d \gamma(x)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left|f\left(M_{t}(u, v)\right)\right|^{p} d(\gamma \times \gamma)(u, v) .
$$

Applying Fubini's theorem, the function

$$
u \mapsto \int_{\mathbb{R}^{n}}\left|f\left(M_{t}(u, v)\right)\right|^{p} d \gamma(v)=\int_{\mathbb{R}^{n}}\left|f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right)\right|^{p} d \gamma(v)
$$

belongs to $L^{1}(\gamma)$. We define the Ornstein-Uhlenbeck semigroup $\left\{T_{t}: t \geq 0\right\}$ on $L^{p}(\gamma), p \geq 1$, by

$$
T_{t}(f)(u)=\int_{\mathbb{R}^{n}} f\left(M_{t}(u, v)\right) d \gamma(v)=\int_{\mathbb{R}^{n}} f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right) d \gamma(v)
$$

for $u \in \mathbb{R}^{n}$.
Theorem 11. Let γ be a Gaussian measure on \mathbb{R}^{n} with mean 0 . If $f \in L^{1}(\gamma)$, then

$$
\int_{\mathbb{R}^{n}}\left(T_{t} f\right)(x) d \gamma(x)=\int_{\mathbb{R}^{n}} f(x) d \gamma(x) .
$$

Proof. Using Fubini's theorem, then the change of variables formula, then Theorem 6,

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(T_{t} f\right)(u) d \gamma(u) & =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f\left(M_{t}(u, v)\right) d \gamma(v)\right) d \gamma(u) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f\left(M_{t}(u, v)\right) d(\gamma \times \gamma)(u, v) \\
& =\int_{\mathbb{R}^{n}} f(x) d\left(M_{t *}(\gamma \times \gamma)\right)(x) \\
& =\int_{\mathbb{R}^{n}} f(x) d \gamma(x) .
\end{aligned}
$$

Theorem 12. Let γ be a Gaussian measure on \mathbb{R}^{n} with mean 0 . For $p \geq 1$ and $t \geq 0, T_{t}$ is a bounded linear operator $L^{p}(\gamma) \rightarrow L^{p}(\gamma)$ with operator norm 1 .

Proof. For $f \in L^{p}(\gamma)$, using Jensen's inequality and then Theorem 11,

$$
\begin{aligned}
\left\|T_{t} f\right\|_{L^{p}(\gamma)}^{p} & =\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} f\left(M_{t}(u, v)\right) d \gamma(v)\right|^{p} d \gamma(u) \\
& \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}\left|f\left(M_{t}(u, v)\right)\right|^{p} d \gamma(v)\right) d \gamma(u) \\
& =\int_{\mathbb{R}^{n}} T_{t}\left(|f|^{p}\right)(u) d \gamma(u) \\
& =\int_{\mathbb{R}^{n}}|f|^{p}(u) d \gamma(u) \\
& =\|f\|_{L^{p}(\gamma)}^{p},
\end{aligned}
$$

i.e. $\left\|T_{t} f\right\|_{L^{p}(\mu)} \leq\|f\|_{L^{p}(\mu)}$. This shows that the operator norm of T_{t} is ≤ 1. But, as γ is a probability measure,

$$
T_{t} 1=\int_{\mathbb{R}^{n}} 1 d \gamma(v)=1,
$$

so T_{t} has operator norm 1 .
For a Banach space E, we denote by $\mathscr{B}(E)$ the set of bounded linear operators $E \rightarrow E$. The strong operator topology on E is the coarsest topology on E such that for each $x \in E$, the map $A \mapsto A x$ is continuous $\mathscr{B}(E) \rightarrow \mathbb{E}$. To say that a map $Q:[0, \infty) \rightarrow \mathscr{B}(E)$ is strongly continuous means that for each $t \in[0, \infty), Q(s) \rightarrow Q_{t}$ in the strong operator topology as $s \rightarrow t$, i.e., for each $x \in E, Q(s) x \rightarrow Q(t) x$ in E.

A one-parameter semigroup in $\mathscr{B}(E)$ is a map $Q:[0, \infty) \rightarrow \mathscr{B}(E)$ such that (i) $Q(0)=\operatorname{id}_{E}$ and (ii) for $s, t \geq 0, Q(s+t)=Q(s) \circ Q(t)$. For a oneparameter semigroup to be strongly continuous, one proves that it is equivalent that $Q(t) \rightarrow \operatorname{id}_{E}$ in the strong operator topology as $t \downarrow 0$, i.e. for each $x \in E$, $Q(t) x \rightarrow x .^{8}$

We now establish that the $\left\{T_{t}: t \geq 0\right\}$ is indeed a one-parameter semigroup and that it is strongly continuous. ${ }^{9}$

Theorem 13. Suppose μ is a Gaussian measure on \mathbb{R}^{n} with mean 0 and let $p \geq 1$. Then $\left\{T_{t}: t \geq 0\right\}$ is a strongly continuous one-parameter semigroup in $\mathscr{B}\left(L^{p}(\gamma)\right)$.

Proof. For $f \in L^{p}(\gamma)$, because γ is a probability measure,

$$
T_{0}(f)(u)=\int_{\mathbb{R}^{n}} f(u) d \gamma(v)=f(u)
$$

hence $T_{0}=\operatorname{id}_{L^{p}(\mu)}$. For $s, t \geq 0$, define $P: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
P(u, v)=e^{-s} \frac{\sqrt{1-e^{-2 t}}}{\sqrt{1-e^{-2 t-2 s}}} u+\frac{\sqrt{1-e^{-2 s}}}{\sqrt{1-e^{-2 t-2 s}}} v
$$

[^5]By Theorem 6, $P_{*}(\gamma \times \gamma)=\gamma$, whence

$$
\begin{aligned}
& \left(T_{t}\left(T_{s} f\right)\right)(x) \\
= & \int_{\mathbb{R}^{n}}\left(T_{s} f\right)\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) d \gamma(y) \\
= & \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f\left(e^{-s}\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right)+\sqrt{1-e^{-2 s}} w\right) d \gamma(w)\right) d \gamma(y) \\
= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f\left(e^{-s-t} x+\sqrt{1-e^{-2 t-2 s}} P(y, w)\right) d(\gamma \times \gamma)(y, w) \\
= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(f \circ M_{s+t}\right)(x, P(y, w)) d(\gamma \times \gamma)(y, w) \\
= & \int_{\mathbb{R}^{n}}\left(f \circ M_{s+t}\right)(x, z) d \gamma(z) \\
= & T_{s+t}(f)(x)
\end{aligned}
$$

hence $T_{t} \circ T_{s}=T_{s+t}$. This establishes that $\left\{T_{t}: t \geq 0\right\}$ is a semigroup.
For $f \in C_{b}\left(\mathbb{R}^{n}\right), u \in \mathbb{R}^{n}$, and $v \in \mathbb{R}^{n}$, as $t \downarrow 0$ we have

$$
f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right)-f(u) \rightarrow 0
$$

thus by the dominated convergence theorem, since

$$
\left|f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right)-f(u)\right| \leq 2\|f\|_{\infty}
$$

and γ is a probability measure, we have

$$
\int_{\mathbb{R}^{n}}\left(f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right)-f(u)\right) d \gamma(v) \rightarrow 0
$$

and hence

$$
\begin{aligned}
\left(T_{t} f-T_{0} f\right)(u) & =\int_{\mathbb{R}^{n}} f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right) d \gamma(v)-\int_{\mathbb{R}^{n}} f(u) d \gamma(v) \\
& =\int_{\mathbb{R}^{n}}\left(f\left(e^{-t} u+\sqrt{1-e^{-2 t}} v\right)-f(u)\right) d \gamma(v) \\
& \rightarrow 0
\end{aligned}
$$

Because this is true for each $u \in \mathbb{R}^{n}$ and

$$
\left|\left(T_{t} f-T_{0} f\right)(u)\right| \leq \int_{\mathbb{R}^{n}} 2\|f\|_{\infty} d \gamma(v)=2\|f\|_{\infty}
$$

by the dominated convergence theorem we then have

$$
\begin{equation*}
\left\|T_{t} f-T_{0} f\right\|_{L^{p}(\gamma)} \rightarrow 0 \tag{7}
\end{equation*}
$$

Now let $f \in L^{p}(\gamma)$. There is a sequence $f_{j} \in C_{b}\left(\mathbb{R}^{n}\right)$ satisfying $\left\|f_{j}-f\right\|_{L^{p}(\gamma)} \rightarrow$ 0 , with $\left\|f_{j}\right\|_{L^{p}(\gamma)} \leq 2\|f\|_{L^{p}(\gamma)}$ for all j. For any $t \geq 0$,

$$
\begin{aligned}
\left\|T_{t} f-T_{0} f\right\|_{L^{p}(\gamma)} & \leq\left\|T_{t} f-T_{t} f_{j}\right\|_{L^{p}(\gamma)}+\left\|T_{t} f_{j}-T_{0} f_{j}\right\|_{L^{p}(\gamma)}+\left\|T_{0} f_{j}-T_{0} f\right\|_{L^{p}(\gamma)} \\
& =\left\|T_{t}\left(f-f_{j}\right)\right\|_{L^{p}(\gamma)}+\left\|T_{t} f-T_{0} f_{j}\right\|_{L^{p}(\gamma)}+\left\|f_{j}-f\right\|_{L^{p}(\gamma)} \\
& \leq\left\|f-f_{j}\right\|_{L^{p}(\gamma)}+\left\|T_{t} f-T_{0} f_{j}\right\|_{L^{p}(\gamma)}+\left\|f_{j}-f\right\|_{L^{p}(\gamma)}
\end{aligned}
$$

Let $\epsilon>0$ and let j be so large that $\left\|f-f_{j}\right\|_{L^{p}(\gamma)}<\epsilon$. Because $f_{j} \in C_{b}\left(\mathbb{R}^{n}\right)$, by (7) there is some $\delta>0$ such that when $0<t<\delta,\left\|T_{t} f_{j}-f_{j}\right\|_{L^{p}(\gamma)}<\epsilon$. Then when $0<t<\delta$,

$$
\left\|T_{t} f-T_{0} f\right\|_{L^{p}(\gamma)} \leq \epsilon+\epsilon+\epsilon,
$$

which shows that for each $f \in L^{p}(\gamma),\left\|T_{t} f-T_{0} f\right\|_{L^{p}(\gamma)}$ as $t \downarrow 0$, which suffices to establish that $\left\{T_{t}: t \geq 0\right\}$ is strongly continuous $[0, \infty) \rightarrow \mathscr{B}\left(L^{p}(\gamma)\right)$.

For $t>0$, we define $L_{t} \in \mathscr{B}\left(L^{p}(\gamma)\right)$ by

$$
L_{t} f=\frac{1}{t}\left(T_{t} f-f\right), \quad f \in L^{p}(\gamma)
$$

We define $\mathscr{D}(L)$ to be the set of those $f \in L^{p}(\gamma)$ such that $L_{t} f$ converges to some element of $L^{p}(\gamma)$ as $t \downarrow 0$, and we define $L: \mathscr{D}(L) \rightarrow L^{p}(\gamma)$. This is the infinitesimal generator of the semigroup $\left\{T_{t}: t \geq 0\right\}$, and the infinitesimal generator L of the Ornstein-Uhlenbeck semigroup is called the OrnsteinUhlenbeck operator. Because the Ornstein-Uhlenbeck semigroup is strongly continuous, we get the following. ${ }^{10}$

Theorem 14. Suppose μ is a Gaussian measure on \mathbb{R}^{n} with mean 0 , let $p \geq 1$, and let L be the infinitesimal generator of the Ornstein-Uhlenbeck semigroup $\left\{T_{t}: t \geq 0\right\}$. Then:

1. $\mathscr{D}(L)$ is a dense linear subspace of $L^{p}(\gamma)$ and $L: \mathscr{D}(L) \rightarrow L^{p}(\gamma)$ is a closed operator.
2. For each $f \in \mathscr{D}(L)$ and for each $t \geq 0$,

$$
\frac{d}{d t}\left(T_{t} f\right)=\left(L \circ T_{t}\right) f=\left(T_{t} \circ L\right) f
$$

3. For $f \in L^{p}(\gamma)$ and K a compact subset of $[0, \infty),\left(\exp \left(t L_{\epsilon}\right) f \rightarrow T_{t} f\right.$ as $\epsilon \downarrow 0$ uniformly for $t \in K$.
4. For $\lambda \in \mathbb{C}$ with $\operatorname{Re} \lambda>0, R(\lambda): L^{p}(\gamma) \rightarrow L^{p}(\gamma)$ defined by

$$
R(\lambda) f=\int_{0}^{\infty} e^{-\lambda t} T_{t} f d t, \quad f \in L^{p}(\gamma)
$$

[^6]belongs to $\mathscr{B}\left(L^{p}(\gamma)\right)$, the range of $R(\lambda)$ is equal to $\mathscr{D}(L)$, and
$$
((\lambda I-L) \circ R(\lambda)) f=f, \quad f \in L^{p}(\gamma), \quad(R(\lambda) \circ(\lambda I-L)) f=\mathscr{D}(L)
$$
where I is the identity operator on $L^{p}(\gamma)$.

We remind ourselves that if H is a Hilbert space with inner product $\langle\cdot, \cdot\rangle$, an element A of $\mathscr{B}(H)$ is said to be a positive operator when $\langle A x, x\rangle \geq 0$ for all $x \in H$. We prove that each T_{t} is a positive operator on the Hilbert space $L^{2}(\gamma) .{ }^{11}$

Theorem 15. Suppose μ is a Gaussian measure on \mathbb{R}^{n} with mean 0 . For each $t \geq 0, T_{t} \in \mathscr{B}\left(L^{2}(\mu)\right)$ is a positive operator.

Proof. For $t \geq 0$, define $N_{t}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ by
$O_{t}(x, y)=\left(e^{-t} x+\sqrt{1-e^{-2 t}} y,-\sqrt{1-e^{-2 t}} x+e^{-t} y\right), \quad(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$,
whose transpose is the linear operator $N_{t}^{*}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ defined by

$$
O_{t}^{*}(u, v)=\left(e^{-t} u-\sqrt{1-e^{-2 t}} v, \sqrt{1-e^{-2 t}} u+e^{-t} v\right), \quad(u, v) \in \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

For $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, we calculate

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{i\langle(x, y),(u, v)\rangle} d\left(O_{t *}(\gamma \times \gamma)\right)(u, v) \\
= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{i\left\langle(x, y), O_{t}(u, v)\right\rangle} d(\gamma \times \gamma)(u, v) \\
= & \int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} e^{i\left\langle O_{t}^{*}(x, y),(u, v)\right\rangle} d(\gamma \times \gamma)(u, v) \\
= & \widetilde{\gamma \times \gamma}\left(O_{t}^{*}(x, y)\right) \\
= & \widetilde{\gamma \times \gamma}\left(e^{-t} x-\sqrt{1-e^{-2 t}} y, \sqrt{1-e^{-2 t}} x+e^{-t} y\right) \\
= & \widetilde{\gamma}\left(e^{-t} x-\sqrt{1-e^{-2 t}} y\right) \widetilde{\gamma}\left(\sqrt{1-e^{-2 t}} x+e^{-t} y\right) \\
= & \exp \left(-\frac{1}{2}\left\langle K\left(e^{-t} x-\sqrt{1-e^{-2 t}} y\right), e^{-t} x-\sqrt{1-e^{-2 t}} y\right\rangle\right) \\
& \cdot \exp \left(-\frac{1}{2}\left\langle K\left(\sqrt{1-e^{-2 t}} x+e^{-t} y\right), \sqrt{1-e^{-2 t}} x+e^{-t} y\right\rangle\right) \\
= & \exp \left(-\frac{1}{2}\langle K x, x\rangle-\frac{1}{2}\langle K y, y\rangle\right) \\
= & \widetilde{\gamma}(x) \widetilde{\gamma}(y) \\
= & \widetilde{\gamma \times \gamma}(x, y),
\end{aligned}
$$

[^7]which shows that $O_{t *}(\gamma \times \gamma)$ and $\gamma \times \gamma$ have equal characteristic functions and hence are themselves equal.

For $f, g \in L^{2}(\gamma)$ and $t \geq 0$,

$$
\begin{aligned}
\left\langle T_{t} f, g\right\rangle_{L^{2}(\gamma)} & =\int_{\mathbb{R}^{n}}\left(T_{t} f\right)(x) g(x) d \mu(x) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) g(x) d(\gamma \times \gamma)(x, y) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(f \circ \pi_{1} \circ O_{t}\right)(x, y)\left(g \circ \pi_{1} \circ O_{t}^{-1} \circ O_{t}\right)(x, y) d(\gamma \times \gamma)(x, y) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(f \circ \pi_{1}\right)(u, v)\left(g \circ \pi_{1} \circ O_{t}^{-1}\right)(u, v) d\left(O_{t *}(\gamma \times \gamma)\right)(u, v) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(f \circ \pi_{1}\right)(u, v)\left(g \circ \pi_{1} \circ O_{t}^{-1}\right)(u, v) d(\gamma \times \gamma)(u, v) \\
& =\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} f(u) g\left(e^{-t} u-\sqrt{1-e^{-2 t}} v\right) d(\gamma \times \gamma)(u, v) \\
& =\int_{\mathbb{R}^{n}} f(u)\left(\int_{\mathbb{R}^{n}} g\left(M_{t}(u,-v)\right) d \gamma(v)\right) d \gamma(u) \\
& =\int_{\mathbb{R}^{n}} f(u)\left(\int_{\mathbb{R}^{n}} g\left(M_{t}(u, v)\right) d \gamma(v)\right) d \gamma(u) \\
& =\int_{\mathbb{R}^{n}} f(u)\left(T_{t} g\right)(u) d \gamma(u) \\
& =\left\langle f, T_{t} g\right\rangle_{L^{2}(\gamma)},
\end{aligned}
$$

which establishes that T_{t} is a self-adjoint operator on $L^{2}(\gamma)$.
Furthermore, using that $T_{t}=T_{t / 2} \circ T_{t / 2}$ and that $T_{t / 2}$ is self-adjoint,

$$
\left\langle T_{t} f, f\right\rangle_{L^{2}(\gamma)}=\left\langle T_{t / 2} T_{t / 2} f, f\right\rangle_{L^{2}(\gamma)}=\left\langle T_{t / 2} f, T_{t / 2}^{*} f\right\rangle_{L^{2}(\gamma)}=\left\langle T_{t / 2} f, T_{t / 2} f\right\rangle_{L^{2}(\gamma)}
$$

which is ≥ 0, which establishes that T_{t} is a positive operator on $L^{2}(\gamma)$.
We now write the Ornstein-Uhlenbeck semigroup using the orthogonal projections $I_{k}: L^{2}\left(\gamma_{n}\right) \rightarrow \mathcal{X}_{k}$, where γ_{n} is the standard Gaussian measure on $\mathbb{R}^{n} .{ }^{12}$
Theorem 16. For each $t \geq 0$ and $f \in L^{2}\left(\gamma_{n}\right)$,

$$
T_{t} f=\sum_{k=0}^{\infty} e^{-k t} I_{k}(f)
$$

Proof. Define $S_{t}: L^{2}\left(\gamma_{n}\right) \rightarrow L^{2}\left(\gamma_{n}\right)$ by $S_{t} f=\sum_{k=0}^{\infty} e^{-k t} I_{k}(f)$, which satisfies, using that the subspaces \mathcal{X}_{k} are pairwise orthogonal,

$$
\left\|S_{t} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}=\sum_{k=0}^{\infty} e^{-k t}\left\|I_{k}(f)\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \leq \sum_{k=0}^{\infty}\left\|I_{k}(f)\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}=\|f\|_{L^{2}\left(\gamma_{n}\right)}^{2}
$$

[^8]so $S_{t} \in \mathscr{B}\left(L^{2}\left(\gamma_{n}\right)\right)$. To prove that $T_{t}=S_{t}$, it suffices to prove that $T_{t} H_{\alpha}=S_{t} H_{\alpha}$ for each Hermite polynomial, which are an orthonormal basis for $L^{2}\left(\gamma_{n}\right)$. For $\alpha=\left(k_{1}, \ldots, k_{n}\right)$ with $k=|\alpha|=k_{1}+\cdots+k_{n}$,
$$
S_{t} H_{\alpha}=e^{-k t} H_{\alpha},
$$
and
\[

$$
\begin{aligned}
\left(T_{t} H_{\alpha}\right)(x) & =\int_{\mathbb{R}^{n}} H_{\alpha}\left(e^{-t} x+\sqrt{1-e^{-2 t}} y\right) d \gamma_{n}(y) \\
& =\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} H_{k_{j}}\left(e^{-t} x_{j}+\sqrt{1-e^{-2 t}} y_{j}\right) d \gamma_{n}(y) \\
& =\prod_{j=1}^{n} \int_{\mathbb{R}} H_{k_{j}}\left(e^{-t} x_{j}+\sqrt{1-e^{-2 t}} y_{j}\right) d \gamma_{1}\left(y_{j}\right) .
\end{aligned}
$$
\]

To prove that $T_{t} H_{\alpha}=e^{-k t} H_{\alpha}$, it thus suffices to prove that for any t, for any k_{j}, and for any x_{j},

$$
\begin{equation*}
\int_{\mathbb{R}} H_{k_{j}}\left(e^{-t} x_{j}+\sqrt{1-e^{-2 t}} y_{j}\right) d \gamma_{1}\left(y_{j}\right)=e^{-k_{j} t} H_{k_{j}}\left(x_{j}\right) . \tag{8}
\end{equation*}
$$

For $k_{j}=0$, as $H_{0}=1$ and γ_{1} is a probability measure, (8) is true. Suppose that (8) is true for $\leq k_{j}$. That is, for each $0 \leq h \leq k_{j}, T_{t} H_{h}=e^{-h t} H_{h}$. For any l, because the Hermite polynomial H_{l} is a polynomial of degree l, one checks that $T_{t} H_{l}\left(x_{j}\right)$ is a polynomial of degree l : using the binomial formula,

$$
\int_{\mathbb{R}}\left(e^{-t} x_{j}+\sqrt{1-e^{-2 t}} y_{j}\right)^{l} \exp \left(-\frac{y_{j}^{2}}{2}\right) d \gamma_{1}\left(y_{j}\right)
$$

is a polynomial in x_{j} of degree l. Hence $T_{t} H_{l}$ a linear combination of $H_{0}, H_{1}, \ldots, H_{l}$. For $0 \leq h \leq k_{j}$,

$$
\left\langle T_{t} H_{k_{j}+1}, H_{h}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=\left\langle H_{k_{j}+1}, T_{t} H_{h}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=\left\langle H_{k_{j}+1}, e^{-h t} H_{h}\right\rangle_{L^{2}\left(\gamma_{1}\right)}=0 .
$$

Therefore there is some $c \in \mathbb{R}$ such that $T_{t} H_{k_{j}+1}=c H_{k_{j}+1}$. Then check that $c=e^{-\left(k_{j}+1\right) t}$.

We now give an explicit expression for the domain $\mathscr{D}(L)$ of the OrnsteinUhlenbeck operator L and for L applied to an element of its domain. ${ }^{13}$

Theorem 17.

$$
\mathscr{D}(L)=\left\{f \in L^{2}\left(\gamma_{n}\right): \sum_{k=0}^{\infty} k^{2}\left\|I_{k}(f)\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}<\infty\right\} .
$$

For $f \in \mathscr{D}(L)$,

$$
L f=-\sum_{k=0}^{\infty} k I_{f}(f) .
$$

[^9]Proof. Let $f \in \mathscr{D}(L)$, i.e. $\frac{T_{t} f-f}{t} \rightarrow L f$ in $L^{2}\left(\gamma_{n}\right)$ as $t \downarrow 0$. For any $k \geq 0$, using Theorem 16,

$$
\begin{aligned}
I_{k} L f & =I_{k}\left(\lim _{t \downarrow 0} \frac{T_{t} f-f}{t}\right) \\
& =\lim _{t \downarrow 0} \frac{I_{k} T_{t} f-I_{k} f}{t} \\
& =\lim _{t \downarrow 0} \frac{T_{t} I_{k} f-I_{k} f}{t} \\
& =\lim _{t \downarrow 0} \frac{e^{-k t} I_{k} f-I_{k} f}{t} \\
& =\left(\lim _{t \downarrow 0} \frac{e^{-k t}-1}{t}\right) I_{k} f \\
& =\left.\left(e^{-k t}\right)^{\prime}\right|_{t=0} I_{k} f \\
& =-k I_{k} f .
\end{aligned}
$$

Using this,

$$
\begin{aligned}
\sum_{k=0}^{\infty} k^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} & =\sum_{k=0}^{\infty}\left\|I_{k} L f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \\
& =\left\|\sum_{k=0}^{\infty} I_{k} L f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \\
& =\|L f\|_{L^{2}\left(\gamma_{n}\right)}^{2} \\
& <\infty .
\end{aligned}
$$

Moreover,

$$
L f=L\left(\sum_{k=0}^{\infty} I_{k} f\right)=\sum_{k=0}^{\infty} L I_{k} f=\sum_{k=0}^{\infty} I_{k} L f=\sum_{k=0}^{\infty}-k I_{f} .
$$

Let $f \in L^{2}\left(\gamma_{n}\right)$ satisfy

$$
\sum_{k=0}^{\infty} k^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}<\infty
$$

For $t>0$,

$$
\begin{aligned}
\left\|\frac{T_{t} f-f}{t}+\sum_{k=0}^{\infty} k I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} & =\left\|\sum_{k=0}^{\infty}\left(\frac{e^{-k t} I_{k} f-I_{k} f}{t}+k I_{k} f\right)\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \\
& =\sum_{k=0}^{\infty}\left|\frac{e^{-k t}-1}{t}+k\right|^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}
\end{aligned}
$$

For $t>0$ and $k \geq 0$,

$$
\left|t^{-1}\left(e^{-k t}-1\right)\right| \leq k
$$

and thus

$$
\sum_{k=0}^{\infty}\left|\frac{e^{-k t}-1}{t}+k\right|^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \leq \sum_{k=0}^{\infty}(2 k)^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2}<\infty
$$

For each $k \geq 0$, as $t \downarrow 0$,

$$
\frac{e^{-k t}-1}{t}+k \rightarrow 0
$$

thus as $t \downarrow 0$,

$$
\sum_{k=0}^{\infty}\left|\frac{e^{-k t}-1}{t}+k\right|^{2}\left\|I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \rightarrow 0
$$

and hence

$$
\left\|\frac{T_{t} f-f}{t}+\sum_{k=0}^{\infty} k I_{k} f\right\|_{L^{2}\left(\gamma_{n}\right)}^{2} \rightarrow 0
$$

This means that $\frac{T_{t} f-f}{t}$ converges in $L^{2}\left(\gamma_{n}\right)$ to $-\sum_{k=0}^{\infty} k I_{k} f$ as $t \downarrow 0$, and since $\frac{T_{t} f-f}{t}$ converges, $f \in \mathscr{D}(L)$.

[^0]: ${ }^{1}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 138, Lemma 4.20.
 ${ }^{2}$ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 322, Theorem 10.11.

[^1]: ${ }^{3}$ Vladimir I. Bogachev, Gaussian Measures, p. 2, Lemma 1.1.3.
 ${ }^{4}$ Karl R. Stromberg, Probability for Analysts, p. 58, Theorem 4.6.

[^2]: ${ }^{5}$ Karl R. Stromberg, Probability for Analysts, p. 59, Theorem 4.7.

[^3]: ${ }^{6}$ Vladimir I. Bogachev, Gaussian Measures, p. 3, Proposition 1.2.2; Michel Simonnet, Measures and Probabilities, p. 303, Theorem 14.5.

[^4]: ${ }^{7}$ Vladimir I. Bogachev, Gaussian Measures, p. 5, Lemma 1.2.5.

[^5]: ${ }^{8}$ Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
 ${ }^{9}$ Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.

[^6]: ${ }^{10}$ Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.

[^7]: ${ }^{11}$ Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.

[^8]: ${ }^{12}$ Vladimir I. Bogachev, Gaussian Measures, p. 11, Theorem 1.4.4.

[^9]: ${ }^{13}$ Vladimir I. Bogachev, Gaussian Measures, p. 12, Proposition 1.4.5.

