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1 Definitions

For a topological space X, we denote by A the Borel o-algebra of X.

We write R = R U {—00,00}. With the order topology, R is a compact
metrizable space, and R has the subspace topology inherited from R, namely
the inclusion map is an embedding R — R. It follows that!

Pr ={ENR: E € By}
If .Z is a collection of functions X — R on a set X, we define \/.# : X - R
and A.Z : X - R by
(V?)(x)zsup{f(x):fef}, reX

and
(/\y) () = inf{f(z): fe F}), weX.

If X is a measurable space and .7 is a countable collection of measurable func-
tions X — R, it is a fact that A .# and \/ .# are measurable X — R.

2 Kolmogorov’s inequality

Kolmogorov’s inequality is the following.?

Theorem 1 (Kolmogorov’s inequality). Suppose that (£2,.7, P) is a probability
space, that Xi,...,X,, € L?(P), that E(X;) = 0,...,E(X,,) = 0, and that
Xi,..., X, are independent. Let

Silw) =) X;jw), weq,

LCharalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 138, Lemma 4.20.

2@Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 322, Theorem 10.11.



for 1 < k <n. Then for any A > 0,

P ({w e:\/ ISuw) = A}) < ;;V(Xj) = %wsn).

k=1

3 Gaussian measures on R

For real a and o > 0, one computes that

. 1% /Rexp (— (t 2_03)2> dt = 1. (1)

Suppose that 7 is a Borel probability measure on R. If

'Y:(Sa

for some a € R or has density

1 (t —a)?
2y
p(t,aaa ) - oo eXp <_ 202 ) ) te R7

for some a € R and some o > 0, with respect to Lebesgue measure on R, we say
that v is a Gaussian measure. We say that J, is a Gaussian measure with
mean a and variance 0, and that a Gaussian measure with density p(-, a,o?)
has mean @ and variance ¢2. A Gaussian measure with mean 0 and variance
1 is said to be standard.

One calculates that the characteristic function of a Gaussian measure ~
with density p(-, a,o?) is

A(y) = /Rexp(iyx)dv(x) = exp (iay - ;ozyQ) ,  yeR (2)

The cumulative distribution function of a standard Gaussian measure
v is, for t € R,

t ¢ t 2
P(t) = y(—o0,t] = dv(s) = 5,0,1)ds = —e —— | ds.
O =r-0tl= [ @)= [ ssonis= [ —ew(-3)

We define ®(—o0) = 0 and also define

v = [ e ()t
using (1).

® : R — [0,1] is strictly increasing, thus ®~! : [0,1] — R makes sense, and
is itself strictly increasing. Then 1 — ® is strictly decreasing. By (1),

[e'] 1 2 t 1 2
1-®(t) = / Eexp (52) ds — / o exp (52) ds

/OO 1 e < 82>ds
= ——exp | —— .
t \/27T b 2




The following lemma gives an estimate for 1 — ®(¢) that tells us something
substantial as ¢ — +o00, beyond the immediate fact that (1 — ®)(c0) = 1 —
P(00) =0.3

Lemma 2. Fort > 0,

Lot e—t2/2 <1-3() < ile*ﬂ/?'
Vor \t 83 t

Proof. Integrating by parts,

1- & . Vg
— t) = ex —_ S
) /t V2m p( 2)
* 1 52
= —— -sexp| —— | ds
/t svV2m p( 2)
oo (-2)], [ avmee ()
sV 2 P 2 ), : s$2Vor P 2

<o (g)
exp|——].
T t2Tm P 2

On the other hand, using the above work and again integrating by parts,

Vo)

1-9(t) = ! exp(—t2>—/oo ! ~sexp<—82>ds
V2 2 ¢ 83\/2m 2
1 t2 1 2\ |~
~ e P (‘2 M= (—2)

)
o a(E)a
: )

O

The following theorem shows that if the variances of a sequence of inde-
pendent centered random variables are summable then the sequence of random
variables is summable almost surely.*

Theorem 3. Suppose that &; € L*(Q,.%, P), j > 1, are independent random
variables each with mean 0. If Z;’;l V(&) < oo, then Z;’il &; converges almost
surely.

Proof. Define S, : 2 — R by

Sn(w) =Y &(w),
j=1

3Vladimir I. Bogachev, Gaussian Measures, p. 2, Lemma 1.1.3.
4Karl R. Stromberg, Probability for Analysts, p. 58, Theorem 4.6.



define Z,, : Q — [0, 00] by
o0
Zn = \/ |Sn+j - Sn|7
j=1

and define Z : Q — [0, 00] by

Z= | Zn.
n=1
If Sp(w) converges and € > 0, there is some n such that for all j > 1, [Sp4;(w) —
Sp(w)] < e and so Z,(w) < € and Z(w) < e. Therefore, if S, (w) converges then
Z(w) = 0. On the other hand, if Z(w) = 0 and € > 0, there is some n such
that Z,(w) < ¢, hence |Sy4;(w) — Sp(w)| < € for all j > 1. That is, S, (w) is a
Cauchy sequence in R, and hence converges. Therefore

{w e Q: S, (w) converges} = {w e Q: Z(w) = 0}. (3)

Let € > 0. For any n and k, using Kolmogorov’s inequality with X; = §,4; for
ji=1,...k,

k k )
1 1
PV ISwi—Slze| <53 vx) <5 3 Vi),
j=1 j=1 j=n+1

Because this is true for each k, it follows that

o0

PZnz9s5 Y VIE),

je=nt1
hence, for each n,
P(Z> < P(Zy>0) < ;j;w@).
Because Y72, V(&) < o0, 3272, 1 V(&) = 0 asn — oo, s
P(Z>¢)=0.

Because this is true for all € > 0, we get P(Z > 0) =0, i.e. P(Z=0) =1. By
(3), this means that S,, converges almost surely. O

The following theorem gives conditions under which the converse of the above
theorem holds.?

5Karl R. Stromberg, Probability for Analysts, p. 59, Theorem 4.7.



Theorem 4. Suppose that &; € L*(Q,.%, P), j > 1, are independent random
variables each with mean 0, and let S,, = Z;’Zl & If

P<<7S,J<oo>>0 (4)

n=1

and there is some 8 € [0, 00) such that \/;’;1 €] < B almost surely, then

M2

V(&) <

Il
—

J
Proof. By (4), there is some « € [0, 00) such that P(A4) > 0, for

A_{weﬂ \/|s |<a}

n=1

For p > 1, let

Ap:{weQ \/\S |<a}

n=1
which satisfies A, | A as p — co. For each p, the random variables x 4,5, and
&p+1 are independent and the random variables x 4, and 512) 11 are independent,
whence

E(XAp S?H—l)

E(x4,(Sp + &p+1)(Sp + &pt1))

(X4,52 4+ 2x4,Spép+1 + X4,E011)

(X4,52) +2E(xa, ) E(&p11) + E(xa,) E(E11)
(x4,55) + P(A)V (&p41)

(x Aps;%)‘i'P( W (ps1)-

Set B, = Ap \ Apt1. For w € A4,, |Sp(w)| < «, and for almost all w € €,
[€p+1(w)| < B, so for almost all w € By,

‘Sp-&-l(w)l < |Sp(w)| + |§p+1(w) <a+p,

o
Djtijtljm

>

hence
P(A)V (&41) < E((xB, + XA,11)511) — E(xa,55)
= E(XBp Sp+1) + E(XAP+1Sp+1) (XAP 5127)
< P(By)(a+ B)” + B(xa s 5241) — Exa, 52).
Adding the inequalities for p =1,2,...,n — 1, because B, are pairwise disjoint,
n—1
Z V(1) = (a+5)* Y P(By) + E(xa,57) — E(xa,57)
p=1
< (a+B)* + E(xa,S;)
<(a+p)?+a?



Because this is true for all n and P(A) > 0,

oo

Z V(&pt+1) < 00,
p=1

and with V(£;) < oo this completes the proof. O

4 R"

If 1 is a finite Borel measure on R", we define the characteristic function of
p by
i) = [ ), yer

A Borel probability measure v on R"™ is said to be Gaussian if for each
f € (R™)*, the pushforward measure f,y on R is a Gaussian measure on R,
where

(fn)(E) =7 (fH(E))

for £ a Borel set in R.

We now give a characterization of Gaussian measures on R” and their den-
sities.® In the following theorem, the vector a € R™ is called the mean of 7
and the linear transformation K € Z(R™) is called the covariance operator
of v. When a =0 € R" and K = idg~, we say that v is standard.

Theorem 5. A Borel probability measure v on R” is Gaussian if and only if
there is some a € R™ and some positive semidefinite K € Z(R") such that

o) =ew (it0) — 5 (Kun)) . yeRn )

If v is a Gaussian measure whose covariance operator K is positive definite,
then the density of v with respect to Lebesgue measure on R™ is

1 1, . n
xH\/Wexp<—2<K (x—a),x—a>>, z e R".

Proof. Suppose that (5) is satisfied. Let f € (R™)*, i.e. a linear map R" — R,
and put v = f.y. Using the change of variables formula, the characteristic
function of v is

v(t) = / e du(s) :/ @ dry (1), teR.
R n

SVladimir I. Bogachev, Gaussian Measures, p. 3, Proposition 1.2.2; Michel Simonnet,
Measures and Probabilities, p. 303, Theorem 14.5.



Let v be the unique element of R™ such that f(z) = (v, ) for all z € R™. Then
o0 = [ e y@) =),

so by (5),

v(t) = exp (z (tv,a) — % (Ktv,tv)) = exp (if(a)t - % (Kv,v) t2> .

This implies that v is a Gaussian measure on R with mean f(a) and variance
(Kv,v): if (Kv,v) = 0 then v = §5(,), and if (Kv,v) > 0 then v has density

with respect to Lebesgue measure on R. That is, for any f € (R™)*, the push-
forward measure f,7v is a Gaussian measure on R, which is what it means for ~
to be a Gaussian measure on R"™.

Suppose that 7y is Gaussian and let f € (R™)*. Then the pushforward
measure f,v is a Gaussian measure on R. Let a(f) be the mean of f,v and let
o?(f) be the variance of f,v, and let vs be the unique element of R™ such that
f(z) = (z,vy) for all z € R™. Using the change of variables formula,

s €R,

ath) = [ g0 = [ @i
and
()= [ (= alpPara
— [ G@ - o)
= [ (@2 = 2f@a() + s o)

Because f +— a(f) is linear (R™)* — R, there is a unique a € R™ = (R™)** such
that

a(f) = <Uf’a> ) f S (Rn)*
For f,g € (R™)*,
(f +g) = / (F(2)? + 2f (2)g(x) + g(a)?

n

—2f(z)a(f) — 2f(x)a(g) — 29(x)a(f) — 2g9(v)a(g)
+a(f)? + 2a(f)a(g) + alg)?)dy(x),



SO

P +9) =) = oo) = | (2f(lala) 2/ (@hals) ~ 29(e)als)
+20(7)a(9))dn ).

B(f,9) = 3(c*(f +9) — o*(f) — 02(g)) is a symmetric bilinear form on R", and

B(f.f)=2 / (f(z) — a(f))2dy(z) > 0,

n

namely, B is positive semidefinite. It follows that there is a unique positive
semidefinite K € .Z(R"™) such that B(f,g) = (Kvy,v,) for all f,g € (R")*. For
y € R™ and for vy = y, using the change of variables formula, using the fact
that f.v is a Gaussian measure on R with mean

a(f) = (vf,a) = (y,a)
and variance
o?(f) = B(f,f) = (Kvs,v5) = (Ky,y)
and using (2),

Fy) = / ) @ dy ()
= [ etatrae
R

— exp ( (01— 3 (Kyp) 12)

1

— exp <z (y,a) = 5 (Ky,y>) :

which shows that (5) is satisfied.

Suppose that « is a Gaussian measure and further that the covariance op-
erator K is positive definite. By the spectral theorem, there is an orthonormal
basis {e1,...,e,} for R” such that (Kej,e;) > 0 for each 1 < j < n. Write
(Kej,ej) = O'JQ», and for y € R" set y; = (y, e;), with which y = y1e1+-- - +ynen
and then

(Ky,y) = (nKer+ -+ ynKen,yre1 + -+ + ynen)
= (yioter + -+ ynonen, yier + o+ Ynen)

=otyi + -+ oy
And

(y,a) = (y1e1 4+ - + Ynen,a1€1 + - + anepn) = a1y1 + - - + anYn.



Let ~; be the Gaussian measure on R with mean a; and variance 0]2-. Because

o7 > 0, the measure 7; has density p(-,a;,07) with respect to Lebesgue measure
on R, and thus

=] / exp(iy;t)p(t, a;, o7 )dt
R

—
=

2
eXp (iyjz;)p(z;, aj, ])dx

z/ ei<y’z>Hp(xj,aj,U?)dx
=

This implies that « has density

T = Hp(xj,aj,af»), x e R,
j=1

with respect to Lebesgue measure on R™. Moreover,

I

[©]
kel
/T\
N |
=
|
—
&

|
&
&

|

S
~—
N—



O

Because R is a second-countable topological space, the Borel o-algebra %Bgn
is equal to the product o-algebra ®?:1 PBr. The density of the standard Gaus-
sian measure 7y, with respect to Lebesgue measure on R" is, by Theorem 5,

1 1
x> ——exp| —=(x,2) |, x € R".
ok p( 5 >)

It follows that ~, is equal to the product measure H?Zl 71, and thus that the
probability space (R™, Bgn,~,) is equal to the product H;‘L:1(Rv Br,71)-

For fi,..., fn € L?(71), we define f; ® -+ ® f,, € L*(7y), called the tensor
product of fi,..., f,, by

(i® - fu)(z H z=(x1,...,7,) € R™
It is straightforward to check that for fi,..., fn,91,-..,9n € L?(71),
(1@ ® fn, g1 @ ® gn) 2, H (Fi 93 12 -

One proves that the linear span of the collection of all tensor products is dense
in L2(v,), and that {v;, : k > 0} is an orthonormal basis for L?(v), then

{vk, ® - Qug, : (k1,..., kn) € Z5} (6)

is an orthonormal basis for L?(v,).

We will later use the following statement about centered Gaussian measures.”

Theorem 6. Let v be a Gaussian measure on R™ with mean 0 and let § € R.
Then the pushforward of the product measure v x v on R™ x R™ under the
mapping (u,v) — usinf + vcosf, R" x R® — R" is equal to ~.

Proof. Let pu be the pushforward of v x v under the above mapping. and let
K € Z(R™) be the covariance operator of 7. For y € R™, using the change of
variables formula,

/ exp (i (y, ) dp(x) = / e iy using + veosd))d(y x 7))

- (/n exp (i (ysin 6, u>)d7(“))
. (/ exp (i (y cos 0, v>)d7(v))

=(ysin )y (y cos ).

"Vladimir I. Bogachev, Gaussian Measures, p. 5, Lemma 1.2.5.

10



By Theorem 5,

1

1
F(ysin 6)7(y cos §) = exp <—2 (Kysin,ysin 9)) exp ( 5 (Kycosf,ycos 9))

= exp (g s0) () — 5 c05%0) ()

= exp <; <Ky,y>> :

Thus, the characteristic function of u is

i) =exp (<3 (k) ) ye R

which implies that u is equal to the Gaussian measure with mean 0 and covari-
ance operator K, i.e., u=1. O

5 Hermite polynomials

For k > 0, we define the Hermite polynomial Hj by

_1 k t2 dk: t2

It is apparent that Hy(¢) is a polynomial of degree k.

Theorem 7. For real A and ¢,
exp [ A\t — 1/\2 = i LHk(t))\]C
2 S vE |

Proof. For u € C, let g(u) = exp (—4u?). For t € R,




Therefore, for real A and ¢,

exp ()\t - ;V) = exp (;R - %(/\ - t)2>
= exp 1y g\ —1)
()
= exp <;t2> g(t—X\)
— exp (;t2> exp (-’i) gjo (\_/%)!k Hi(t)(~\)*

[
NE

3~
=
=

ES
Il
=3

O

Theorem 8. Let 7; be the standard Gaussian measure on R, with density
p(t,0,1) = \/% exp (—%) Then
is an orthonormal basis for L?(v;).

Proof. For A\, u € R, on the one hand, using (1) with a = A+ p and o0 =1,

1 1
/ exp ()\t — )\2> exp (,ut — /f) dyi(t)
e 2 2

:eM/R \/1277Texp <—;(t - (A + u))2> dt

Ap

=€

On the other hand, using Theorem 7,

Therefore

12



From this, we get that if k # [ then ﬁ (Hk,Hl>L2(%) =0, i.e.

<Hk, Hl>L2(’Yl) = 0.

If k =1, then ﬁ (His Hi) 200 = 705 1o
<Hk7Hk>L2('Yl) = 1

Therefore, {Hy, : k > 0} is an orthonormal set in L?(;).
Suppose that f € L?(y;) satisfies (f, Hy) 2y, = 0 for each k > 0. Because
Hj.(t) is a polynomial of degree k, for each k > 0 we have

span{Hy, Hy, H, ..., H,} = span{1,t,t%, ... t"}.
Hence for each k£ > 0, <f, tk>L2(71) = 0. One then proves that span{1,t,t2 ...}

is dense in L?(y;), from which it follows that the linear span of the Hermite
polynomials is dense in L?(v;) and thus that they are an orthonormal basis. [

Lemma 9. For k > 1,
Hi(t) = VEH,_(t), Hi(t) = tHy(t) — Vk + 1Hjp 1 (1).

Proof. Theorem 7 says

exp ()\t - ;/\2> = z:: %Hk(t)/\k.

On the one hand,

d 1, 1.,
dtexp()\t—2/\)—)\exp()\t—2)\>

k=0 k'
— i ! Hy_1(t)A\*
— J/(k—1)!

On the other hand,

Therefore, Hj(t) = 0, and for k > 1,
1 1
R = -
& 1) NG

ie.,

Hi(t) = VEHg 1 (t).

13



For a = (ky,...,kn) € 7%, we define the Hermite polynomial H, by
H,(z) = Hg, (1) -+ - Hy, (x4), x=(x1,...,2,) € R™

Because the collection of all Hermite polynomials Hj is an orthonormal basis
for the Hilbert space L?(v;), following (6) we have that the collection of all
Hermite polynomials H, is an orthonormal basis for the Hilbert space L?(7,,).

Theorem 10. For v, the standard Gaussian measure on R”, with mean 0 € R™
and covariance operator idgn~, the collection

{Hy,: € Zgo}
is an orthonormal basis for L?(v,).
For v = (k1,...,kn) € ZL, write |a| = k1 + -+ + ky,. For k > 0, we define
Xy, = span{H, : |a| = k},
which is a subspace of L?(7,) of dimension
(k +n— 1)
: .
As X}, is a finite dimensional subspace of L?(7,), it is closed. L%(v,) is equal
to the orthogonal direct sum of the AX}:

00
L2('Yn) = @ X
k=0

Let
It L () = X

be the orthogonal projection onto Xj.

6 Ornstein-Uhlenbeck semigroup

Let v be a Gaussian measure on R™ with mean 0 and covariance operator K.
For t > 0, we define M; : R® x R® — R™ by

My(u,v) = e tu+ /1 — e 2ty, (z,y) € R" x R™

By Theorem 6, My, (y x 7) = . Therefore, for p > 1 and f € LP(y), using the
change of variables formula,

| @i = [ o) Pie <),

14



Applying Fubini’s theorem, the function

w [ [ f(Mi(u,0))[Pdy(v) = / [f(e™ u+ V1 — e ) Pdy(v)
R™ "

belongs to L*(y). We define the Ornstein-Uhlenbeck semigroup {7} : t > 0}
on LP(y),p > 1, by

LN = [ 0t ede) = [ 1 (e us Vim e ) d),

R’VL
for u € R™.

Theorem 11. Let v be a Gaussian measure on R” with mean 0. If f € L!(v),
then

[ @n@ae = [ @,

Rn

Proof. Using Fubini’s theorem, then the change of variables formula, then The-
orem 6,

[ @mpume = [ ( B f(Mt(uw))dv(v)) dr(u)
- / SO, (, 0))d(y % 7) (1, v)
R xR™
= [ s, x )@
= [ @i,
.

O

Theorem 12. Let v be a Gaussian measure on R™ with mean 0. For p > 1 and
t >0, T is a bounded linear operator LP(y) — L”(vy) with operator norm 1.

Proof. For f € LP(v), using Jensen’s inequality and then Theorem 11,

p

Ty = [ | [ 00 opnw)] a)
< [ ([ 1r0ntmpae) aw
- [ TP @

~ [ 1P @i
= |

P
Lr(v)>

15



Le. |Tifllzoquy < Ifllzn(u- This shows that the operator norm of 7; is < 1.
But, as 7 is a probability measure,

T:1= / ldvy(v) =1,

so T; has operator norm 1. O

For a Banach space E, we denote by Z(FE) the set of bounded linear oper-
ators E — E. The strong operator topology on FE is the coarsest topology
on E such that for each x € E, the map A — Az is continuous #(E) — E. To
say that a map @ : [0,00) — Z(F) is strongly continuous means that for
each ¢t € [0,00), Q(s) — Q: in the strong operator topology as s — t, i.e., for
eachz € F, Q(s)r — Q(t)x in E.

A one-parameter semigroup in #(F) is a map Q : [0,00) — H(F) such
that (i) Q(0) = idg and (ii) for s,t > 0, Q(s +¢) = Q(s) o Q(¢). For a one-
parameter semigroup to be strongly continuous, one proves that it is equivalent
that Q(t) — idg in the strong operator topology as t | 0, i.e. for each = € E,
Qt)x — x.8

We now establish that the {7} : t > 0} is indeed a one-parameter semigroup
and that it is strongly continuous.’

Theorem 13. Suppose p is a Gaussian measure on R™ with mean 0 and let
p > 1. Then {T; : t > 0} is a strongly continuous one-parameter semigroup in

AL (v))-

Proof. For f € LP(v), because + is a probability measure,
To(f)(u) = A fu)dry(v) = f(u),
hence Ty = idz»(,y. For s,t > 0, define P : R" x R" — R" by

s V1—e72 V1—e2s
\/1 — ef2t72su + \/1 — e—2t—2s v

8Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
9Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.

P(u,v) =e

16



By Theorem 6, P,(y X v) = 7, whence
(T(Ts ) ()
=/n(Tsf) (e‘tw +V1- e‘zty) dy(y)

:/n (/ f (e*S (f’fx +4/1— e—2ty) +v1- e—ZSw) dv(w)> dy(y)
:/RHXR” f (e_s_tx +/1—e-2-25P(y, w)) d(y % 7)(y, w)

_ / (f 0 Myyy)(x, P(y, w))d(y x 7)(y, w)
R» xR™

= [ (7o M) e 22
=Tsre(f) (),

hence T; o Ts = Tsy+. This establishes that {T} : ¢ > 0} is a semigroup.
For f € Cy(R™), u € R, and v € R", as t | 0 we have

f (eftu +V1- e—2tv> — f(u) =0,
thus by the dominated convergence theorem, since
[ (e tus VI=e0) = fw)] <2111
and v is a probability measure, we have
/ (f (e_tu +V1-— e*ztv) - f(u)) dvy(v) — 0,
and hence

(Tf = TN = [ f (et VIZe)dvw) - [ )

n

= [ (# (et VI= ) - ) drto)

— 0.

Because this is true for each v € R™ and
(@F =T @] < [ 20fldr) =20

by the dominated convergence theorem we then have

| Tef — TOf”Lp(W) — 0.

17



Now let f € LP(v). There is a sequence f; € Cyp(R") satisfying || f; — fHLp(w —
0, with Hfj||Lp(,Y) < 2{[fllp(y) for all j. For any ¢ > 0,

1T = Tof oy < ITef = Tefillpoioy + 1705 = Tofill oy + 17085 = Tof oy
=T:(f - fj)HLp(v) + T2 f - TijHLp(y) +11f5 = f”Lp(y)
< = Fill ooy + I1TF = Toill gy + 15 = Fllo -

Let € > 0 and let j be so large that || f — fjl|,,(,, <. Because f; € Cy(R"), by
(7) there is some ¢ > 0 such that when 0 <t < 4, ||T3f; — fj||Lp(v) < €. Then
when 0 < ¢ < 6,

ITef = Tofll 1oy S €+ et

which shows that for each f € LP(v), |Tof — Tofll s as t L 0, which suffices
to establish that {7} : ¢ > 0} is strongly continuous [0, 00) — Z(LP(Y)). O

For ¢ > 0, we define L; € B(L*(7)) by

Lf=3(Tf~f),  [eD().

We define Z(L) to be the set of those f € LP(y) such that L;f converges to
some element of LP(y) as t | 0, and we define L : Z(L) — LP(y). This is
the infinitesimal generator of the semigroup {7} : t > 0}, and the infinitesi-
mal generator L of the Ornstein-Uhlenbeck semigroup is called the Ornstein-
Uhlenbeck operator. Because the Ornstein-Uhlenbeck semigroup is strongly
continuous, we get the following.'©

Theorem 14. Suppose p is a Gaussian measure on R™ with mean 0, let p > 1,
and let L be the infinitesimal generator of the Ornstein-Uhlenbeck semigroup
{T; : t > 0}. Then:

1. 2(L) is a dense linear subspace of LP(y) and L : (L) — LP(v) is a closed
operator.

2. For each f € (L) and for each t > 0,

d

g = (LoT)f =(Tro D).

3. For f € LP(y) and K a compact subset of [0,00), (exp(tLe)f — Tif as
€ } 0 uniformly for ¢t € K.

4. For A € C with Re A > 0, R(\) : LP(y) — LP(7y) defined by

R()\)f:/o e MT, fdt, f € LP(y),

10Walter Rudin, Functional Analysis, second ed., p. 376, Theorem 13.35.
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belongs to Z(LP(v)), the range of R(\) is equal to Z(L), and
(M —=L)oRA)f=f, [fell(y), (RA)o (N -L))f=2(L),
where T is the identity operator on LP (7).
We remind ourselves that if H is a Hilbert space with inner product (-, -),

an element A of #(H) is said to be a positive operator when (Az,z) > 0 for
all x € H. We prove that each T; is a positive operator on the Hilbert space

L2(y).M

Theorem 15. Suppose u is a Gaussian measure on R™ with mean 0. For each
t>0, T, € B(L*(u)) is a positive operator.

Proof. For t > 0, define Ny : R® x R® — R" x R™ by

Ot(l‘,y) = (e_tx + \/1 - e_Qtya _\/1 —e 2y + e_ty) ’ (-T, y) € R™ x Rn)

whose transpose is the linear operator N} : R” x R” — R™ x R" defined by

Of (u,v) = (e_tu — \/1 — e 2ty, \/1 —e 2ty + e_tv) , (u,v) € R" x R™.
For (z,y) € R™ x R™, we calculate
/ @D 4O, (7 x 7)) (u, v)
ann
= [ oty x g) )
R™xR"™

:/ ei(Ot*(x,y),(uw))d(,y X fy)(U,U)
R xR"”

=7 x 7(O{(z,y))
=7 X (et — V1 —e 2y, V1 — ez +ety)
=F(e'w — V1—e2y)F(V1 —e2ta+ely)

=exp (— <K(e_tx — V1 —e2ty), e~tr — /1 — e2ty>>
1
- exp (2 <K(mx +ety), ml’ + ety>>

=exp (—; (Kz,x) — % <KZ/,Z/>)
7(y)

11Vladimir I. Bogachev, Gaussian Measures, p. 10, Theorem 1.4.1.
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which shows that Oy, (v x ) and 7y x v have equal characteristic functions and
hence are themselves equal.
For f,g € L*(y) and t > 0,

T gy = [ (@D @@du(z)

R

/]R"an f (€7t$ +v1- e*Qty> g(z)d(y x v)(z,y)

(fomoO)(x,y)(gom 0O o O)(z,y)d(y x 7)(x,y)

n XR’!L

(f o m)(u,v)(g 0 m1 0 Oy ") (u, 0)d(Opu (v x 7)) (u, v)

n xR

(f o m)(u,v)(g om0 Oy ") (u, v)d(y x 7)(u, v)

n xR

/]R"an flu)g (e‘tu — mv) d(y x v)(u, v)
= [ s ([ sttty )

= /n f(u) (/n Q(Mt(u,v))d’Y(”)) dry(u)

= [ f@(Tg) i)

= <f7 Ttg>L2(»y) )

which establishes that T} is a self-adjoint operator on L?(7).
Furthermore, using that T; = T} /5 0 T} /3 and that T; /5 is self-adjoint,

<th7 f>L2(—y) = <Tt/2,Tt/2f7 f>L2('y) = <Tt/2f’ Tt*/2f> = <Tt/2f7 Tt/2f>L2(,Y) )

Il
— i

L2(y)

which is > 0, which establishes that 7T} is a positive operator on L?(). O

We now write the Ornstein-Uhlenbeck semigroup using the orthogonal pro-
jections Iy, : L? (Yn) — Xk, where 7, is the standard Gaussian measure on R™.12

Theorem 16. For each t > 0 and f € L?(v,),

Tf =Y e MI(f).
k=0

Proof. Define S; : L*(v,) = L%(7n) by Sif = > opey e *Ii(f), which satisfies,
using that the subspaces X}, are pairwise orthogonal,

1S 1200 = S e Uy < ST 2y = 112
k=0 k=0

12V]adimir 1. Bogachev, Gaussian Measures, p. 11, Theorem 1.4.4.
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50 Sy € B(L*(vn)). To prove that Ty = Sy, it suffices to prove that Ty H, = S; H,,
for each Hermite polynomial, which are an orthonormal basis for L?(v,). For
o= (kl,...,k‘n) with k = |Oé| =ki+---+kp,

StHa = 6_ktHa,

and

(TyH,)(z) = / H, (e_t:v +vV1- e*2ty> dvyn(y)

R'I‘l,
ij <€_t$j +v1-— 672tyj> d'Yn(y)
n

n

j=

= H/Rij (e_txj + myj) d“/l(yj)~
j=1

To prove that TyH, = e " H,, it thus suffices to prove that for any ¢, for any
k;, and for any x;,

/ Hy, (641734 + myj) dyi(yj) = 67kthkj (xj). (8)
R

For k; = 0, as Hy = 1 and ~; is a probability measure, (8) is true. Suppose that
(8) is true for < k;. That is, for each 0 < h < k;, T, H), = e~ "*H},. For any |,
because the Hermite polynomial H; is a polynomial of degree [, one checks that
T, H;(x;) is a polynomial of degree [: using the binomial formula,

2
/(eftxj +1- e—Qtyj)l exp (—ZJ) dyi(y;)
R
is a polynomial in z; of degree [. Hence T; H; a linear combination of Hy, H1,. .., H;.
For 0 < h < kj,
<Ttij+17Hh>L2(,Yl) = <ij+17TtHh>L2(71) = <ij+1,6_htHh>L2(m =0.

Therefore there is some ¢ € R such that T; H, k;+1 = cHp,y1. Then check that
¢ = e (ki+1)t, O

We now give an explicit expression for the domain Z(L) of the Ornstein-
Uhlenbeck operator L and for L applied to an element of its domain.'3

Theorem 17.

(1) = {f € L2(m) : YR I 22 < oo} |

k=0

For f € (L),
Lf ==Y kI;(f).
k=0

13Vladimir I. Bogachev, Gaussian Measures, p. 12, Proposition 1.4.5.

21



Proof. Let f € 2(L), i.e. W — Lf in L?(v,) as t | 0. For any k > 0, using
Theorem 16,

I.Lf =1, 1l
kL f k(tlfél

_1 LT f — Inf
=1m-——
t10 t

iy Leef — I f
= 1m-——
t10 t

e M f —Inf
t10 t

L |
= 1. —_— I
(3&1 " > kS

thf>
t

Using this,

2
S IRLf 120

k=0

ZIka

k=0

2
= ILF 12 (v)

< 0.

2
> K flage
k=0

2

L2 (7vn)

Moreover,

Lf=1L (ZLJ) =Y LIf=> LLf=>» ki
k=0 k=0 k=0 k=0

Let f € L?(v,) satisfy

2
DK Mk f e,y < oo

k=0
For t > 0,
Lf-f ., 5 ? (IS~ 1] 2
T+Zkb«f s (t-i-kfkf)
=0 L2 () k=0 o
X | o=kt _ 1 ?
_ Z — +k kain?(w) :
k=0
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Fort>0and k> 0,
[t~ e ™™ —1)| <k,

and thus
%) e_kt _1 2 ) (e’ )
Z — T Bl kS22, < Z(%)Q Mk f 2y, < 00
k=0 k=0
For each k > 0, as t | 0,
et R
t b
thus as t | 0,
[e%e) eik‘t _1 2 )
Z — T k| Ak fllz2(y,) =0
k=0
and hence )
Tf—f |
% + Z kI f — 0.
k=0 LQ('YH)

This means that
Tif—f
T

Tif—f
t

converges, f € Z(L).

23

converges in L?(v,) to — > p— kI f as t | 0, and since



