Fréchet derivatives and Gâteaux derivatives

Jordan Bell

April 3, 2014

1 Introduction

In this note all vector spaces are real. If X and Y are normed spaces, we denote by $\mathscr{B}(X, Y)$ the set of bounded linear maps $X \rightarrow Y$, and write $\mathscr{B}(X)=$ $\mathscr{B}(X, X) . \mathscr{B}(X, Y)$ is a normed space with the operator norm.

2 Remainders

If X and Y are normed spaces, let $o(X, Y)$ be the set of all maps $r: X \rightarrow Y$ for which there is some map $\alpha: X \rightarrow Y$ satisfying:

- $r(x)=\|x\| \alpha(x)$ for all $x \in X$,
- $\alpha(0)=0$,
- α is continuous at 0 .

Following Penot, ${ }^{1}$ we call elements of $o(X, Y)$ remainders. It is immediate that $o(X, Y)$ is a vector space.

If X and Y are normed spaces, if $f: X \rightarrow Y$ is a function, and if $x_{0} \in X$, we say that f is stable at x_{0} if there is some $\epsilon>0$ and some $c>0$ such that $\left\|x-x_{0}\right\| \leq \epsilon$ implies that $\left\|f\left(x-x_{0}\right)\right\| \leq c\left\|x-x_{0}\right\|$. If $T: X \rightarrow Y$ is a bounded linear map, then $\|T x\| \leq\|T\|\|x\|$ for all $x \in X$, and thus a bounded linear map is stable at 0 . The following lemma shows that the composition of a remainder with a function that is stable at 0 is a remainder. ${ }^{2}$

Lemma 1. Let X, Y be normed spaces and let $r \in o(X, Y)$. If W is a normed space and $f: W \rightarrow X$ is stable at 0 , then $r \circ f \in o(W, Y)$. If Z is a normed space and $g: Y \rightarrow Z$ is stable at 0 , then $g \circ r \in o(X, Z)$.

Proof. $r \in o(X, Y)$ means that there is some $\alpha: X \rightarrow Y$ satisfying $r(x)=$ $\|x\| \alpha(x)$ for all $x \in X$, that takes the value 0 at 0 , and that is continuous at

[^0]0. As f is stable at 0 , there is some $\epsilon>0$ and some $c>0$ for which $\|w\| \leq \epsilon$ implies that $\|f(w)\| \leq c\|w\|$. Define $\beta: W \rightarrow Y$ by
\[

\beta(w)= $$
\begin{cases}\frac{\|f(w)\|}{\|w\|} \alpha(f(w)) & w \neq 0 \\ 0 & w=0\end{cases}
$$
\]

for which we have

$$
(r \circ f)(w)=\|w\| \beta(w), \quad w \in W
$$

If $\|w\| \leq \epsilon$, then $\|\beta(w)\| \leq c\|\alpha(f(w))\|$. But $f(w) \rightarrow 0$ as $w \rightarrow 0$, and because α is continuous at 0 we get that $\alpha(f(w)) \rightarrow \alpha(0)=0$ as $w \rightarrow 0$. So the above inequality gives us $\beta(w) \rightarrow 0$ as $w \rightarrow 0$. As $\beta(0)=0$, the function $\beta: W \rightarrow Y$ is continuous at 0 , and therefore $r \circ f$ is remainder.

As g is stable at 0 , there is some $\epsilon>0$ and some $c>0$ for which $\|y\| \leq \epsilon$ implies that $\|g(y)\| \leq c\|y\|$. Define $\gamma: X \rightarrow Z$ by

$$
\gamma(x)= \begin{cases}\frac{g(\|x\| \alpha(x))}{\|x\|} & x \neq 0 \\ 0 & x=0\end{cases}
$$

For all $x \in X$,

$$
(g \circ r)(x)=g(\|x\| \alpha(x))=\|x\| \gamma(x)
$$

Since $\alpha(0)=0$ and α is continuous at 0 , there is some $\delta>0$ such that $\|x\| \leq \delta$ implies that $\|\alpha(x)\| \leq \epsilon$. Therefore, if $\|x\| \leq \delta \wedge 1$ then

$$
\|g(\|x\| \alpha(x))\| \leq c\|x\|\|\alpha(x)\| \leq c\|x\| \epsilon
$$

and hence if $\|x\| \leq \delta \wedge 1$ then $\|\gamma(x)\| \leq c \epsilon$. This shows that $\gamma(x) \rightarrow 0$ as $x \rightarrow 0$, and since $\gamma(0)=0$ the function $\gamma: X \rightarrow Z$ is continuous at 0 , showing that $g \circ r$ is a remainder.

If Y_{1}, \ldots, Y_{n} are normed spaces where Y_{k} has norm $\|\cdot\|_{k}$, then $\left\|\left(y_{1}, \ldots, y_{n}\right)\right\|=$ $\max _{1 \leq k \leq n}\left\|y_{k}\right\|_{k}$ is a norm on $\prod_{k=1}^{n} Y_{k}$, and one can prove that the topology induced by this norm is the product topology.
Lemma 2. If X and Y_{1}, \ldots, Y_{n} are normed spaces, then a function $r: X \rightarrow$ $\prod_{k=1}^{n} Y_{k}$ is a remainder if and only if each of $r_{k}: X \rightarrow Y_{k}$ are remainders, $1 \leq k \leq n$, where $r(x)=\left(r_{1}(x), \ldots, r_{n}(x)\right)$ for all $x \in X$.
Proof. Suppose that there is some function $\alpha: X \rightarrow \prod_{k=1}^{n} Y_{k}$ such that $r(x)=$ $\|x\| \alpha(x)$ for all $x \in X$. With $\alpha(x)=\left(\alpha_{1}(x), \ldots, \alpha_{n}(x)\right)$, we have

$$
r_{k}(x)=\|x\| \alpha_{k}(x), \quad x \in X
$$

Because $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$, for each k we have $\alpha_{k}(x) \rightarrow 0$ as $x \rightarrow 0$, which shows that r_{k} is a remainder.

Suppose that each r_{k} is a remainder. Thus, for each k there is a function $\alpha_{k}: X \rightarrow Y_{k}$ satisfying $r_{k}(x)=\|x\| \alpha_{k}(x)$ for all $x \in X$ and $\alpha_{k}(x) \rightarrow 0$ as $x \rightarrow 0$. Then the function $\alpha: X \rightarrow \prod_{k=1}^{n} Y_{k}$ defined by $\alpha(x)=\left(\alpha_{1}(x), \ldots, \alpha_{n}(x)\right)$ satisfies $r(x)=\|x\| \alpha(x)$. Because $\alpha_{k}(x) \rightarrow 0$ as $x \rightarrow 0$ for each of the finitely many $k, 1 \leq k \leq n$, we have $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$.

3 Definition and uniqueness of Fréchet derivative

Suppose that X and Y are normed spaces, that U is an open subset of X, and that $x_{0} \in U$. A function $f: U \rightarrow Y$ is said to be Fréchet differentiable at x_{0} if there is some $L \in \mathscr{B}(X, Y)$ and some $r \in o(X, Y)$ such that

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+L\left(x-x_{0}\right)+r\left(x-x_{0}\right), \quad x \in U \tag{1}
\end{equation*}
$$

Suppose there are bounded linear maps L_{1}, L_{2} and remainders r_{1}, r_{2} that satisfy the above. Writing $r_{1}(x)=\|x\| \alpha_{1}(x)$ and $r_{2}(x)=\|x\| \alpha_{2}(x)$ for all $x \in X$, we have
$L_{1}\left(x-x_{0}\right)+\left\|x-x_{0}\right\| \alpha_{1}\left(x-x_{0}\right)=L_{2}\left(x-x_{0}\right)+\left\|x-x_{0}\right\| \alpha_{2}\left(x-x_{0}\right), \quad x \in U$,
i.e.,

$$
L_{1}\left(x-x_{0}\right)-L_{2}\left(x-x_{0}\right)=\left\|x-x_{0}\right\|\left(\alpha_{2}\left(x-x_{0}\right)-\alpha_{1}\left(x-x_{0}\right)\right), \quad x \in U
$$

For $x \in X$, there is some $h>0$ such that for all $|t| \leq h$ we have $x_{0}+t x \in U$, and then

$$
L_{1}(t x)-L_{2}(t x)=\|t x\|\left(\alpha_{2}(t x)-\alpha_{1}(t x)\right)
$$

hence, for $0<|t| \leq h$,

$$
L_{1}(x)-L_{2}(x)=\|x\|\left(\alpha_{2}(t x)-\alpha_{1}(t x)\right)
$$

But $\alpha_{2}(t x)-\alpha_{1}(t x) \rightarrow 0$ as $t \rightarrow 0$, which implies that $L_{1}(x)-L_{2}(x)=0$. As this is true for all $x \in X$, we have $L_{1}=L_{2}$ and then $r_{1}=r_{2}$. If f is Fréchet differentiable at x_{0}, the bounded linear map L in (1) is called the Fréchet derivative of f at x_{0}, and we define $D f\left(x_{0}\right)=L$. Thus,

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+r\left(x-x_{0}\right), \quad x \in U
$$

If U_{0} is the set of those points in U at which f is Fréchet differentiable, then $D f: U_{0} \rightarrow \mathscr{B}(X, Y)$.

Suppose that X and Y are normed spaces and that U is an open subset of X. We denote by $C^{1}(U, Y)$ the set of functions $f: U \rightarrow Y$ that are Fréchet differentiable at each point in U and for which the function $D f: U \rightarrow \mathscr{B}(X, Y)$ is continuous. We say that an element of $C^{1}(U, Y)$ is continuously differentiable. We denote by $C^{2}(U, Y)$ those elements f of $C^{1}(U, Y)$ such that

$$
D f \in C^{1}(U, \mathscr{B}(X, Y))
$$

that is, $C^{2}(U, Y)$ are those $f \in C^{1}(U, Y)$ such that the function $D f: U \rightarrow$ $\mathscr{B}(X, Y)$ is Fréchet differentiable at each point in U and such that the function

$$
D(D f): U \rightarrow \mathscr{B}(X, \mathscr{B}(X, Y))
$$

is continuous. ${ }^{3}$
The following theorem characterizes continuously differentiable functions $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m} .{ }^{4}$

Theorem 3. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is Fréchet differentiable at each point in \mathbb{R}^{n}, and write

$$
f=\left(f_{1}, \ldots, f_{m}\right)
$$

$f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ if and only if for each $1 \leq i \leq m$ and $1 \leq j \leq n$ the function

$$
\frac{\partial f_{i}}{\partial x_{j}}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

is continuous.

4 Properties of the Fréchet derivative

If $f: X \rightarrow Y$ is Fréchet differentiable at x_{0}, then because a bounded linear map is continuous and in particular continuous at 0 , and because a remainder is continuous at 0 , we get that f is continuous at x_{0}.

We now prove that Fréchet differentiation at a point is linear.
Lemma 4 (Linearity). Let X and Y be normed spaces, let U be an open subset of X and let $x_{0} \in U$. If $f_{1}, f_{2}: U \rightarrow Y$ are both Fréchet differentiable at x_{0} and if $\alpha \in \mathbb{R}$, then $\alpha f_{1}+f_{2}$ is Fréchet differentiable at x_{0} and

$$
D\left(\alpha f_{1}+f_{2}\right)\left(x_{0}\right)=\alpha D f_{1}\left(x_{0}\right)+D f_{2}\left(x_{0}\right) .
$$

Proof. There are remainders $r_{1}, r_{2} \in o(X, Y)$ such that

$$
f_{1}(x)=f_{1}\left(x_{0}\right)+D f_{1}\left(x_{0}\right)\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right), \quad x \in U
$$

and

$$
f_{2}(x)=f_{2}\left(x_{0}\right)+D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)+r_{2}\left(x-x_{0}\right), \quad x \in U
$$

Then for all $x \in U$,

$$
\begin{aligned}
\left(\alpha f_{1}+f_{2}\right)(x)-\left(\alpha f_{1}+f_{2}\right)\left(x_{0}\right)= & \alpha f_{1}(x)-\alpha f_{1}\left(x_{0}\right)+f_{2}(x)-f_{2}\left(x_{0}\right) \\
= & \alpha D f_{1}\left(x_{0}\right)\left(x-x_{0}\right)+\alpha r_{1}\left(x-x_{0}\right) \\
& +D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)+r_{2}\left(x-x_{0}\right) \\
= & \left(\alpha D f_{1}\left(x_{0}\right)+D f_{2}\left(x_{0}\right)\right)\left(x-x_{0}\right) \\
& +\left(\alpha r_{1}+r_{2}\right)\left(x-x_{0}\right),
\end{aligned}
$$

and $\alpha r_{1}+r_{2} \in o(X, Y)$.

[^1]The following lemma gives an alternate characterization of a function being Fréchet differentiable at a point. ${ }^{5}$

Lemma 5. Suppose that X and Y are normed space, that U is an open subset of X, and that $x_{0} \in U$. A function $f: U \rightarrow Y$ is Fréchet differentiable at x_{0} if and only if there is some function $F: U \rightarrow \mathscr{B}(X, Y)$ that is continuous at x_{0} and for which

$$
f(x)-f\left(x_{0}\right)=F(x)\left(x-x_{0}\right), \quad x \in U
$$

Proof. Suppose that there is a function $F: U \rightarrow \mathscr{B}(X, Y)$ that is continuous at x_{0} and that satisfies $f(x)-f\left(x_{0}\right)=F(x)\left(x-x_{0}\right)$ for all $x \in U$. Then, for $x \in U$,

$$
\begin{aligned}
f(x)-f\left(x_{0}\right) & =F(x)\left(x-x_{0}\right)-F\left(x_{0}\right)\left(x-x_{0}\right)+F\left(x_{0}\right)\left(x-x_{0}\right) \\
& =F\left(x_{0}\right)\left(x-x_{0}\right)+r\left(x-x_{0}\right)
\end{aligned}
$$

where $r: X \rightarrow Y$ is defined by

$$
r(x)= \begin{cases}\left(F\left(x+x_{0}\right)-F\left(x_{0}\right)\right)(x) & x+x_{0} \in U \\ 0 & x+x_{0} \notin U\end{cases}
$$

We further define

$$
\alpha(x)= \begin{cases}\frac{\left(F\left(x+x_{0}\right)-F\left(x_{0}\right)\right)(x)}{\|x\|} & x+x_{0} \in U, x \neq 0 \\ 0 & x+x_{0} \notin U \\ 0 & x=0,\end{cases}
$$

with which $r(x)=\|x\| \alpha(x)$ for all $x \in X$. To prove that r is a remainder it suffices to prove that $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$. Let $\epsilon>0$. That $F: U \rightarrow \mathscr{B}(X, Y)$ is continuous at x_{0} tells us that there is some $\delta>0$ for which $\|x\|<\delta$ implies that $\left\|F\left(x+x_{0}\right)-F\left(x_{0}\right)\right\|<\epsilon$ and hence

$$
\left\|\left(F\left(x+x_{0}\right)-F\left(x_{0}\right)\right)(x)\right\| \leq\left\|F\left(x+x_{0}\right)-F\left(x_{0}\right)\right\|\|x\|<\epsilon\|x\| .
$$

Therefore, if $\|x\|<\delta$ then $\|\alpha(x)\|<\epsilon$, which establishes that r is a remainder and therefore that f is Fréchet differentiable at x_{0}, with Fréchet derivative $D f\left(x_{0}\right)=F\left(x_{0}\right)$.

Suppose that f is Fréchet differentiable at x_{0} : there is some $r \in o(X, Y)$ such that

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+r\left(x-x_{0}\right), \quad x \in U
$$

where $D f\left(x_{0}\right) \in \mathscr{B}(X, Y)$. As r is a remainder, there is some $\alpha: X \rightarrow Y$ satisfying $r(x)=\|x\| \alpha(x)$ for all $x \in X$, and such that $\alpha(0)=0$ and $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$. For each $x \in X$, by the Hahn-Banach extension theorem ${ }^{6}$ there is some $\lambda_{x} \in X^{*}$ such that $\lambda_{x} x=\|x\|$ and $\left|\lambda_{x} v\right| \leq\|v\|$ for all $v \in X$. Thus,

$$
r(x)=\left(\lambda_{x} x\right) \alpha(x), \quad x \in X
$$

[^2]Define $F: U \rightarrow \mathscr{B}(X, Y)$ by

$$
F(x)=D f\left(x_{0}\right)+\left(\lambda_{x-x_{0}}\right) \alpha\left(x-x_{0}\right)
$$

i.e. for $x \in U$ and $v \in X$,

$$
F(x)(v)=D f\left(x_{0}\right)(v)+\left(\lambda_{x-x_{0}} v\right) \alpha\left(x-x_{0}\right) \in Y
$$

Then for $x \in U$,

$$
r\left(x-x_{0}\right)=\left(\lambda_{x-x_{0}}\left(x-x_{0}\right)\right) \alpha\left(x-x_{0}\right)=F(x)\left(x-x_{0}\right)-D f\left(x_{0}\right)\left(x-x_{0}\right)
$$

and hence

$$
f(x)=f\left(x_{0}\right)+F(x)\left(x-x_{0}\right), \quad x \in U .
$$

To complete the proof it suffices to prove that F is continuous at x_{0}. But both $\lambda_{0}=0$ and $\alpha(0)=0$ so $F\left(x_{0}\right)=D f\left(x_{0}\right)$, and for $x \in U$ and $v \in X$,

$$
\begin{aligned}
\left\|\left(F(x)-F\left(x_{0}\right)\right)(v)\right\| & =\left\|\left(\lambda_{x-x_{0}} v\right) \alpha\left(x-x_{0}\right)\right\| \\
& =\left|\lambda_{x-x_{0}} v\right|\left\|\alpha\left(x-x_{0}\right)\right\| \\
& \leq\|v\|\left\|\alpha\left(x-x_{0}\right)\right\|,
\end{aligned}
$$

so $\left\|F(x)-F\left(x_{0}\right)\right\| \leq\left\|\alpha\left(x-x_{0}\right)\right\|$. From this and the fact that $\alpha(0)=0$ and $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$ we get that F is continuous at x_{0}, completing the proof.

We now prove the chain rule for Fréchet derivatives. ${ }^{7}$
Theorem 6 (Chain rule). Suppose that X, Y, Z are normed spaces and that U and V are open subsets of X and Y respectively. If $f: U \rightarrow Y$ satisfies $f(U) \subseteq V$ and is Fréchet differentiable at x_{0} and if $g: V \rightarrow Z$ is Fréchet differentiable at $f\left(x_{0}\right)$, then $g \circ f: U \rightarrow Z$ is Fréchet differentiable at x_{0}, and its Fréchet derivative at x_{0} is

$$
D(g \circ f)\left(x_{0}\right)=D g\left(f\left(x_{0}\right)\right) \circ D f\left(x_{0}\right)
$$

Proof. Write $y_{0}=f\left(x_{0}\right), L_{1}=D f\left(x_{0}\right)$, and $L_{2}=D g\left(y_{0}\right)$. Because f is Fréchet differentiable at x_{0}, there is some $r_{1} \in o(X, Y)$ such that

$$
f(x)=f\left(x_{0}\right)+L_{1}\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right), \quad x \in U,
$$

and because g is Fréchet differentiable at y_{0} there is some $r_{2} \in o(Y, Z)$ such that

$$
g(y)=g\left(y_{0}\right)+L_{2}\left(y-y_{0}\right)+r_{2}\left(y-y_{0}\right), \quad y \in V
$$

For all $x \in U$ we have $f(x) \in V$, and using the above formulas,

$$
\begin{aligned}
g(f(x)) & =g\left(y_{0}\right)+L_{2}\left(f(x)-y_{0}\right)+r_{2}\left(f(x)-y_{0}\right) \\
& =g\left(y_{0}\right)+L_{2}\left(L_{1}\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right)\right)+r_{2}\left(L_{1}\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right)\right) \\
& =g\left(y_{0}\right)+L_{2}\left(L_{1}\left(x-x_{0}\right)\right)+L_{2}\left(r_{1}\left(x-x_{0}\right)\right)+r_{2}\left(L_{1}\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right)\right) .
\end{aligned}
$$

[^3]Define $r_{3}: X \rightarrow Z$ by $r_{3}(x)=r_{2}\left(L_{1} x+r_{1}(x)\right)$, and fix any $c>\left\|L_{1}\right\|$. Writing $r_{1}(x)=\|x\| \alpha_{1}(x)$, the fact that $\alpha(0)=0$ and that α is continuous at 0 gives us that there is some $\delta>0$ such that if $\|x\|<\delta$ then $\|\alpha(x)\|<c-\left\|L_{1}\right\|$, and hence if $\|x\|<\delta$ then $\left\|r_{1}(x)\right\| \leq\left(c-\left\|L_{1}\right\|\right)\|x\|$. Then, $\|x\|<\delta$ implies that

$$
\left\|L_{1} x+r_{1}(x)\right\| \leq\left\|L_{1} x\right\|+\left\|r_{1}(x)\right\| \leq\left\|L_{1}\right\|\|x\|+\left(c-\left\|L_{1}\right\|\right)\|x\|=c\|x\|
$$

This shows that $x \mapsto L_{1} x+r_{1}(x)$ is stable at 0 and so by Lemma 1 that $r_{3} \in o(X, Z)$. Then, $r: X \rightarrow Z$ defined by $r=L_{1} \circ r_{1}+r_{3}$ is a sum of two remainders and so is itself a remainder, and we have

$$
g \circ f(x)=g \circ f\left(x_{0}\right)+L_{2} \circ L_{1}\left(x-x_{0}\right)+r\left(x-x_{0}\right), \quad x \in U
$$

But $L_{1} \in \mathscr{B}(X, Y)$ and $L_{2} \in \mathscr{B}(Y, Z)$, so $L_{2} \circ L_{1} \in \mathscr{B}(X, Z)$. This shows that $g \circ f$ is Fréchet differentiable at x_{0} and that its Fréchet derivative at x_{0} is

$$
L_{2} \circ L_{1}=D g\left(y_{0}\right) \circ D f\left(x_{0}\right)=D g\left(f\left(x_{0}\right)\right) \circ D f\left(x_{0}\right)
$$

The following is the product rule for Fréchet derivatives. By $f_{1} \cdot f_{2}$ we mean the function $x \mapsto f_{1}(x) f_{2}(x)$.

Theorem 7 (Product rule). Suppose that X is a normed space, that U is an open subset of X, that $f_{1}, f_{2}: U \rightarrow \mathbb{R}$ are functions, and that $x_{0} \in U$. If f_{1} and f_{2} are both Fréchet differentiable at x_{0}, then $f_{1} \cdot f_{2}$ is Fréchet differentiable at x_{0}, and its Fréchet derivative at x_{0} is

$$
D\left(f_{1} \cdot f_{2}\right)\left(x_{0}\right)=f_{2}\left(x_{0}\right) D f_{1}\left(x_{0}\right)+f_{1}\left(x_{0}\right) D f_{2}\left(x_{0}\right)
$$

Proof. There are $r_{1}, r_{2} \in o(X, \mathbb{R})$ with which

$$
f_{1}(x)=f_{1}\left(x_{0}\right)+D f_{1}\left(x_{0}\right)\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right), \quad x \in U
$$

and

$$
f_{2}(x)=f_{2}\left(x_{0}\right)+D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)+r_{2}\left(x-x_{0}\right), \quad x \in U
$$

Multiplying the above two formulas,

$$
\begin{aligned}
f_{1}(x) f_{2}(x)= & f_{1}\left(x_{0}\right) f_{2}\left(x_{0}\right)+f_{2}\left(x_{0}\right) D f_{1}\left(x_{0}\right)\left(x-x_{0}\right)+f_{1}\left(x_{0}\right) D f_{2}\left(x_{0}\right)\left(x-x_{0}\right) \\
& +D f_{1}\left(x_{0}\right)\left(x-x_{0}\right) D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right) r_{2}\left(x-x_{0}\right) \\
& +f_{1}\left(x_{0}\right) r_{2}\left(x-x_{0}\right)+r_{2}\left(x-x_{0}\right) D f_{1}\left(x_{0}\right)\left(x-x_{0}\right) \\
& +f_{2}\left(x_{0}\right) r_{1}\left(x-x_{0}\right)+r_{1}\left(x-x_{0}\right) D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)
\end{aligned}
$$

Define $r: X \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
r(x)= & D f_{1}\left(x_{0}\right) x D f_{2}\left(x_{0}\right) x+r_{1}(x) r_{2}(x)+f_{1}\left(x_{0}\right) r_{2}(x)+r_{2}(x) D f_{1}\left(x_{0}\right) x \\
& +f_{2}\left(x_{0}\right) r_{1}(x)+r_{1}(x) D f_{2}\left(x_{0}\right) x
\end{aligned}
$$

for which we have, for $x \in U$,
$f_{1}(x) f_{2}(x)=f_{1}\left(x_{0}\right) f_{2}\left(x_{0}\right)+f_{2}\left(x_{0}\right) D f_{1}\left(x_{0}\right)\left(x-x_{0}\right)+f_{1}\left(x_{0}\right) D f_{2}\left(x_{0}\right)\left(x-x_{0}\right)+r\left(x-x_{0}\right)$.
Therefore, to prove the claim it suffices to prove that $r \in o(X, \mathbb{R})$. Define $\alpha: X \rightarrow \mathbb{R}$ by $\alpha(0)=0$ and $\alpha(x)=\frac{D f_{1}\left(x_{0}\right) x D f_{2}\left(x_{0}\right) x}{\|x\|}$ for $x \neq 0$. For $x \neq 0$,

$$
\begin{aligned}
|\alpha(x)| & =\frac{\left|D f_{1}\left(x_{0}\right) x \| D f_{2}\left(x_{0}\right) x\right|}{\|x\|} \\
& \leq \frac{\left\|D f_{1}\left(x_{0}\right)\right\|\|x\|\left\|D f_{2}\left(x_{0}\right)\right\|\|x\|}{\|x\|} \\
& =\left\|D f_{1}\left(x_{0}\right)\right\|\left\|D f_{2}\left(x_{0}\right)\right\|\|x\|
\end{aligned}
$$

Thus $\alpha(x) \rightarrow 0$ as $x \rightarrow 0$, showing that the first term in the expression for r belongs to $o(X, \mathbb{R})$. Likewise, each of the other five terms in the expression for r belongs to $o(X, \mathbb{R})$, and hence $r \in o(X, \mathbb{R})$, completing the proof.

5 Dual spaces

If X is a normed space, we denote by X^{*} the set of bounded linear maps $X \rightarrow \mathbb{R}$, i.e. $X^{*}=\mathscr{B}(X, \mathbb{R})$. X^{*} is itself a normed space with the operator norm. If X is a normed space, the dual pairing $\langle\cdot, \cdot\rangle: X \times X^{*} \rightarrow \mathbb{R}$ is

$$
\langle x, \psi\rangle=\psi(x), \quad x \in X, \psi \in X^{*} .
$$

If U is an open subset of X and if a function $f: U \rightarrow \mathbb{R}$ is Fréchet differentiable at $x_{0} \in U$, then $D f\left(x_{0}\right)$ is a bounded linear map $X \rightarrow \mathbb{R}$, and so belongs to X^{*}. If U_{0} are those points in U at which $f: U \rightarrow \mathbb{R}$ is Fréchet differentiable, then

$$
D f: U_{0} \rightarrow X^{*}
$$

In the case that X is a Hilbert space with inner product $\langle\cdot, \cdot\rangle$, the Riesz representation theorem shows that $R: X \rightarrow X^{*}$ defined by $R(x)(y)=\langle y, x\rangle$ is an isometric isomorphism. If $f: U \rightarrow \mathbb{R}$ is Fréchet differentiable at $x_{0} \in U$, then we define

$$
\nabla f\left(x_{0}\right)=R^{-1}\left(D f\left(x_{0}\right)\right)
$$

and call $\nabla f\left(x_{0}\right) \in X$ the gradient of f at x_{0}. With U_{0} denoting the set of those points in U at which f is Fréchet differentiable,

$$
\nabla f: U_{0} \rightarrow X
$$

(To define the gradient we merely used that R is a bijection, but to prove properties of the gradient one uses that R is an isometric isomorphism.)

Example. Let X be a Hilbert space, $A \in \mathscr{B}(X), v \in X$, and define

$$
f(x)=\langle A x, x\rangle-\langle x, v\rangle, \quad x \in X
$$

For all $x_{0}, x \in X$ we have, because the inner product of a real Hilbert space is symmetric,

$$
\begin{aligned}
f(x)-f\left(x_{0}\right) & =\langle A x, x\rangle-\langle x, v\rangle-\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, v\right\rangle \\
& =\langle A x, x\rangle-\left\langle A x_{0}, x\right\rangle+\left\langle A x_{0}, x\right\rangle-\left\langle A x_{0}, x_{0}\right\rangle-\left\langle x-x_{0}, v\right\rangle \\
& =\left\langle A\left(x-x_{0}\right), x\right\rangle+\left\langle A x_{0}, x-x_{0}\right\rangle-\left\langle x-x_{0}, v\right\rangle \\
& =\left\langle x-x_{0}, A^{*} x\right\rangle+\left\langle x-x_{0}, A x_{0}\right\rangle-\left\langle x-x_{0}, v\right\rangle \\
& =\left\langle x-x_{0}, A^{*} x+A x_{0}-v\right\rangle \\
& =\left\langle x-x_{0}, A^{*} x-A^{*} x_{0}+A^{*} x_{0}+A x_{0}-v\right\rangle \\
& =\left\langle x-x_{0},\left(A^{*}+A\right) x_{0}-v\right\rangle+\left\langle x-x_{0}, A^{*}\left(x-x_{0}\right)\right\rangle .
\end{aligned}
$$

With $D f\left(x_{0}\right)\left(x-x_{0}\right)=\left\langle x-x_{0},\left(A^{*}+A\right) x_{0}-v\right\rangle$, or $D f\left(x_{0}\right)(x)=\left\langle x,\left(A^{*}+A\right) x_{0}-v\right\rangle$, we have that f is Fréchet differentiable at each $x_{0} \in X$. Furthermore, its gradient at x_{0} is

$$
\nabla f\left(x_{0}\right)=\left(A^{*}+A\right) x_{0}-v
$$

For each $x_{0} \in X$, the function $f: X \rightarrow \mathbb{R}$ is Fréchet differentiable at x_{0}, and thus

$$
D f: X \rightarrow X^{*}
$$

and we can ask at what points $D f$ has a Fréchet derivative. For $x_{0}, x, y \in X$,

$$
\begin{aligned}
\left(D f(x)-D f\left(x_{0}\right)\right)(y) & =\left\langle y,\left(A^{*}+A\right) x-v\right\rangle-\left\langle y,\left(A^{*}+A\right) x_{0}-v\right\rangle \\
& =\left\langle y,\left(A^{*}+A\right)\left(x-x_{0}\right)\right\rangle
\end{aligned}
$$

For $D(D f)\left(x_{0}\right)\left(x-x_{0}\right)(y)=\left\langle y,\left(A^{*}+A\right)\left(x-x_{0}\right)\right\rangle$, in other words with

$$
D^{2} f\left(x_{0}\right)(x)(y)=D(D f)\left(x_{0}\right)(x)(y)=\left\langle y,\left(A^{*}+A\right) x\right\rangle
$$

we have that $D f$ is Fréchet differentiable at each $x_{0} \in X$. Thus

$$
D^{2} f: X \rightarrow \mathscr{B}\left(X, X^{*}\right)
$$

Because $D^{2} f\left(x_{0}\right)$ does not depend on x_{0}, it is Fréchet differentiable at each point in X, with $D^{3} f\left(x_{0}\right)=0$ for all $x_{0} \in X$. Here $D^{3} f: X \rightarrow \mathscr{B}\left(X, \mathscr{B}\left(X, X^{*}\right)\right)$.

6 Gâteaux derivatives

Let X and Y be normed spaces, let U be an open subset of X, let $f: U \rightarrow Y$ be a function, and let $x_{0} \in U$. If there is some $T \in \mathscr{B}(X, Y)$ such that for all $v \in X$ we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}=T v \tag{2}
\end{equation*}
$$

then we say that f is Gâteaux differentiable at x_{0} and call T the Gâteaux derivative of f at $x_{0} .{ }^{8}$ It is apparent that there is at most one $T \in \mathscr{B}(X, Y)$ that

[^4]satisfies (2) for all $v \in X$. We write $f^{\prime}\left(x_{0}\right)=T$. Thus, f^{\prime} is a map from the set of points in U at which f is Gâteaux differentiable to $\mathscr{B}(X, Y)$. If $V \subseteq U$ and f is Gâteaux differentiable at each element of V, we say that f is Gâteaux differentiable on V.

Example. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{4} x_{2}}{x_{1}^{6}+x_{2}^{3}}$ for $\left(x_{1}, x_{2}\right) \neq(0,0)$ and $f(0,0)=0$. For $v=\left(v_{1}, v_{2}\right) \in \mathbb{R}^{2}$ and $t \neq 0$,
$\frac{f(0+t v)-f(0)}{t}=\frac{f\left(t v_{1}, t v_{2}\right)}{t}=\left\{\begin{array}{ll}\frac{1}{t} \cdot \frac{t^{5} v_{1}^{4} v_{2}}{t^{6} v_{1}^{6}+t^{3} v_{2}^{3}} & v \neq(0,0) \\ 0 & v=(0,0)\end{array}= \begin{cases}\frac{t v_{1}^{4} v_{2}}{t^{3} v_{1}^{6}+v_{2}^{3}} & v \neq(0,0) \\ 0 & v=(0,0) .\end{cases}\right.$
Hence, for any $v \in \mathbb{R}^{2}$, we have $\frac{f(0+t v)-f(0)}{t} \rightarrow 0$ as $t \rightarrow 0$. Therefore, f is Gâteaux differentiable at $(0,0)$ and $f^{\prime}(0,0) v=0 \in \mathbb{R}$ for all $v \in \mathbb{R}^{2}$, i.e. $f^{\prime}(0,0)=0$. However, for $\left(x_{1}, x_{2}\right) \neq(0,0)$,

$$
f\left(x_{1}, x_{1}^{2}\right)=\frac{x_{1}^{6}}{x_{1}^{6}+x_{1}^{6}}=\frac{1}{2}
$$

from which it follows that f is not continuous at $(0,0)$. We stated in $\S 4$ that if a function is Fréchet differentiable at a point then it is continuous at that point, and so f is not Fréchet differentiable at $(0,0)$. Thus, a function that is Gâteaux differentiable at a point need not be Fréchet differentiable at that point.

We prove that being Fréchet differentiable at a point implies being Gâteaux differentiable at the point, and that in this case the Gâteaux derivative is equal to the Fréchet derivative.

Theorem 8. Suppose that X and Y are normed spaces, that U is an open subset of X, that $f \in Y^{U}$, and that $x_{0} \in U$. If f is Fréchet differentiable at x_{0}, then f is Gâteaux differentiable at x_{0} and $f^{\prime}\left(x_{0}\right)=D f\left(x_{0}\right)$.

Proof. Because f is Fréchet differentiable at x_{0}, there is some $r \in o(X, Y)$ for which

$$
f(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)+r\left(x-x_{0}\right), \quad x \in U
$$

For $v \in X$ and nonzero t small enough that $x_{0}+t v \in U$,
$\frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}=\frac{D f\left(x_{0}\right)\left(x_{0}+t v-x_{0}\right)+r\left(x_{0}+t v-x_{0}\right)}{t}=\frac{t D f\left(x_{0}\right) v+r(t v)}{t}$.
Writing $r(x)=\|x\| \alpha(x)$,

$$
\frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}=\frac{t D f\left(x_{0}\right)+\|t v\| \alpha(t v)}{t}=D f\left(x_{0}\right) v+\|v\| \alpha(t v)
$$

Hence,

$$
\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t v\right)-f\left(x_{0}\right)}{t}=D f\left(x_{0}\right) v
$$

This holds for all $v \in X$, and as $D f\left(x_{0}\right) \in \mathscr{B}(X, Y)$ we get that f is Gâteaux differentiable at x_{0} and that $f^{\prime}\left(x_{0}\right)=D f\left(x_{0}\right)$.

If X is a vector space and $u, v \in X$, let

$$
[u, v]=\{(1-t) u+t v: 0 \leq t \leq 1\},
$$

namely, the line segment joining u and v. The following is a mean value theorem for Gâteaux derivatives. ${ }^{9}$

Theorem 9 (Mean value theorem). Let X and Y be normed spaces, let U be an open subset of X, and let $f: U \rightarrow Y$ be Gâteaux differentiable on U. If $u, v \in U$ and $[u, v] \subset U$, then

$$
\|f(u)-f(v)\| \leq \sup _{w \in[u, v]}\left\|f^{\prime}(w)\right\| \cdot\|u-v\| .
$$

Proof. If $f(u)=f(v)$ then immediately the claim is true. Otherwise, $f(v)-$ $f(u) \neq 0$, and so by the Hahn-Banach extension theorem ${ }^{10}$ there is some $\psi \in Y^{*}$ satisfying $\psi(f(v)-f(u))=\|f(v)-f(u)\|$ and $\|\psi\|=1$. Define $h:[0,1] \rightarrow \mathbb{R}$ by

$$
h(t)=\langle f((1-t) u+t v), \psi\rangle .
$$

For $0<t<1$ and $\tau \neq 0$ satisfying $t+\tau \in[0,1]$, we have

$$
\begin{aligned}
\frac{h(t+\tau)-h(t)}{\tau} & =\frac{1}{\tau}\langle f((1-t-\tau) u+(t+\tau) v), \psi\rangle-\frac{1}{\tau}\langle f((1-t) u+t v), \psi\rangle \\
& =\left\langle\frac{f((1-t) u+t v+(v-u) \tau)-f((1-t) u+t v)}{\tau}, \psi\right\rangle .
\end{aligned}
$$

Because f is Gâteaux differentiable at $(1-t) u+t v$,

$$
\lim _{\tau \rightarrow 0} \frac{f((1-t) u+t v+(v-u) \tau)-f((1-t) u+t v)}{\tau}=f^{\prime}((1-t) u+t v)(v-u),
$$

so because ψ is continuous,

$$
\lim _{\tau \rightarrow 0} \frac{h(t+\tau)-h(t)}{\tau}=\left\langle f^{\prime}((1-t) u+t v)(v-u), \psi\right\rangle,
$$

which shows that h is differentiable at t and that

$$
h^{\prime}(t)=\left\langle f^{\prime}((1-t) u+t v)(v-u), \psi\right\rangle .
$$

$h:[0,1] \rightarrow \mathbb{R}$ is a composition of continuous functions so it is continuous. Applying the mean value theorem, there is some $\theta, 0<\theta<1$, for which

$$
h^{\prime}(\theta)=h(1)-h(0) .
$$

[^5]On the one hand,

$$
h^{\prime}(\theta)=\left\langle f^{\prime}((1-\theta) u+\theta v)(v-u), \psi\right\rangle
$$

On the other hand,

$$
h(1)-h(0)=\langle f(v), \psi\rangle-\langle f(u), \psi\rangle=\langle f(v)-f(u), \psi\rangle=\|f(v)-f(u)\|
$$

Therefore

$$
\begin{aligned}
\|f(v)-f(u)\| & =\left|\left\langle f^{\prime}((1-\theta) u+\theta v)(v-u), \psi\right\rangle\right| \\
& \leq\|\psi\|\left\|f^{\prime}((1-\theta) u+\theta v)(v-u)\right\| \\
& =\left\|f^{\prime}((1-\theta) u+\theta v)(v-u)\right\| \\
& \leq\left\|f^{\prime}((1-\theta) u+\theta v)\right\|\|v-u\| \\
& \leq \sup _{w \in[u, v]}\left\|f^{\prime}(w)\right\|\|v-u\|
\end{aligned}
$$

7 Antiderivatives

Suppose that X is a Banach space and that $f:[a, b] \rightarrow X$ be continuous. Define $F:[a, b] \rightarrow X$ by

$$
F(x)=\int_{a}^{x} f
$$

Let $x_{0} \in(a, b)$. For $x \in(a, b)$, we have

$$
F(x)-F\left(x_{0}\right)=\int_{a}^{x} f-\int_{a}^{x_{0}} f=\int_{x_{0}}^{x} f=f\left(x_{0}\right)\left(x-x_{0}\right)+\int_{x_{0}}^{x}\left(f-f\left(x_{0}\right)\right),
$$

from which it follows that F is Fréchet differentiable at x_{0}, and that

$$
D F\left(x_{0}\right)\left(x-x_{0}\right)=f\left(x_{0}\right)\left(x-x_{0}\right)
$$

If we identify $f\left(x_{0}\right) \in X$ with the map $x \mapsto f\left(x_{0}\right) x$, namely if we say that $X=\mathscr{B}(\mathbb{R}, X)$, then $D F\left(x_{0}\right)=f\left(x_{0}\right)$.

Let X be a normed space, let Y be a Banach space, let U be an open subset of X, and let $f \in C^{1}(U, Y)$. Suppose that $u, v \in U$ satisfy $[u, v] \subset U$. Write $I=(0,1)$ and define $\gamma: I \rightarrow U$ by $\gamma(t)=(1-t) u+t v$. We have

$$
D \gamma(t)=v-u, \quad t \in I
$$

and thus by Theorem 6,

$$
D(f \circ \gamma)(t)=D f(\gamma(t)) \circ D \gamma(t), \quad t \in I
$$

that is,

$$
D(f \circ \gamma)(t)=D f(\gamma(t)) \circ(v-u), \quad t \in I
$$

i.e.

$$
D(f \circ \gamma)(t)=D f(\gamma(t))(v-u), \quad t \in I
$$

If $t \in I$ and $t+h \in I$, then

$$
\begin{aligned}
D(f \circ \gamma)(t+h)-D(f \circ \gamma)(t) & =D f(\gamma(t+h))(v-u)-D f(\gamma(t))(v-u) \\
& =(D f(\gamma(t+h))-D f(\gamma(t)))(v-u),
\end{aligned}
$$

and hence

$$
\|D(f \circ \gamma)(t+h)-D(f \circ \gamma)(t)\| \leq\|D f(\gamma(t+h))-D f(\gamma(t))\|\|v-u\|
$$

Because $D f: U \rightarrow \mathscr{B}(X, Y)$ is continuous, it follows that

$$
\|D(f \circ \gamma)(t+h)-D(f \circ \gamma)(t)\| \rightarrow 0
$$

as $h \rightarrow 0$, i.e. that $D(f \circ \gamma)$ is continuous at t, and thus that

$$
D(f \circ \gamma): I \rightarrow \mathscr{B}(\mathbb{R}, Y)
$$

is continuous. If we identify $\mathscr{B}(\mathbb{R}, Y)$ with Y, then

$$
D(f \circ \gamma): I \rightarrow Y
$$

On the one hand,

$$
\int_{0}^{1} D(f \circ \gamma)=(f \circ \gamma)(1)-(f \circ \gamma)(0)=f(v)-f(u)
$$

On the other hand,

$$
\int_{0}^{1} D(f \circ \gamma)=\int_{0}^{1} D f(\gamma(t))(v-u) d t=\left(\int_{0}^{1} D f((1-t) u+t v) d t\right)(v-u)
$$

here,

$$
\int_{0}^{1} D f((1-t) u+t v) d t \in \mathscr{B}(X, Y)
$$

Therefore

$$
f(v)-f(u)=\left(\int_{0}^{1} D f((1-t) u+t v) d t\right)(v-u)
$$

[^0]: ${ }^{1}$ Jean-Paul Penot, Calculus Without Derivatives, p. 133, §2.4.
 ${ }^{2}$ Jean-Paul Penot, Calculus Without Derivatives, p. 134, Lemma 2.41.

[^1]: ${ }^{3}$ See Henri Cartan, Differential Calculus, p. 58, §5.1, and Jean Dieudonné, Foundations of Modern Analysis, enlarged and corrected printing, p. 179, Chapter VIII, §12.
 ${ }^{4}$ Henri Cartan, Differential Calculus, p. 36, §2.7.

[^2]: ${ }^{5}$ Jean-Paul Penot, Calculus Without Derivatives, p. 136, Lemma 2.46.
 ${ }^{6}$ Walter Rudin, Functional Analysis, second ed., p. 59, Corollary to Theorem 3.3.

[^3]: ${ }^{7}$ Jean-Paul Penot, Calculus Without Derivatives, p. 136, Theorem 2.47.

[^4]: ${ }^{8}$ Our definition of the Gâteaux derivative follows Jean-Paul Penot, Calculus Without Derivatives, p. 127, Definition 2.23.

[^5]: ${ }^{9}$ Antonio Ambrosetti and Giovanni Prodi, A Primer of Nonlinear Analysis, p. 13, Theorem 1.8.
 ${ }^{10}$ Walter Rudin, Functional Analysis, second ed., p. 59, Corollary.

