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1 Introduction

In this note all vector spaces are real. If X and Y are normed spaces, we
denote by B(X,Y ) the set of bounded linear maps X → Y , and write B(X) =
B(X,X). B(X,Y ) is a normed space with the operator norm.

2 Remainders

If X and Y are normed spaces, let o(X,Y ) be the set of all maps r : X → Y for
which there is some map α : X → Y satisfying:

• r(x) = ∥x∥α(x) for all x ∈ X,

• α(0) = 0,

• α is continuous at 0.

Following Penot,1 we call elements of o(X,Y ) remainders. It is immediate that
o(X,Y ) is a vector space.

If X and Y are normed spaces, if f : X → Y is a function, and if x0 ∈ X,
we say that f is stable at x0 if there is some ϵ > 0 and some c > 0 such that
∥x− x0∥ ≤ ϵ implies that ∥f(x− x0)∥ ≤ c ∥x− x0∥. If T : X → Y is a bounded
linear map, then ∥Tx∥ ≤ ∥T∥ ∥x∥ for all x ∈ X, and thus a bounded linear map
is stable at 0. The following lemma shows that the composition of a remainder
with a function that is stable at 0 is a remainder.2

Lemma 1. Let X,Y be normed spaces and let r ∈ o(X,Y ). If W is a normed
space and f : W → X is stable at 0, then r ◦ f ∈ o(W,Y ). If Z is a normed
space and g : Y → Z is stable at 0, then g ◦ r ∈ o(X,Z).

Proof. r ∈ o(X,Y ) means that there is some α : X → Y satisfying r(x) =
∥x∥α(x) for all x ∈ X, that takes the value 0 at 0, and that is continuous at

1Jean-Paul Penot, Calculus Without Derivatives, p. 133, §2.4.
2Jean-Paul Penot, Calculus Without Derivatives, p. 134, Lemma 2.41.
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0. As f is stable at 0, there is some ϵ > 0 and some c > 0 for which ∥w∥ ≤ ϵ
implies that ∥f(w)∥ ≤ c ∥w∥. Define β :W → Y by

β(w) =

{
∥f(w)∥
∥w∥ α(f(w)) w ̸= 0

0 w = 0,

for which we have

(r ◦ f)(w) = ∥w∥β(w), w ∈W.

If ∥w∥ ≤ ϵ, then ∥β(w)∥ ≤ c ∥α(f(w))∥. But f(w) → 0 as w → 0, and because
α is continuous at 0 we get that α(f(w)) → α(0) = 0 as w → 0. So the above
inequality gives us β(w) → 0 as w → 0. As β(0) = 0, the function β : W → Y
is continuous at 0, and therefore r ◦ f is remainder.

As g is stable at 0, there is some ϵ > 0 and some c > 0 for which ∥y∥ ≤ ϵ
implies that ∥g(y)∥ ≤ c ∥y∥. Define γ : X → Z by

γ(x) =

{
g(∥x∥α(x))

∥x∥ x ̸= 0

0 x = 0.

For all x ∈ X,
(g ◦ r)(x) = g(∥x∥α(x)) = ∥x∥ γ(x).

Since α(0) = 0 and α is continuous at 0, there is some δ > 0 such that ∥x∥ ≤ δ
implies that ∥α(x)∥ ≤ ϵ. Therefore, if ∥x∥ ≤ δ ∧ 1 then

∥g(∥x∥α(x))∥ ≤ c ∥x∥ ∥α(x)∥ ≤ c ∥x∥ ϵ,

and hence if ∥x∥ ≤ δ ∧ 1 then ∥γ(x)∥ ≤ cϵ. This shows that γ(x) → 0 as x→ 0,
and since γ(0) = 0 the function γ : X → Z is continuous at 0, showing that g ◦r
is a remainder.

If Y1, . . . , Yn are normed spaces where Yk has norm ∥·∥k, then ∥(y1, . . . , yn)∥ =
max1≤k≤n ∥yk∥k is a norm on

∏n
k=1 Yk, and one can prove that the topology

induced by this norm is the product topology.

Lemma 2. If X and Y1, . . . , Yn are normed spaces, then a function r : X →∏n
k=1 Yk is a remainder if and only if each of rk : X → Yk are remainders,

1 ≤ k ≤ n, where r(x) = (r1(x), . . . , rn(x)) for all x ∈ X.

Proof. Suppose that there is some function α : X →
∏n

k=1 Yk such that r(x) =
∥x∥α(x) for all x ∈ X. With α(x) = (α1(x), . . . , αn(x)), we have

rk(x) = ∥x∥αk(x), x ∈ X.

Because α(x) → 0 as x → 0, for each k we have αk(x) → 0 as x → 0, which
shows that rk is a remainder.

Suppose that each rk is a remainder. Thus, for each k there is a function
αk : X → Yk satisfying rk(x) = ∥x∥αk(x) for all x ∈ X and αk(x) → 0 as x→ 0.
Then the function α : X →

∏n
k=1 Yk defined by α(x) = (α1(x), . . . , αn(x))

satisfies r(x) = ∥x∥α(x). Because αk(x) → 0 as x → 0 for each of the finitely
many k, 1 ≤ k ≤ n, we have α(x) → 0 as x→ 0.
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3 Definition and uniqueness of Fréchet deriva-
tive

Suppose that X and Y are normed spaces, that U is an open subset of X, and
that x0 ∈ U . A function f : U → Y is said to be Fréchet differentiable at x0 if
there is some L ∈ B(X,Y ) and some r ∈ o(X,Y ) such that

f(x) = f(x0) + L(x− x0) + r(x− x0), x ∈ U. (1)

Suppose there are bounded linear maps L1, L2 and remainders r1, r2 that satisfy
the above. Writing r1(x) = ∥x∥α1(x) and r2(x) = ∥x∥α2(x) for all x ∈ X, we
have

L1(x−x0)+∥x− x0∥α1(x−x0) = L2(x−x0)+∥x− x0∥α2(x−x0), x ∈ U,

i.e.,

L1(x− x0)− L2(x− x0) = ∥x− x0∥ (α2(x− x0)− α1(x− x0)), x ∈ U.

For x ∈ X, there is some h > 0 such that for all |t| ≤ h we have x0 + tx ∈ U ,
and then

L1(tx)− L2(tx) = ∥tx∥ (α2(tx)− α1(tx)),

hence, for 0 < |t| ≤ h,

L1(x)− L2(x) = ∥x∥ (α2(tx)− α1(tx)).

But α2(tx) − α1(tx) → 0 as t → 0, which implies that L1(x) − L2(x) = 0.
As this is true for all x ∈ X, we have L1 = L2 and then r1 = r2. If f
is Fréchet differentiable at x0, the bounded linear map L in (1) is called the
Fréchet derivative of f at x0, and we define Df(x0) = L. Thus,

f(x) = f(x0) +Df(x0)(x− x0) + r(x− x0), x ∈ U.

If U0 is the set of those points in U at which f is Fréchet differentiable, then
Df : U0 → B(X,Y ).

Suppose that X and Y are normed spaces and that U is an open subset of
X. We denote by C1(U, Y ) the set of functions f : U → Y that are Fréchet
differentiable at each point in U and for which the function Df : U → B(X,Y )
is continuous. We say that an element of C1(U, Y ) is continuously differentiable.
We denote by C2(U, Y ) those elements f of C1(U, Y ) such that

Df ∈ C1(U,B(X,Y ));

that is, C2(U, Y ) are those f ∈ C1(U, Y ) such that the function Df : U →
B(X,Y ) is Fréchet differentiable at each point in U and such that the function

D(Df) : U → B(X,B(X,Y ))
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is continuous.3

The following theorem characterizes continuously differentiable functions
Rn → Rm.4

Theorem 3. Suppose that f : Rn → Rm is Fréchet differentiable at each point
in Rn, and write

f = (f1, . . . , fm).

f ∈ C1(Rn,Rm) if and only if for each 1 ≤ i ≤ m and 1 ≤ j ≤ n the function

∂fi
∂xj

: Rn → R

is continuous.

4 Properties of the Fréchet derivative

If f : X → Y is Fréchet differentiable at x0, then because a bounded linear
map is continuous and in particular continuous at 0, and because a remainder
is continuous at 0, we get that f is continuous at x0.

We now prove that Fréchet differentiation at a point is linear.

Lemma 4 (Linearity). Let X and Y be normed spaces, let U be an open subset
of X and let x0 ∈ U . If f1, f2 : U → Y are both Fréchet differentiable at x0 and
if α ∈ R, then αf1 + f2 is Fréchet differentiable at x0 and

D(αf1 + f2)(x0) = αDf1(x0) +Df2(x0).

Proof. There are remainders r1, r2 ∈ o(X,Y ) such that

f1(x) = f1(x0) +Df1(x0)(x− x0) + r1(x− x0), x ∈ U,

and
f2(x) = f2(x0) +Df2(x0)(x− x0) + r2(x− x0), x ∈ U.

Then for all x ∈ U ,

(αf1 + f2)(x)− (αf1 + f2)(x0) = αf1(x)− αf1(x0) + f2(x)− f2(x0)

= αDf1(x0)(x− x0) + αr1(x− x0)

+Df2(x0)(x− x0) + r2(x− x0)

= (αDf1(x0) +Df2(x0))(x− x0)

+(αr1 + r2)(x− x0),

and αr1 + r2 ∈ o(X,Y ).

3See Henri Cartan, Differential Calculus, p. 58, §5.1, and Jean Dieudonné, Foundations of
Modern Analysis, enlarged and corrected printing, p. 179, Chapter VIII, §12.

4Henri Cartan, Differential Calculus, p. 36, §2.7.
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The following lemma gives an alternate characterization of a function being
Fréchet differentiable at a point.5

Lemma 5. Suppose that X and Y are normed space, that U is an open subset
of X, and that x0 ∈ U . A function f : U → Y is Fréchet differentiable at x0 if
and only if there is some function F : U → B(X,Y ) that is continuous at x0
and for which

f(x)− f(x0) = F (x)(x− x0), x ∈ U.

Proof. Suppose that there is a function F : U → B(X,Y ) that is continuous
at x0 and that satisfies f(x) − f(x0) = F (x)(x − x0) for all x ∈ U . Then, for
x ∈ U ,

f(x)− f(x0) = F (x)(x− x0)− F (x0)(x− x0) + F (x0)(x− x0)

= F (x0)(x− x0) + r(x− x0),

where r : X → Y is defined by

r(x) =

{
(F (x+ x0)− F (x0))(x) x+ x0 ∈ U

0 x+ x0 ̸∈ U.

We further define

α(x) =


(F (x+x0)−F (x0))(x)

∥x∥ x+ x0 ∈ U, x ̸= 0

0 x+ x0 ̸∈ U

0 x = 0,

with which r(x) = ∥x∥α(x) for all x ∈ X. To prove that r is a remainder it
suffices to prove that α(x) → 0 as x → 0. Let ϵ > 0. That F : U → B(X,Y )
is continuous at x0 tells us that there is some δ > 0 for which ∥x∥ < δ implies
that ∥F (x+ x0)− F (x0)∥ < ϵ and hence

∥(F (x+ x0)− F (x0))(x)∥ ≤ ∥F (x+ x0)− F (x0)∥ ∥x∥ < ϵ ∥x∥ .

Therefore, if ∥x∥ < δ then ∥α(x)∥ < ϵ, which establishes that r is a remainder
and therefore that f is Fréchet differentiable at x0, with Fréchet derivative
Df(x0) = F (x0).

Suppose that f is Fréchet differentiable at x0: there is some r ∈ o(X,Y )
such that

f(x) = f(x0) +Df(x0)(x− x0) + r(x− x0), x ∈ U,

where Df(x0) ∈ B(X,Y ). As r is a remainder, there is some α : X → Y
satisfying r(x) = ∥x∥α(x) for all x ∈ X, and such that α(0) = 0 and α(x) → 0
as x → 0. For each x ∈ X, by the Hahn-Banach extension theorem6 there is
some λx ∈ X∗ such that λxx = ∥x∥ and |λxv| ≤ ∥v∥ for all v ∈ X. Thus,

r(x) = (λxx)α(x), x ∈ X.

5Jean-Paul Penot, Calculus Without Derivatives, p. 136, Lemma 2.46.
6Walter Rudin, Functional Analysis, second ed., p. 59, Corollary to Theorem 3.3.
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Define F : U → B(X,Y ) by

F (x) = Df(x0) + (λx−x0
)α(x− x0),

i.e. for x ∈ U and v ∈ X,

F (x)(v) = Df(x0)(v) + (λx−x0
v)α(x− x0) ∈ Y.

Then for x ∈ U ,

r(x− x0) = (λx−x0
(x− x0))α(x− x0) = F (x)(x− x0)−Df(x0)(x− x0),

and hence
f(x) = f(x0) + F (x)(x− x0), x ∈ U.

To complete the proof it suffices to prove that F is continuous at x0. But both
λ0 = 0 and α(0) = 0 so F (x0) = Df(x0), and for x ∈ U and v ∈ X,

∥(F (x)− F (x0))(v)∥ = ∥(λx−x0v)α(x− x0)∥
= |λx−x0v| ∥α(x− x0)∥
≤ ∥v∥ ∥α(x− x0)∥ ,

so ∥F (x)− F (x0)∥ ≤ ∥α(x− x0)∥. From this and the fact that α(0) = 0 and
α(x) → 0 as x→ 0 we get that F is continuous at x0, completing the proof.

We now prove the chain rule for Fréchet derivatives.7

Theorem 6 (Chain rule). Suppose that X,Y, Z are normed spaces and that
U and V are open subsets of X and Y respectively. If f : U → Y satisfies
f(U) ⊆ V and is Fréchet differentiable at x0 and if g : V → Z is Fréchet
differentiable at f(x0), then g ◦ f : U → Z is Fréchet differentiable at x0, and
its Fréchet derivative at x0 is

D(g ◦ f)(x0) = Dg(f(x0)) ◦Df(x0).

Proof. Write y0 = f(x0), L1 = Df(x0), and L2 = Dg(y0). Because f is Fréchet
differentiable at x0, there is some r1 ∈ o(X,Y ) such that

f(x) = f(x0) + L1(x− x0) + r1(x− x0), x ∈ U,

and because g is Fréchet differentiable at y0 there is some r2 ∈ o(Y, Z) such that

g(y) = g(y0) + L2(y − y0) + r2(y − y0), y ∈ V.

For all x ∈ U we have f(x) ∈ V , and using the above formulas,

g(f(x)) = g(y0) + L2(f(x)− y0) + r2(f(x)− y0)

= g(y0) + L2

(
L1(x− x0) + r1(x− x0)

)
+ r2

(
L1(x− x0) + r1(x− x0)

)
= g(y0) + L2(L1(x− x0)) + L2(r1(x− x0)) + r2

(
L1(x− x0) + r1(x− x0)

)
.

7Jean-Paul Penot, Calculus Without Derivatives, p. 136, Theorem 2.47.
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Define r3 : X → Z by r3(x) = r2(L1x + r1(x)), and fix any c > ∥L1∥. Writing
r1(x) = ∥x∥α1(x), the fact that α(0) = 0 and that α is continuous at 0 gives
us that there is some δ > 0 such that if ∥x∥ < δ then ∥α(x)∥ < c − ∥L1∥, and
hence if ∥x∥ < δ then ∥r1(x)∥ ≤ (c− ∥L1∥) ∥x∥. Then, ∥x∥ < δ implies that

∥L1x+ r1(x)∥ ≤ ∥L1x∥+ ∥r1(x)∥ ≤ ∥L1∥ ∥x∥+ (c− ∥L1∥) ∥x∥ = c ∥x∥ .

This shows that x 7→ L1x + r1(x) is stable at 0 and so by Lemma 1 that
r3 ∈ o(X,Z). Then, r : X → Z defined by r = L1 ◦ r1 + r3 is a sum of two
remainders and so is itself a remainder, and we have

g ◦ f(x) = g ◦ f(x0) + L2 ◦ L1(x− x0) + r(x− x0), x ∈ U.

But L1 ∈ B(X,Y ) and L2 ∈ B(Y,Z), so L2 ◦ L1 ∈ B(X,Z). This shows that
g ◦ f is Fréchet differentiable at x0 and that its Fréchet derivative at x0 is

L2 ◦ L1 = Dg(y0) ◦Df(x0) = Dg(f(x0)) ◦Df(x0).

The following is the product rule for Fréchet derivatives. By f1 · f2 we mean
the function x 7→ f1(x)f2(x).

Theorem 7 (Product rule). Suppose that X is a normed space, that U is an
open subset of X, that f1, f2 : U → R are functions, and that x0 ∈ U . If f1 and
f2 are both Fréchet differentiable at x0, then f1 · f2 is Fréchet differentiable at
x0, and its Fréchet derivative at x0 is

D(f1 · f2)(x0) = f2(x0)Df1(x0) + f1(x0)Df2(x0).

Proof. There are r1, r2 ∈ o(X,R) with which

f1(x) = f1(x0) +Df1(x0)(x− x0) + r1(x− x0), x ∈ U

and
f2(x) = f2(x0) +Df2(x0)(x− x0) + r2(x− x0), x ∈ U.

Multiplying the above two formulas,

f1(x)f2(x) = f1(x0)f2(x0) + f2(x0)Df1(x0)(x− x0) + f1(x0)Df2(x0)(x− x0)

+Df1(x0)(x− x0)Df2(x0)(x− x0) + r1(x− x0)r2(x− x0)

+f1(x0)r2(x− x0) + r2(x− x0)Df1(x0)(x− x0)

+f2(x0)r1(x− x0) + r1(x− x0)Df2(x0)(x− x0).

Define r : X → R by

r(x) = Df1(x0)xDf2(x0)x+ r1(x)r2(x) + f1(x0)r2(x) + r2(x)Df1(x0)x

+f2(x0)r1(x) + r1(x)Df2(x0)x,
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for which we have, for x ∈ U ,

f1(x)f2(x) = f1(x0)f2(x0)+f2(x0)Df1(x0)(x−x0)+f1(x0)Df2(x0)(x−x0)+r(x−x0).

Therefore, to prove the claim it suffices to prove that r ∈ o(X,R). Define

α : X → R by α(0) = 0 and α(x) = Df1(x0)xDf2(x0)x
∥x∥ for x ̸= 0. For x ̸= 0,

|α(x)| =
|Df1(x0)x||Df2(x0)x|

∥x∥

≤ ∥Df1(x0)∥ ∥x∥ ∥Df2(x0)∥ ∥x∥
∥x∥

= ∥Df1(x0)∥ ∥Df2(x0)∥ ∥x∥ .

Thus α(x) → 0 as x → 0, showing that the first term in the expression for r
belongs to o(X,R). Likewise, each of the other five terms in the expression for
r belongs to o(X,R), and hence r ∈ o(X,R), completing the proof.

5 Dual spaces

If X is a normed space, we denote by X∗ the set of bounded linear maps X → R,
i.e. X∗ = B(X,R). X∗ is itself a normed space with the operator norm. If X
is a normed space, the dual pairing ⟨·, ·⟩ : X ×X∗ → R is

⟨x, ψ⟩ = ψ(x), x ∈ X,ψ ∈ X∗.

If U is an open subset of X and if a function f : U → R is Fréchet differen-
tiable at x0 ∈ U , then Df(x0) is a bounded linear map X → R, and so belongs
to X∗. If U0 are those points in U at which f : U → R is Fréchet differentiable,
then

Df : U0 → X∗.

In the case that X is a Hilbert space with inner product ⟨·, ·⟩, the Riesz
representation theorem shows that R : X → X∗ defined by R(x)(y) = ⟨y, x⟩ is
an isometric isomorphism. If f : U → R is Fréchet differentiable at x0 ∈ U ,
then we define

∇f(x0) = R−1(Df(x0)),

and call ∇f(x0) ∈ X the gradient of f at x0. With U0 denoting the set of those
points in U at which f is Fréchet differentiable,

∇f : U0 → X.

(To define the gradient we merely used that R is a bijection, but to prove
properties of the gradient one uses that R is an isometric isomorphism.)

Example. Let X be a Hilbert space, A ∈ B(X), v ∈ X, and define

f(x) = ⟨Ax, x⟩ − ⟨x, v⟩ , x ∈ X.
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For all x0, x ∈ X we have, because the inner product of a real Hilbert space is
symmetric,

f(x)− f(x0) = ⟨Ax, x⟩ − ⟨x, v⟩ − ⟨Ax0, x0⟩+ ⟨x0, v⟩
= ⟨Ax, x⟩ − ⟨Ax0, x⟩+ ⟨Ax0, x⟩ − ⟨Ax0, x0⟩ − ⟨x− x0, v⟩
= ⟨A(x− x0), x⟩+ ⟨Ax0, x− x0⟩ − ⟨x− x0, v⟩
= ⟨x− x0, A

∗x⟩+ ⟨x− x0, Ax0⟩ − ⟨x− x0, v⟩
= ⟨x− x0, A

∗x+Ax0 − v⟩
= ⟨x− x0, A

∗x−A∗x0 +A∗x0 +Ax0 − v⟩
= ⟨x− x0, (A

∗ +A)x0 − v⟩+ ⟨x− x0, A
∗(x− x0)⟩ .

WithDf(x0)(x−x0) = ⟨x− x0, (A
∗ +A)x0 − v⟩, orDf(x0)(x) = ⟨x, (A∗ +A)x0 − v⟩,

we have that f is Fréchet differentiable at each x0 ∈ X. Furthermore, its gradi-
ent at x0 is

∇f(x0) = (A∗ +A)x0 − v.

For each x0 ∈ X, the function f : X → R is Fréchet differentiable at x0, and
thus

Df : X → X∗,

and we can ask at what points Df has a Fréchet derivative. For x0, x, y ∈ X,

(Df(x)−Df(x0))(y) = ⟨y, (A∗ +A)x− v⟩ − ⟨y, (A∗ +A)x0 − v⟩
= ⟨y, (A∗ +A)(x− x0)⟩ .

For D(Df)(x0)(x− x0)(y) = ⟨y, (A∗ +A)(x− x0)⟩, in other words with

D2f(x0)(x)(y) = D(Df)(x0)(x)(y) = ⟨y, (A∗ +A)x⟩ ,

we have that Df is Fréchet differentiable at each x0 ∈ X. Thus

D2f : X → B(X,X∗).

BecauseD2f(x0) does not depend on x0, it is Fréchet differentiable at each point
in X, with D3f(x0) = 0 for all x0 ∈ X. Here D3f : X → B(X,B(X,X∗)).

6 Gâteaux derivatives

Let X and Y be normed spaces, let U be an open subset of X, let f : U → Y
be a function, and let x0 ∈ U . If there is some T ∈ B(X,Y ) such that for all
v ∈ X we have

lim
t→0

f(x0 + tv)− f(x0)

t
= Tv, (2)

then we say that f is Gâteaux differentiable at x0 and call T the Gâteaux deriva-
tive of f at x0.

8 It is apparent that there is at most one T ∈ B(X,Y ) that

8Our definition of the Gâteaux derivative follows Jean-Paul Penot, Calculus Without
Derivatives, p. 127, Definition 2.23.
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satisfies (2) for all v ∈ X. We write f ′(x0) = T . Thus, f ′ is a map from the
set of points in U at which f is Gâteaux differentiable to B(X,Y ). If V ⊆ U
and f is Gâteaux differentiable at each element of V , we say that f is Gâteaux
differentiable on V .

Example. Define f : R2 → R by f(x1, x2) =
x4
1x2

x6
1+x3

2
for (x1, x2) ̸= (0, 0) and

f(0, 0) = 0. For v = (v1, v2) ∈ R2 and t ̸= 0,

f(0 + tv)− f(0)

t
=
f(tv1, tv2)

t
=

{
1
t ·

t5v4
1v2

t6v6
1+t3v3

2
v ̸= (0, 0)

0 v = (0, 0)
=

{
tv4

1v2
t3v6

1+v3
2

v ̸= (0, 0)

0 v = (0, 0).

Hence, for any v ∈ R2, we have f(0+tv)−f(0)
t → 0 as t → 0. Therefore, f

is Gâteaux differentiable at (0, 0) and f ′(0, 0)v = 0 ∈ R for all v ∈ R2, i.e.
f ′(0, 0) = 0. However, for (x1, x2) ̸= (0, 0),

f(x1, x
2
1) =

x61
x61 + x61

=
1

2
,

from which it follows that f is not continuous at (0, 0). We stated in §4 that if a
function is Fréchet differentiable at a point then it is continuous at that point,
and so f is not Fréchet differentiable at (0, 0). Thus, a function that is Gâteaux
differentiable at a point need not be Fréchet differentiable at that point.

We prove that being Fréchet differentiable at a point implies being Gâteaux
differentiable at the point, and that in this case the Gâteaux derivative is equal
to the Fréchet derivative.

Theorem 8. Suppose that X and Y are normed spaces, that U is an open
subset of X, that f ∈ Y U , and that x0 ∈ U . If f is Fréchet differentiable at x0,
then f is Gâteaux differentiable at x0 and f ′(x0) = Df(x0).

Proof. Because f is Fréchet differentiable at x0, there is some r ∈ o(X,Y ) for
which

f(x) = f(x0) +Df(x0)(x− x0) + r(x− x0), x ∈ U.

For v ∈ X and nonzero t small enough that x0 + tv ∈ U ,

f(x0 + tv)− f(x0)

t
=
Df(x0)(x0 + tv − x0) + r(x0 + tv − x0)

t
=
tDf(x0)v + r(tv)

t
.

Writing r(x) = ∥x∥α(x),

f(x0 + tv)− f(x0)

t
=
tDf(x0) + ∥tv∥α(tv)

t
= Df(x0)v + ∥v∥α(tv).

Hence,

lim
t→0

f(x0 + tv)− f(x0)

t
= Df(x0)v.

This holds for all v ∈ X, and as Df(x0) ∈ B(X,Y ) we get that f is Gâteaux
differentiable at x0 and that f ′(x0) = Df(x0).
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If X is a vector space and u, v ∈ X, let

[u, v] = {(1− t)u+ tv : 0 ≤ t ≤ 1},

namely, the line segment joining u and v. The following is a mean value theorem
for Gâteaux derivatives.9

Theorem 9 (Mean value theorem). Let X and Y be normed spaces, let U be
an open subset of X, and let f : U → Y be Gâteaux differentiable on U . If
u, v ∈ U and [u, v] ⊂ U , then

∥f(u)− f(v)∥ ≤ sup
w∈[u,v]

∥f ′(w)∥ · ∥u− v∥ .

Proof. If f(u) = f(v) then immediately the claim is true. Otherwise, f(v) −
f(u) ̸= 0, and so by the Hahn-Banach extension theorem10 there is some ψ ∈ Y ∗

satisfying ψ(f(v) − f(u)) = ∥f(v)− f(u)∥ and ∥ψ∥ = 1. Define h : [0, 1] → R
by

h(t) = ⟨f((1− t)u+ tv), ψ⟩ .

For 0 < t < 1 and τ ̸= 0 satisfying t+ τ ∈ [0, 1], we have

h(t+ τ)− h(t)

τ
=

1

τ
⟨f((1− t− τ)u+ (t+ τ)v), ψ⟩ − 1

τ
⟨f((1− t)u+ tv), ψ⟩

=

〈
f((1− t)u+ tv + (v − u)τ)− f((1− t)u+ tv)

τ
, ψ

〉
.

Because f is Gâteaux differentiable at (1− t)u+ tv,

lim
τ→0

f((1− t)u+ tv + (v − u)τ)− f((1− t)u+ tv)

τ
= f ′((1− t)u+ tv)(v − u),

so because ψ is continuous,

lim
τ→0

h(t+ τ)− h(t)

τ
= ⟨f ′((1− t)u+ tv)(v − u), ψ⟩ ,

which shows that h is differentiable at t and that

h′(t) = ⟨f ′((1− t)u+ tv)(v − u), ψ⟩ .

h : [0, 1] → R is a composition of continuous functions so it is continuous.
Applying the mean value theorem, there is some θ, 0 < θ < 1, for which

h′(θ) = h(1)− h(0).

9Antonio Ambrosetti and Giovanni Prodi, A Primer of Nonlinear Analysis, p. 13, Theorem
1.8.

10Walter Rudin, Functional Analysis, second ed., p. 59, Corollary.
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On the one hand,

h′(θ) = ⟨f ′((1− θ)u+ θv)(v − u), ψ⟩ .

On the other hand,

h(1)− h(0) = ⟨f(v), ψ⟩ − ⟨f(u), ψ⟩ = ⟨f(v)− f(u), ψ⟩ = ∥f(v)− f(u)∥ .

Therefore

∥f(v)− f(u)∥ = | ⟨f ′((1− θ)u+ θv)(v − u), ψ⟩ |
≤ ∥ψ∥ ∥f ′((1− θ)u+ θv)(v − u)∥
= ∥f ′((1− θ)u+ θv)(v − u)∥
≤ ∥f ′((1− θ)u+ θv)∥ ∥v − u∥
≤ sup

w∈[u,v]

∥f ′(w)∥ ∥v − u∥ .

7 Antiderivatives

Suppose that X is a Banach space and that f : [a, b] → X be continuous. Define
F : [a, b] → X by

F (x) =

∫ x

a

f.

Let x0 ∈ (a, b). For x ∈ (a, b), we have

F (x)− F (x0) =

∫ x

a

f −
∫ x0

a

f =

∫ x

x0

f = f(x0)(x− x0) +

∫ x

x0

(f − f(x0)),

from which it follows that F is Fréchet differentiable at x0, and that

DF (x0)(x− x0) = f(x0)(x− x0).

If we identify f(x0) ∈ X with the map x 7→ f(x0)x, namely if we say that
X = B(R, X), then DF (x0) = f(x0).

Let X be a normed space, let Y be a Banach space, let U be an open subset
of X, and let f ∈ C1(U, Y ). Suppose that u, v ∈ U satisfy [u, v] ⊂ U . Write
I = (0, 1) and define γ : I → U by γ(t) = (1− t)u+ tv. We have

Dγ(t) = v − u, t ∈ I,

and thus by Theorem 6,

D(f ◦ γ)(t) = Df(γ(t)) ◦Dγ(t), t ∈ I,

that is,
D(f ◦ γ)(t) = Df(γ(t)) ◦ (v − u), t ∈ I,
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i.e.
D(f ◦ γ)(t) = Df(γ(t))(v − u), t ∈ I.

If t ∈ I and t+ h ∈ I, then

D(f ◦ γ)(t+ h)−D(f ◦ γ)(t) = Df(γ(t+ h))(v − u)−Df(γ(t))(v − u)

= (Df(γ(t+ h))−Df(γ(t))) (v − u),

and hence

∥D(f ◦ γ)(t+ h)−D(f ◦ γ)(t)∥ ≤ ∥Df(γ(t+ h))−Df(γ(t))∥ ∥v − u∥ .

Because Df : U → B(X,Y ) is continuous, it follows that

∥D(f ◦ γ)(t+ h)−D(f ◦ γ)(t)∥ → 0

as h→ 0, i.e. that D(f ◦ γ) is continuous at t, and thus that

D(f ◦ γ) : I → B(R, Y )

is continuous. If we identify B(R, Y ) with Y , then

D(f ◦ γ) : I → Y.

On the one hand,∫ 1

0

D(f ◦ γ) = (f ◦ γ)(1)− (f ◦ γ)(0) = f(v)− f(u).

On the other hand,∫ 1

0

D(f ◦ γ) =
∫ 1

0

Df(γ(t))(v − u)dt =

(∫ 1

0

Df((1− t)u+ tv)dt

)
(v − u);

here, ∫ 1

0

Df((1− t)u+ tv)dt ∈ B(X,Y ).

Therefore

f(v)− f(u) =

(∫ 1

0

Df((1− t)u+ tv)dt

)
(v − u).
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