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1 Continuity equation

Let Ω be a domain in Rn and let ρ ∈ C∞(Ω × R); perhaps later we will care
about functions that are in larger spaces, and to justify making conclusions
about those we will have to check that what we have said here applies to them.

Let U be a Lipschitz domain in Ω. Thinking of ρ as a density, the amount
of stuff in U at time t is ∫

U

ρ(x, t)dx.

Let q ∈ C∞(Ω × R) and F ∈ C∞(Ω × R,Rn). We think about q(x, t) as the
rate at which new stuff appears at point x at time t, and F as the flux of the
stuff. A change in the total amount of stuff in U occurs from stuff appearing
inside U and from stuff going through the boundary of U . We formalize this as
the statement

d

dt

∫
U

ρ(x, t)dx =

∫
U

q(x, t)dx−
∫
∂U

F (s, t) ·N(s)ds,

where N(s) is the outward pointing unit normal to the surface ∂U at the point
s ∈ ∂U . Using the divergence theorem we get∫

∂U

F (s, t) ·N(s)ds =

∫
U

(divF )(x, t)dx,

and hence∫
U

(∂tρ)(x, t) =
d

dt

∫
U

ρ(x, t)dx =

∫
U

(q(x, t)− (divF )(x, t))dx,

or, ∫
U

(∂tρ− q + divF )(x, t)dx.

Because this is true for any Lipschitz domain U in Ω, it follows that the integrand
is 0: for all x ∈ Ω and t ∈ R, we have

(∂tρ− q + divF )(x, t) = 0,
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i.e.
∂tρ+ divF = q.

This is called a continuity equation.
If ρ(x, t) denotes the density of stuff at the point x at time t and u denotes

the velocity of the stuff at the point x and time t, then the flux F (in other
words, the momentum), is F = ρu. If there is no stuff spontaneously appearing,
but rather stuff only moves around, then q = 0, and so

∂tρ+ div (ρu) = 0. (1)

One can describe the statement that stuff is not spontaneously appearing as
conservation of mass, and hence (1) can be thought of as a consequence of
conservation of mass.

2 Momentum

The integral
∫
U
(ρu)(x, t)dx is the total amount of momentum of the stuff at

points in U at time t. We postulate that there is a function p ∈ C∞(Ω,R),
which we call pressure, such that the rate of change of the total amount of
momentum over a set at time t is equal to the flow of momentum from outside
to inside the set at time t plus the total amount of inward directed pressure over
the boundary of the set at time t, which here means

d

dt

∫
U

(ρu)(x, t)dx = −
∫
∂U

(ρu)(s, t)u(s, t) ·N(s)ds−
∫
∂U

p(s, t)N(s)ds,

where N(s) is the outward pointing unit normal to the surface ∂U at s ∈ ∂U .
Using the divergence theorem,

d

dt

∫
U

(ρu)(x, t)dx = −
∫
U

div (ρu⊗ u)(x, t)−
∫
U

(∇p)(x, t)dx.

Combined with
d

dt

∫
U

(ρu)(x, t)dx =

∫
U

∂t(ρu)(x, t)dx,

this gives ∫
U

(∂t(ρu) + div (ρu⊗ u) +∇p)(x, t)dx.

Because this is true for any Lipschitz domain U in Ω, we obtain

(∂t(ρu) + div (ρu⊗ u) +∇p)(x, t) = 0

for all x ∈ Ω and t ∈ R, or

∂t(ρu) + div (ρu⊗ u) +∇p = 0. (2)
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To state that the stuff we are talking about is incompressible means that ρ
is constant. For the rest of this note, unless we state otherwise we take ρ to be
a nonzero constant, with which equation (1) becomes

div (u) = 0, (3)

and (2) becomes

∂tu+ div (u⊗ u) +
1

ρ
∇p = 0. (4)

The two equations (3) and (4) are called the Euler equations for an incompress-
ible fluid.

Taking the divergence of (4) yields

∂tdiv (u) + div (div (u⊗ u)) +
1

ρ
div (∇p) = 0.

Using (3) and writing ∆p = div (∇p),

div (div (u⊗ u)) +
1

ρ
∆p = 0. (5)

As
div (u⊗ u) = ∂j(uiuj)ei,

we have, using (3),

div (div (u⊗ u)) = ∂i∂j(uiuj)

= ∂i((∂jui)uj + ui∂juj)

= ∂i((∂jui)uj + uidiv (u))

= ∂i((∂jui)uj)

= (∂i∂jui)uj + (∂jui)∂iuj

= (∂j(div (u)))uj + (∂jui)∂iuj

= (∂jui)∂iuj .

Therefore, using this with (5) we get

−∆p = ρ(∂jui)∂iuj . (6)

The use of this equation is to give us more information about the pressure p.
Furthermore, with u = uiei and writing

∇u = (∂ju)⊗ ej = (∂j(uiei))⊗ ej = ∂juiei ⊗ ej ,

the contraction of the tensor ∇u with itself is

(∇u)(∇u) = (∂juiei ⊗ ej)(∂lukek ⊗ el)

= (∂jui)(∂luk)(ei ⊗ ej)(ek ⊗ el)

= (∂jui)(∂luk)δj,kei ⊗ el

= (∂jui)(∂luj)ei ⊗ el,
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for which
Tr ((∇u)(∇u)) = (∂jui)(∂iuj).

With this, equation (6) becomes

−∆p = ρTr ((∇u)(∇u)).

As

div (u⊗ u) = ∂j(uiuj)ei = (∂jui)ujei + ui∂jujei = (∂jui)ujei + uidiv (u)ei,

using (3) we have
div (u⊗ u) = (∂jui)ujei,

and hence it follows from (3) that

div (u⊗ u) = u · ∇u. (7)

This expression for div (u ⊗ u) may be easier to work with than the original
expression.

3 Energy

If v = viei is a vector field, we write

∇v = (∂jv)⊗ ej = (∂jvi)ei ⊗ ej .

Then,
v · ∇v = (vkek) · ((∂jvi)ei ⊗ ej) = vj∂jviei = vj∂jv.

If u (velocity of stuff) and p (pressure of stuff) satisfy (3) and (4), then
applying u· to both sides of (4) we get

u · (∂tu) + u · div (u⊗ u) +
1

ρ
u · ∇p = 0. (8)

First,

∂t(u · u) = ∂t(uiui) = (∂tui)ui + ui(∂tui) = 2ui(∂tui) = 2u · (∂tu).

Second,
div (u⊗ u) = ∂j(uiuj)ei

so
u · div (u⊗ u) = ui∂j(uiuj) = ui(∂jui)uj + uiui∂juj ;

but

div ((u · u)u) = div (uiuiujej) = ∂j(uiuiuj) = 2ui(∂jui)uj + uiui∂juj ,

hence
div ((u · u)u) = 2u · div (u⊗ u)− u · udiv (u),
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and using (3) this is

div ((u · u)u) = 2u · div (u⊗ u).

Third,
div (pu) = (∇p) · u+ pdiv (u),

and using (3) this is
div (pu) = (∇p) · u.

Putting these three results into (8) gives

1

2
∂t(u · u) + 1

2
div ((u · u)u) + 1

ρ
div (pu) = 0,

or

∂t

(
1

2
ρu · u

)
+ div

(
1

2
ρ(u · u)u+ pu

)
= 0. (9)

We define

E =
1

2
ρu · u.

If ρ is thought of as mass density, with units of kg/m3, and u is thought of as the
velocity of stuff, with units of m/s, then E has units of kgm−1 s−2 = J/m3. We
choose to think of E defined this way as energy density; we say choose because
although E has the right units to be energy density, any multiple would have
the same units, and it is not apparent from what we have said so far why we
care about 1

2ρu · u rather than some other multiple of ρu · u. Writing equation
(9) using E gives

∂tE + div (Eu+ pu) = 0,

which is thus a statement about the rate of change of energy density. We call
E+p
ρ the total specific enthalpy of the stuff. To say that a quantity is specific

means that it expresses some quantity per kg, and the dimensions of enthalpy
are J.

4 Vorticity

In this section, unless we say otherwise we take n = 3. For vector fields v, w,

∇(v · w) = v · ∇w + w · ∇v + v × curlw + w × curl v.

Using this identity v = u and w = u gives

u · ∇u = u× curlu− 1

2
∇(u · u),

and therefore (7) can be written as

div (u⊗ u) =
1

2
∇(u · u)− u× curlu. (10)
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Taking the curl of (4) yields

∂tcurlu+ curl div (u⊗ u) = 0;

we used the fact that the curl of the gradient of any scalar field is 0 and so
curl∇p = 0. Using (10), this becomes

∂tcurl (u) + curl

(
1

2
∇(u · u)− u× curlu

)
= 0,

and as the curl of the gradient of a scalar field is 0, this is

∂tcurlu = curl (u× curlu).

For vector fields v, w,

curl (v × w) = vdivw − wdiv v + (∇v)(w)− (∇w)(v),

and with v = u and w = curlu we obtain

∂tcurlu = udiv curlu− curl (u)div u+ (∇u)(curlu)− (∇curlu)(u).

Because the divergence of the curl of a vector field is 0 and because div u = 0
by (3), this becomes

∂tcurlu = (∇u)(curlu)− (∇curlu)(u).

We call ω = curl (u) the vorticity of the stuff, and with this notation the above
equation can be written as

∂tω = (∇u)(ω)− (∇ω)(u). (11)

5 Material time derivative

One often deals with expressions like ∂tω + u · ∇ω, and we write

D

Dt
= ∂t + u · ∇,

and call D
Dt the material time derivative; it depends on the velocity u of the

stuff. With this notation, the equation (11) is

Dω

Dt
= ω · ∇u.

Using (7) (which itself supposes (3)), we can write (4) using the material time
derivative as

Du

Dt
+∇p = 0.
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6 Irrotational velocity fields

In this section unless we say otherwise we take n = 3 and we suppose that
curlu = 0, which we describe as u being irrotational. We suppose also in this
section that Ω is simply connected, which together with curlu = 0 implies that
there is some ϕ ∈ C∞(Ω× R) for which

u(x, t) = (∇ϕ)(x, t)

for all x ∈ Ω and for all t ∈ R; cf. the Helmholtz decomposition of a vector field
in R3. We call ϕ a potential function for u. Combining (4), (7), and u = ∇ϕ,
we obtain

∂t∇ϕ+ (∇ϕ) · ∇∇ϕ+
1

ρ
∇p = 0. (12)

We have

(∇ϕ) · ∇∇ϕ = (∂iϕei) · ∇(∂kϕek)

= (∂iϕei) · (∂j∂kϕek ⊗ ej)

= (∂iϕ)∂i∂kϕek

=
1

2
∂k((∂iϕ)(∂iϕ))ek

=
1

2
∂k(∇ϕ · ∇ϕ)ek

=
1

2
∇(∇ϕ · ∇ϕ),

with which (12) becomes

∂t∇ϕ+
1

2
∇(∇ϕ · ∇ϕ) +

1

ρ
∇p = 0,

or

∇
(
∂tϕ+

1

2
∇ϕ · ∇ϕ+

1

ρ
p

)
= 0.

Then, defining P to be

P = ∂tϕ+
1

2
∇ϕ · ∇ϕ+

1

ρ
p,

we have that P depends only on time. We call P the total pressure, and the
statement that the total pressure depends only on time if the velocity u is
irrotational is called Bernoulli’s principle.

Furthermore, combining (3) with u = ∇ϕ gives

∆ϕ = 0,

i.e., for each t ∈ R, x 7→ ϕ(x, t) is a harmonic function on Ω.
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7 Euler equations in one dimension

In this section we take n = 1 and do not suppose that the pressure ρ is constant.
Since we do not take ρ to be constant, we will use (1), which tells us that

∂tρ+ div (ρu) = 0,

and (2), which tells us that

∂t(ρu) + div (ρu⊗ u) +∇p = 0.

As n = 1 here, we can write these two equations as

∂tρ+ ∂x(ρu) = 0 (13)

and
∂t(ρu) + ∂x(ρu

2) + ∂xp = 0. (14)

We suppose, giving no justification, that there are some constant K and γ for
which p = Kργ . With this assumption, equation (14) becomes

∂t(ρu) + ∂x(ρu
2) + γ

p

ρ
∂xρ = 0. (15)

We write ρ = ρ0 + ρ1 where ρ0 is a constant, and we also write u = u0 + u1

where u0 is a constant. With these definitions, the equation (13) becomes

∂t(ρ0 + ρ1) + ∂x(ρ0u0 + ρ0u1 + ρ1u0 + ρ1u1) = 0,

i.e.
∂tρ1 + ρ0∂xu1 + u0∂xρ1 + ∂x(ρ1u1) = 0.

Supposing that the last term is negligible, an approximation to the above equa-
tion is

∂tρ1 + ρ0∂xu1 + u0∂xρ1 = 0. (16)

Furthermore, (15) becomes

∂t(ρ0u0 + ρ0u1 + ρ1u0 + ρ1u1)

+ ∂x(ρ0u
2
0 + 2ρ0u0u1 + ρ0u

2
1 + ρ1u

2
0 + 2ρ1u0u1 + ρ0u

2
1)

+ γ
p

ρ0 + ρ1
∂x(ρ0 + ρ1)

=0.

Using that ρ0 and u0 are constant and supposing that ∂x(ρ1u1) and ∂x(u
2
1) are

negligible gives us the approximation

ρ0∂tu1 + u0∂tρ1 + 2ρ0u0∂xu1 + u2
0∂xρ1 + γ

p

ρ0 + ρ1
∂xρ1.
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Expressing 1
ρ0+ρ1

as a geometric series in powers of ρ1

ρ0
and supposing that the

sum of all the nonconstant terms is negligible, and approximating p = Kργ as
p0 = Kργ0 gives us the approximation

ρ0∂tu1 + u0∂tρ1 + 2ρ0u0∂xu1 + u2
0∂xρ1 + γ

p0
ρ0

∂xρ1 = 0.

Combining this equation with (16) multiplied by u0 yields

ρ0∂tu1 + ρ0u0∂xu1 + γ
p0
ρ0

∂xρ1 = 0.

We define Dt = ∂t + u0∂x, with which we can write the above equation as

ρ0Dtu1 + γ
p0
ρ0

∂xρ1 = 0, (17)

and we can write (16) as
Dtρ1 + ρ0∂xu1 = 0. (18)

Applying Dt to (18) gives

D2
t ρ1 + ρ0∂xDtu1 = 0,

and then using (17) this becomes

D2
t ρ1 + ∂x

(
−γ

p0
ρ0

∂xρ1

)
= 0,

or
D2

t ρ1 − γ
p0
ρ0

∂2
xρ1 = 0,

which is a wave equation satisfied by ρ1.
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