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1 Categories

If X is a set, by a partial order on X we mean a binary relation ≤ on X that is
reflexive, antisymmetric, and transitive, and we call (X,≤) a poset. If (X,≤)
is a poset, we define it to be a category whose objects are the elements of X,
and for x, y ∈ X,

Hom(x, y) =

{
{(x, y)} x ≤ y

∅ ¬(x ≤ y).

In particular, idx = (x, x).
Let U : Z → R be the inclusion map. If (j, k) ∈ Hom(j, k), define U(j, k) =

(Uj, Uk) ∈ Hom(Uj, Uk).

U idj = U(j, j) = (Uj, Uj) = idUj .

If (j, k) ∈ Hom(j, k) and (k, l) ∈ Hom(k, l), then (k, l) ◦ (j, k) = (j, l) and

U(k, l) ◦ U(j, k) = (Uk,Ul) ◦ (Uj, Uk) = (Uj, Ul) = U(j, l) = U((j, l) ◦ (j, k)).

This shows that U : (Z,≤) → (R,≤) is a functor.

2 Galois connections

If (A,≤) and (B,≤) are posets, a function G : A → B is said to be order-
preserving if a ≤ a′ implies G(a) ≤ G(a′). A Galois connection from A to
B is an order-preserving function G : A → B and an order-preserving function
H : B → A such that

G(a) ≤ b if and only if a ≤ H(b), a ∈ A, b ∈ B.

We say that G is the left-adjoint of H and that H is the right-adjoint of G.
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Let I : Z → R be the inclusion map. Define F : R → Z by F (x) = ⌊x⌋. For
n ∈ Z and x ∈ R, suppose I(n) ≤ x. Then F (I(n)) ≤ F (x). But F (I(n)) = n,
so n ≤ F (x). Suppose n ≤ F (x). Then I(n) ≤ I(F (x)) ≤ x. Therefore
F : R → Z, F (x) = ⌊x⌋ is the right-adjoint of I : Z → R:1

I(n) ≤ x ⇐⇒ n ≤ F (x), n ∈ Z, x ∈ R.

Define C : R → Z by C(x) = ⌈x⌉. For n ∈ Z and x ∈ R, suppose C(x) ≤ n.
Then I(C(x)) ≤ I(n). But I(C(x)) ≥ x, so x ≤ I(n). Suppose x ≤ I(n).
Then C(x) ≤ C(I(n)). But C(I(n)) = n, so C(x) ≤ n. Therefore C : R → Z,
C(x) = ⌈x⌉ is the left-adjoint of I : Z → R:

C(x) ≤ n ⇐⇒ x ≤ I(n), x ∈ R, n ∈ Z.

Lemma 1. For x ≥ 0,
⌊
√
⌊x⌋⌋ = ⌊

√
x⌋.

Proof. For k ∈ Z≥0 and y ∈ R≥0,

k ≤ ⌊
√
⌊y⌋⌋ ⇐⇒ I(k) ≤

√
⌊y⌋

⇐⇒ k2 ≤ ⌊y⌋
⇐⇒ k2 ≤ y

⇐⇒ k ≤ √
y

⇐⇒ k ≤ ⌊√y⌋.

Lemma 2. If x ∈ R and n ∈ Z≥1, then⌊
⌊x⌋
n

⌋
=

⌊x
n

⌋
.

Proof. For k ∈ Z,

k ≤ F (I(F (x))/I(n)) ⇐⇒ I(k) ≤ I(F (x))/I(n)

⇐⇒ I(k)I(n) ≤ I(F (x))

⇐⇒ I(kn) ≤ I(F (x))

⇐⇒ kn ≤ F (x)

⇐⇒ I(kn) ≤ x

⇐⇒ I(k) ≤ x/I(n)

⇐⇒ k ≤ F (x/I(n)).

This means that F (I(F (x))/I(n)) = F (x/I(n)).
1See Roland Backhouse, Galois Connections and Fixed Point Calculus, http://www.cs.

nott.ac.uk/~psarb2/G53PAL/FPandGC.pdf, p. 14; Samson Abramsky and Nikos Tzevelekos,
Introduction to Categories and Categorical Logic, http://arxiv.org/abs/1102.1313, p. 44,
§1.5.1.
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Lemma 3. If n ∈ Z≥1 and m ∈ Z, then⌈m
n

⌉
=

⌊
m+ n− 1

n

⌋
.

Proof. For k ∈ Z,

k ≤ F (I(m+ n− 1)/I(n)) ⇐⇒ I(k) ≤ I(m+ n− 1)/I(n)

⇐⇒ I(k)I(n) ≤ I(m+ n− 1)

⇐⇒ kn ≤ m+ n− 1

⇐⇒ kn− n+ 1 ≤ m

⇐⇒ kn− n < m

⇐⇒ I(k − 1) < I(m)/I(n)

⇐⇒ k − 1 < C(I(m)/I(n))

⇐⇒ k ≤ C(I(m)/I(n)).

This means
F (I(m+ n− 1)/I(n)) = C(I(m)/I(n)).

3 The Euclidean algorithm and continued frac-
tions

Let a, b ∈ Z≥1, a > b. Let
v0 = a, v1 = b.

Let
a1 = ⌊v0/v1⌋, v2 = v0 − a1v1.

For m ≥ 2, if vm ̸= 0 then let

am = ⌊vm−1/vm⌋, vm+1 = vm−1 − amvm.

Then 0 ≤ vm+1 < vm.2

For example, let a = 83, b = 14. Then

v0 = 83, v1 = 14.

Then
a1 = ⌊83/14⌋ = 5, v2 = 83− 5 · 14 = 13.

Then

a2 = ⌊v1/v2⌋ = 14/13⌋ = 1, v3 = v1 − a2v2 = 14− 1 · 13 = 1.

2See Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 1,
Chapter 1.
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Then

a3 = ⌊v2/v3⌋ = ⌊13/1⌋ = 13, v4 = v2 − a3v3 = 13− 13 · 1 = 0.

As v3 = 1 and v4 = 0,
gcd(83, 14) = 1.

Written as a continued fraction, we get

14

83
= [0; 5, 1, 13].

For example, let a = 168, b = 43. Then

v0 = 168, v1 = 43.

Then
a1 = ⌊168/43⌋ = 3, v2 = v0 − a1v1 = 168− 3 · 43 = 39.

Then
a2 = ⌊43/39⌋ = 1, v3 = v1 − a2v2 = 43− 1 · 39 = 4.

Then

a3 = ⌊v2/v3⌋ = ⌊39/4⌋ = 9, v4 = v2 − a3v3 = 39− 9 · 4 = 3.

Then
a4 = ⌊v3/v4⌋ = ⌊4/3⌋ = 1, v5 = v3 − a4v4 = 4− 1 · 3 = 1.

Then
a5 = ⌊v4/v5⌋ = ⌊3/1⌋ = 3, v6 = v4 − a5v5 = 3− 3 · 1 = 0.

As v5 = 1 and v6 = 0,
gcd(168, 43) = 1.

Written as a continued fraction, we get

43

168
= [0; 3, 1, 9, 1, 3].

For example, let a = 1463 and b = 84. Then

v0 = 1463, v1 = 84.

Then
a1 = ⌊1463/84⌋ = 17, v2 = 1463− 17 · 84 = 35.

Then
a2 = ⌊84/35⌋ = 2, v3 = 84− 2 · 35 = 14.

Then
a3 = ⌊35/14⌋ = 2, v4 = 35− 2 · 14 = 7.
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Then
a4 = ⌊14/7⌋2, v5 = 14− 2 · 7 = 0.

As v4 = 7 and v5 = 0,
gcd(1463, 84) = 7.

Written as a continued fraction, we get

84

1463
= [0; 17, 2, 2, 2].
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