The inclusion map from the integers to the reals and universal properties of the floor and ceiling functions

Jordan Bell

April 29, 2016

1 Categories

If X is a set, by a partial order on X we mean a binary relation \leq on X that is reflexive, antisymmetric, and transitive, and we call (X, \leq) a poset. If (X, \leq) is a poset, we define it to be a category whose objects are the elements of X, and for $x, y \in X$,

$$
\operatorname{Hom}(x, y)= \begin{cases}\{(x, y)\} & x \leq y \\ \emptyset & \neg(x \leq y) .\end{cases}
$$

In particular, $\mathrm{id}_{x}=(x, x)$.
Let $U: \mathbb{Z} \rightarrow \mathbb{R}$ be the inclusion map. If $(j, k) \in \operatorname{Hom}(j, k)$, define $U(j, k)=$ $(U j, U k) \in \operatorname{Hom}(U j, U k)$.

$$
\operatorname{Uid}_{j}=U(j, j)=(U j, U j)=\operatorname{id}_{U j} .
$$

If $(j, k) \in \operatorname{Hom}(j, k)$ and $(k, l) \in \operatorname{Hom}(k, l)$, then $(k, l) \circ(j, k)=(j, l)$ and

$$
U(k, l) \circ U(j, k)=(U k, U l) \circ(U j, U k)=(U j, U l)=U(j, l)=U((j, l) \circ(j, k)) .
$$

This shows that $U:(\mathbb{Z}, \leq) \rightarrow(\mathbb{R}, \leq)$ is a functor.

2 Galois connections

If (A, \leq) and (B, \leq) are posets, a function $G: A \rightarrow B$ is said to be orderpreserving if $a \leq a^{\prime}$ implies $G(a) \leq G\left(a^{\prime}\right)$. A Galois connection from A to B is an order-preserving function $G: A \rightarrow B$ and an order-preserving function $H: B \rightarrow A$ such that

$$
G(a) \leq b \text { if and only if } a \leq H(b), \quad a \in A, \quad b \in B .
$$

We say that G is the left-adjoint of H and that H is the right-adjoint of G.

Let $I: \mathbb{Z} \rightarrow \mathbb{R}$ be the inclusion map. Define $F: \mathbb{R} \rightarrow \mathbb{Z}$ by $F(x)=\lfloor x\rfloor$. For $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, suppose $I(n) \leq x$. Then $F(I(n)) \leq F(x)$. But $F(I(n))=n$, so $n \leq F(x)$. Suppose $n \leq F(x)$. Then $I(n) \leq I(F(x)) \leq x$. Therefore $F: \mathbb{R} \rightarrow \mathbb{Z}, F(x)=\lfloor x\rfloor$ is the right-adjoint of $I: \mathbb{Z} \rightarrow \mathbb{R}:^{1}$

$$
I(n) \leq x \Longleftrightarrow n \leq F(x), \quad n \in \mathbb{Z}, \quad x \in \mathbb{R}
$$

Define $C: \mathbb{R} \rightarrow \mathbb{Z}$ by $C(x)=\lceil x\rceil$. For $n \in \mathbb{Z}$ and $x \in \mathbb{R}$, suppose $C(x) \leq n$. Then $I(C(x)) \leq I(n)$. But $I(C(x)) \geq x$, so $x \leq I(n)$. Suppose $x \leq I(n)$. Then $C(x) \leq C(I(n))$. But $C(I(n))=n$, so $C(x) \leq n$. Therefore $C: \mathbb{R} \rightarrow \mathbb{Z}$, $C(x)=\lceil x\rceil$ is the left-adjoint of $I: \mathbb{Z} \rightarrow \mathbb{R}$:

$$
C(x) \leq n \Longleftrightarrow x \leq I(n), \quad x \in \mathbb{R}, \quad n \in \mathbb{Z}
$$

Lemma 1. For $x \geq 0$,

$$
\lfloor\sqrt{\lfloor x\rfloor}\rfloor=\lfloor\sqrt{x}\rfloor .
$$

Proof. For $k \in \mathbb{Z}_{\geq 0}$ and $y \in \mathbb{R}_{\geq 0}$,

$$
\begin{aligned}
k \leq\lfloor\sqrt{\lfloor y\rfloor}\rfloor & \Longleftrightarrow I(k) \leq \sqrt{\lfloor y\rfloor} \\
& \Longleftrightarrow k^{2} \leq\lfloor y\rfloor \\
& \Longleftrightarrow k^{2} \leq y \\
& \Longleftrightarrow k \leq \sqrt{y} \\
& \Longleftrightarrow k \leq\lfloor\sqrt{y}\rfloor .
\end{aligned}
$$

Lemma 2. If $x \in \mathbb{R}$ and $n \in \mathbb{Z}_{\geq 1}$, then

$$
\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor=\left\lfloor\frac{x}{n}\right\rfloor .
$$

Proof. For $k \in \mathbb{Z}$,

$$
\begin{aligned}
k \leq F(I(F(x)) / I(n)) & \Longleftrightarrow I(k) \leq I(F(x)) / I(n) \\
& \Longleftrightarrow I(k) I(n) \leq I(F(x)) \\
& \Longleftrightarrow I(k n) \leq I(F(x)) \\
& \Longleftrightarrow k n \leq F(x) \\
& \Longleftrightarrow I(k n) \leq x \\
& \Longleftrightarrow I(k) \leq x / I(n) \\
& \Longleftrightarrow k \leq F(x / I(n)) .
\end{aligned}
$$

This means that $F(I(F(x)) / I(n))=F(x / I(n))$.

[^0]Lemma 3. If $n \in \mathbb{Z}_{\geq 1}$ and $m \in \mathbb{Z}$, then

$$
\left\lceil\frac{m}{n}\right\rceil=\left\lfloor\frac{m+n-1}{n}\right\rfloor .
$$

Proof. For $k \in \mathbb{Z}$,

$$
\begin{aligned}
k \leq F(I(m+n-1) / I(n)) & \Longleftrightarrow I(k) \leq I(m+n-1) / I(n) \\
& \Longleftrightarrow I(k) I(n) \leq I(m+n-1) \\
& \Longleftrightarrow k n \leq m+n-1 \\
& \Longleftrightarrow k n-n+1 \leq m \\
& \Longleftrightarrow k n-n<m \\
& \Longleftrightarrow I(k-1)<I(m) / I(n) \\
& \Longleftrightarrow k-1<C(I(m) / I(n)) \\
& \Longleftrightarrow k \leq C(I(m) / I(n)) .
\end{aligned}
$$

This means

$$
F(I(m+n-1) / I(n))=C(I(m) / I(n)) .
$$

3 The Euclidean algorithm and continued fractions

Let $a, b \in \mathbb{Z}_{\geq 1}, a>b$. Let

$$
v_{0}=a, \quad v_{1}=b
$$

Let

$$
a_{1}=\left\lfloor v_{0} / v_{1}\right\rfloor, \quad v_{2}=v_{0}-a_{1} v_{1}
$$

For $m \geq 2$, if $v_{m} \neq 0$ then let

$$
a_{m}=\left\lfloor v_{m-1} / v_{m}\right\rfloor, \quad v_{m+1}=v_{m-1}-a_{m} v_{m}
$$

Then $0 \leq v_{m+1}<v_{m} .{ }^{2}$
For example, let $a=83, b=14$. Then

$$
v_{0}=83, \quad v_{1}=14
$$

Then

$$
a_{1}=\lfloor 83 / 14\rfloor=5, \quad v_{2}=83-5 \cdot 14=13
$$

Then

$$
\left.a_{2}=\left\lfloor v_{1} / v_{2}\right\rfloor=14 / 13\right\rfloor=1, \quad v_{3}=v_{1}-a_{2} v_{2}=14-1 \cdot 13=1 .
$$

[^1]Then

$$
a_{3}=\left\lfloor v_{2} / v_{3}\right\rfloor=\lfloor 13 / 1\rfloor=13, \quad v_{4}=v_{2}-a_{3} v_{3}=13-13 \cdot 1=0
$$

As $v_{3}=1$ and $v_{4}=0$,

$$
\operatorname{gcd}(83,14)=1
$$

Written as a continued fraction, we get

$$
\frac{14}{83}=[0 ; 5,1,13] .
$$

For example, let $a=168, b=43$. Then

$$
v_{0}=168, \quad v_{1}=43 .
$$

Then

$$
a_{1}=\lfloor 168 / 43\rfloor=3, \quad v_{2}=v_{0}-a_{1} v_{1}=168-3 \cdot 43=39
$$

Then

$$
a_{2}=\lfloor 43 / 39\rfloor=1, \quad v_{3}=v_{1}-a_{2} v_{2}=43-1 \cdot 39=4
$$

Then

$$
a_{3}=\left\lfloor v_{2} / v_{3}\right\rfloor=\lfloor 39 / 4\rfloor=9, \quad v_{4}=v_{2}-a_{3} v_{3}=39-9 \cdot 4=3 .
$$

Then

$$
a_{4}=\left\lfloor v_{3} / v_{4}\right\rfloor=\lfloor 4 / 3\rfloor=1, \quad v_{5}=v_{3}-a_{4} v_{4}=4-1 \cdot 3=1 .
$$

Then

$$
a_{5}=\left\lfloor v_{4} / v_{5}\right\rfloor=\lfloor 3 / 1\rfloor=3, \quad v_{6}=v_{4}-a_{5} v_{5}=3-3 \cdot 1=0 .
$$

As $v_{5}=1$ and $v_{6}=0$,

$$
\operatorname{gcd}(168,43)=1
$$

Written as a continued fraction, we get

$$
\frac{43}{168}=[0 ; 3,1,9,1,3] .
$$

For example, let $a=1463$ and $b=84$. Then

$$
v_{0}=1463, \quad v_{1}=84
$$

Then

$$
a_{1}=\lfloor 1463 / 84\rfloor=17, \quad v_{2}=1463-17 \cdot 84=35 .
$$

Then

$$
a_{2}=\lfloor 84 / 35\rfloor=2, \quad v_{3}=84-2 \cdot 35=14
$$

Then

$$
a_{3}=\lfloor 35 / 14\rfloor=2, \quad v_{4}=35-2 \cdot 14=7
$$

Then

$$
a_{4}=\lfloor 14 / 7\rfloor 2, \quad v_{5}=14-2 \cdot 7=0
$$

As $v_{4}=7$ and $v_{5}=0$,

$$
\operatorname{gcd}(1463,84)=7
$$

Written as a continued fraction, we get

$$
\frac{84}{1463}=[0 ; 17,2,2,2]
$$

[^0]: ${ }^{1}$ See Roland Backhouse, Galois Connections and Fixed Point Calculus, http://www.cs. nott.ac.uk/~psarb2/G53PAL/FPandGC.pdf, p. 14; Samson Abramsky and Nikos Tzevelekos, Introduction to Categories and Categorical Logic, http://arxiv.org/abs/1102.1313, p. 44, §1.5.1.

[^1]: ${ }^{2}$ See Marius Iosifescu and Cor Kraaikamp, Metrical Theory of Continued Fractions, p. 1, Chapter 1.

