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1 Totally ordered groups

Suppose that G is a locally compact abelian group and that P C G is a semi-
group (satisfies P + P C P) that is closed and satisfies P N (—P) = {0} and
P U (—P) = G. We define a total order on G by z < y when y —x € P. We
verify that this is indeed a total order. (We remark that nowhere in this do we
show the significance of P being closed; but in this note we shall be speaking
about discrete abelian groups where any set is closed.)

Ifr <yandy < z, then y—2 € Pand z —y € P and hence z — x =
(z—y)+ (y—2x) € P+ P C P, showing that z < z, so < is transitive. If z <y
and y < x then y —xz € P and x —y € P, the latter of which is equivalent to
y—x =—(x—y) € —P, hence y —xz € PN (—P), and then PN (—P) = {0}
implies that y — 2 = 0, i.e. * =y, so < is antisymmetric. If z,y € P then y — =z
is either 0, in which case x = y, or it is contained in one and only one of P and
— P, and then respectively x < y or y < x, showing that < is total.

Moreover, the total order < induced by the semigroup P is compatible with
the group operation in G: if x <y and z € G, then (y+2)—(x+2) =y—=x € P,
showing that z + z < y + 2.

We say that G with the total order induced by P is a totally ordered
group. We shall use the following lemma in the next section.!

Lemma 1. Suppose that I is a discrete abelian group. T’ can be totally ordered
if and only if v € T' having finite order implies that v = 0.

2 Functions of analytic type

If G is a compact abelian group, then G is connected if and only if v € G
having finite order implies that v = 0.2 Combined with Lemma 1, we get that a
compact abelian group is connected if and only if its dual group can be ordered.

Suppose in the rest of this section that G is a connected compact abelian
group, and let < be a total order on G induced by some semigroup. We say
that a function f € L*(@) is of analytic type if v < 0 implies that f(y) = 0,

IWalter Rudin, Fourier Analysis on Groups, p. 194, Theorem 8.1.2.
2Walter Rudin, Fourier Analysis on Groups, p. 47, Theorem 2.5.6.



and we say that a measure y € M(G) is of analytic type if v < 0 implies that
f(y) = 0. (We denote by M(G) the set of regular complex Borel measures
on G.) For 1 < p < oo, we denote by HP(G) those elements of LP(G) that are
of analytic type. We emphasize that the notion of a function or measure being
of analytic type depends on the total order < on G.

We remind ourselves that when . is a o-algebra on a set X and p is a
measure on #, if A € # and p(E) = p(ANE) for all E € .# then we say
that p is concentrated on A. Measures A\, p on .# are said to be mutually
singular if they are concentrated on disjoint sets.

Let m be the Haar measure on G such that m(G) = 1, and suppose that o
is a positive element of M(G). The Lebesgue decomposition tells us that
there is a unique pair of finite Borel measures o5 and o, on G such that (i)
o =04+ 0, (ii) g, is absolutely continuous with respect to m, and (iii) o5 and
m are mutually singular. Then the Radon-Nikodym theorem tells us that
there is a unique nonnegative w € L!(m) such that do, = wdm. Thus,

do = dos + wdm.

~ We define {2 to be the set of all trigonometric polynomials @ on G such that
Q) = 0 for v < 0. We also define K = {1+Q: Q € Q}. K C L*(0), and we
denote by K its closure in the Hilbert space L?(o).

Lemma 2. K is a convex set.

Proof. Let f,g € K be distinct and let 0 < ¢t < 1. There are P,,Q,, € {2 such
that 1+ P, — fand 1+ Q,, — g, and

(1= 0)f +1g = Tim (L= )1+ Po) +#(1+Qn)) = lim (1+ (1~ 1)y +1Qp).

For each n, (1 —t)P, +tQ, € , so we have written (1 —¢)f + tg as a limit of
elements of K, showing that (1 —1t)f +tg € K and hence that K is convex. [

As K is a closed convex set in the Hilbert space L?(0), there is a unique
¢ € K such that d(0,K) = [0 — ¢| (namely, that attains the infimum of the
distance of elements of K to the origin), which we can write as

= inf |1+ Q).
19l = jnf |11+ @l

¢ is the unique element of K such that

(@10 — ) =0, YeK.
The following lemma establishes properties of ¢.3
Lemma 3. 1. ¢ = 0 almost everywhere with respect to .

2. ¢w € L?(m) and |¢|*w = ||¢||* almost everywhere with respect to m.

3Walter Rudin, Fourier Analysis on Groups, p. 199, Lemma 8.2.2.



3. If |6l >0 and h =%, then h € H*(m) and h(0) = 1.

Proof. We write ¢ = ||¢]|. Let 1+ Q,, € K such that 1 +Q,, — ¢. If g € L*(0)
and ¢ + g € K, then (¢, (¢ + g) — @) = 0, i.e. (¢, g) =0. Let v > 0. On the
one hand, v € Q50 ¢+ = lim,, 00 1 + (@, +7) € K, hence (¢,v) = 0 and so
(v,¢) = 0. On the other hand, define g = ¢y, which satisfies

¢+g=0(1+7) = lim (1+@Qn)(1+7)= lim 1+75+Qn+Qun,

and because v > 0, each term of v + @, + Q7 belongs to €, showing that
¢+ g € K, from which we get (¢, g) = 0 and so (g, ) = 0. We have proved that

/G (. )@do(x) =0, 4>, (1)

and

/G () [6(x) Pdo(x) =0, >0, 2)

Taking the complex conjugate of (2) gives

| @ iot)Pan@ =0, <o
Defining d\ = |¢|?do we have A\ € M(G). The above and (2) give

Ay)=0, ~y#0.
As well,
A(0) :/ |p2do = 2.
G

Because A € M(G) and A € L*(G), there is some f € L'(G) such that d\ =
fdm, defined by

f(z) = /@wx,wdma(v), Y ed,

where mg is the Haar measure on G that assigns measure 1 to each singleton.*
That is, dA = fdm where f(z) = ¢*m5({0}) = ¢*, hence d\ = ¢*dm. Combined
with d\ = |¢|?do we get

|p|?do = Edm.

Therefore |¢|?do is absolutely continuous with respect to m, and because |¢|?do =
|6|2dos + |p|>wdm, it follows that |¢|>dos = 0, that is, that ¢(x) = 0 for o-
almost all z € G, proving the first claim. Furthermore, |¢|?do = |¢|*wdm and
using |¢|?do = c2dm we get |¢(z)|?w(x) = ¢ for m-almost all 2 € G. Because
w € L'(m) and |pw|? = c*w, we get pw € L?(m), proving the second claim.

4Walter Rudin, Fourier Analysis on Groups, p. 30.



So far we have not supposed that ¢ > 0. If indeed ¢ > 0, then |h|? = |¢|2 =
¢ 2w, giving h € L?(m). For v € G,

/ W)z, y)dm(z) = / 16(2)|28(@) ) dm(z)
G G

This and (1) yield

/ W), )dm(z) =0, 5 >0,
G

in other words, .
h(v)=0, <0,

namely, h is of analytic type, i.e. h € H?(m). Moreover, for each n € N we
check that @, + ¢ € K and hence that (1 4+ Q,,¢) = (1, ¢), giving

CQiL(O):/ngaz/G(l—FQn)gdo.

This is true for all n € N, so we obtain
(o) = [ JoPdo = ol =

ie. iL(O) = 1, proving the third claim. O

The above lemma is used to prove the following theorem.® The proof of this
theorem in Rudin is not long, but I don’t understand the first step in his proof
so I have not attempted to write it out.

Theorem 4. Suppose that G is a connected compact abelian group and that
€ M(G) is of analytic type. If the Lebesque decomposition of u is

dp = dus + fdm,

where ps and m are mutually singular and f € L'(m), then pus € M(G) is of
analytic type and f is of analytic type, and [i5(0) = 0.

3 The theorem of F. and M. Riesz

We are now equipped to prove the theorem of F. and M. Riesz.%

5Walter Rudin, Fourier Analysis on Groups, p. 200, Theorem 8.2.3.
SWalter Rudin, Fourier Analysis on Groups, p. 201, §8.2.4.



Theorem 5 (F. and M. Riesz). If u € M(T) and ji(n) = 0 for every negative
integer n, then u is absolutely continuous with respect to Haar measure.

Proof. Write du = dus + fdm, where ugs and m are mutually singular and f €
L'(m). Theorem 4 tells us that ju, is of analytic type, i.e. fis(n) =0 for n <0,
and that fi5(0) = 0. Therefore, if us # 0 then there is a minimal positive integer
ng for which fis(no) # 0. Defining A(n) = fis(no + n), we get that A € M(T)
and that A and m are mutually singular. But A(n) = jis(ng +n) =0 for n < 0,
so A is of analytic type, and therefore Theorem 4 says that fis(ng) = ;\(O) =0
(because A and m are mutually singular), a contradiction. Hence fis(n) = 0
for all n € Z, which implies that pus = 0. But this means that p is absolutely
continuous with respect to m, completing the proof. O



