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1 Totally ordered groups

Suppose that G is a locally compact abelian group and that P ⊂ G is a semi-
group (satisfies P + P ⊂ P ) that is closed and satisfies P ∩ (−P ) = {0} and
P ∪ (−P ) = G. We define a total order on G by x ≤ y when y − x ∈ P . We
verify that this is indeed a total order. (We remark that nowhere in this do we
show the significance of P being closed; but in this note we shall be speaking
about discrete abelian groups where any set is closed.)

If x ≤ y and y ≤ z, then y − x ∈ P and z − y ∈ P and hence z − x =
(z − y) + (y − x) ∈ P + P ⊂ P , showing that x ≤ z, so ≤ is transitive. If x ≤ y
and y ≤ x then y − x ∈ P and x − y ∈ P , the latter of which is equivalent to
y − x = −(x − y) ∈ −P , hence y − x ∈ P ∩ (−P ), and then P ∩ (−P ) = {0}
implies that y− x = 0, i.e. x = y, so ≤ is antisymmetric. If x, y ∈ P then y− x
is either 0, in which case x = y, or it is contained in one and only one of P and
−P , and then respectively x < y or y < x, showing that ≤ is total.

Moreover, the total order ≤ induced by the semigroup P is compatible with
the group operation in G: if x ≤ y and z ∈ G, then (y+z)−(x+z) = y−x ∈ P ,
showing that x+ z ≤ y + z.

We say that G with the total order induced by P is a totally ordered
group. We shall use the following lemma in the next section.1

Lemma 1. Suppose that Γ is a discrete abelian group. Γ can be totally ordered
if and only if γ ∈ Γ having finite order implies that γ = 0.

2 Functions of analytic type

If G is a compact abelian group, then G is connected if and only if γ ∈ Ĝ
having finite order implies that γ = 0.2 Combined with Lemma 1, we get that a
compact abelian group is connected if and only if its dual group can be ordered.

Suppose in the rest of this section that G is a connected compact abelian
group, and let ≤ be a total order on Ĝ induced by some semigroup. We say
that a function f ∈ L1(G) is of analytic type if γ < 0 implies that f̂(γ) = 0,

1Walter Rudin, Fourier Analysis on Groups, p. 194, Theorem 8.1.2.
2Walter Rudin, Fourier Analysis on Groups, p. 47, Theorem 2.5.6.
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and we say that a measure µ ∈ M(G) is of analytic type if γ < 0 implies that
µ̂(γ) = 0. (We denote by M(G) the set of regular complex Borel measures
on G.) For 1 ≤ p ≤ ∞, we denote by Hp(G) those elements of Lp(G) that are
of analytic type. We emphasize that the notion of a function or measure being
of analytic type depends on the total order ≤ on Ĝ.

We remind ourselves that when M is a σ-algebra on a set X and µ is a
measure on M , if A ∈ M and µ(E) = µ(A ∩ E) for all E ∈ M then we say
that µ is concentrated on A. Measures λ, µ on M are said to be mutually
singular if they are concentrated on disjoint sets.

Let m be the Haar measure on G such that m(G) = 1, and suppose that σ
is a positive element of M(G). The Lebesgue decomposition tells us that
there is a unique pair of finite Borel measures σs and σa on G such that (i)
σ = σs + σa, (ii) σa is absolutely continuous with respect to m, and (iii) σs and
m are mutually singular. Then the Radon-Nikodym theorem tells us that
there is a unique nonnegative w ∈ L1(m) such that dσa = wdm. Thus,

dσ = dσs + wdm.

We define Ω to be the set of all trigonometric polynomials Q on G such that
Q̂(γ) = 0 for γ ≤ 0. We also define K = {1 +Q : Q ∈ Ω}. K ⊂ L2(σ), and we
denote by K its closure in the Hilbert space L2(σ).

Lemma 2. K is a convex set.

Proof. Let f, g ∈ K be distinct and let 0 ≤ t ≤ 1. There are Pn, Qn ∈ Ω such
that 1 + Pn → f and 1 +Qn → g, and

(1− t)f + tg = lim
n→∞

((1− t)(1 + Pn) + t(1 +Qn)) = lim
n→∞

(1 + (1− t)Pn + tQn).

For each n, (1− t)Pn + tQn ∈ Ω, so we have written (1− t)f + tg as a limit of
elements of K, showing that (1− t)f + tg ∈ K and hence that K is convex.

As K is a closed convex set in the Hilbert space L2(σ), there is a unique
ϕ ∈ K such that d(0,K) = ∥0 − ϕ∥ (namely, that attains the infimum of the
distance of elements of K to the origin), which we can write as

∥ϕ∥ = inf
Q∈Ω

∥1 +Q∥.

ϕ is the unique element of K such that

⟨ϕ, ψ − ϕ⟩ = 0, ψ ∈ K.

The following lemma establishes properties of ϕ.3

Lemma 3. 1. ϕ = 0 almost everywhere with respect to σs.

2. ϕw ∈ L2(m) and |ϕ|2w = ∥ϕ∥2 almost everywhere with respect to m.

3Walter Rudin, Fourier Analysis on Groups, p. 199, Lemma 8.2.2.
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3. If ∥ϕ∥ > 0 and h = 1
ϕ , then h ∈ H2(m) and ĥ(0) = 1.

Proof. We write c = ∥ϕ∥. Let 1 +Qn ∈ K such that 1 +Qn → ϕ. If g ∈ L2(σ)
and ϕ + g ∈ K, then ⟨ϕ, (ϕ + g) − ϕ⟩ = 0, i.e. ⟨ϕ, g⟩ = 0. Let γ > 0. On the
one hand, γ ∈ Ω so ϕ+ γ = limn→∞ 1 + (Qn + γ) ∈ K, hence ⟨ϕ, γ⟩ = 0 and so
⟨γ, ϕ⟩ = 0. On the other hand, define g = ϕγ, which satisfies

ϕ+ g = ϕ(1 + γ) = lim
n→∞

(1 +Qn)(1 + γ) = lim
n→∞

1 + γ +Qn +Qnγ,

and because γ > 0, each term of γ + Qn + Qnγ belongs to Ω, showing that
ϕ+g ∈ K, from which we get ⟨ϕ, g⟩ = 0 and so ⟨g, ϕ⟩ = 0. We have proved that∫

G

⟨x, γ⟩ϕ(x)dσ(x) = 0, γ > 0, (1)

and ∫
G

⟨x, γ⟩|ϕ(x)|2dσ(x) = 0, γ > 0. (2)

Taking the complex conjugate of (2) gives∫
G

⟨x, γ⟩|ϕ(x)|2dσ(x) = 0, γ < 0.

Defining dλ = |ϕ|2dσ we have λ ∈M(G). The above and (2) give

λ̂(γ) = 0, γ ̸= 0.

As well,

λ̂(0) =

∫
G

|ϕ|2dσ = c2.

Because λ ∈ M(G) and λ̂ ∈ L1(Ĝ), there is some f ∈ L1(G) such that dλ =
fdm, defined by

f(x) =

∫
Ĝ

λ̂(γ)⟨x, γ⟩dmĜ(γ), γ ∈ Ĝ,

where mĜ is the Haar measure on Ĝ that assigns measure 1 to each singleton.4

That is, dλ = fdm where f(x) = c2mĜ({0}) = c2, hence dλ = c2dm. Combined
with dλ = |ϕ|2dσ we get

|ϕ|2dσ = c2dm.

Therefore |ϕ|2dσ is absolutely continuous with respect tom, and because |ϕ|2dσ =
|ϕ|2dσs + |ϕ|2wdm, it follows that |ϕ|2dσs = 0, that is, that ϕ(x) = 0 for σs-
almost all x ∈ G, proving the first claim. Furthermore, |ϕ|2dσ = |ϕ|2wdm and
using |ϕ|2dσ = c2dm we get |ϕ(x)|2w(x) = c2 for m-almost all x ∈ G. Because
w ∈ L1(m) and |ϕw|2 = c2w, we get ϕw ∈ L2(m), proving the second claim.

4Walter Rudin, Fourier Analysis on Groups, p. 30.
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So far we have not supposed that c > 0. If indeed c > 0, then |h|2 = |ϕ|−2 =

c−2w, giving h ∈ L2(m). For γ ∈ Ĝ,∫
G

h(x)⟨x, γ⟩dm(x) =

∫
G

|ϕ(x)|−2ϕ(x)⟨x, γ⟩dm(x)

= c−2

∫
G

⟨x, γ⟩ϕ(x)w(x)dm(x)

= c−2

∫
G

⟨x, γ⟩ϕ(x)dσ(x).

This and (1) yield ∫
G

h(x)⟨x, γ⟩dm(x) = 0, γ > 0,

in other words,
ĥ(γ) = 0, γ < 0,

namely, h is of analytic type, i.e. h ∈ H2(m). Moreover, for each n ∈ N we
check that Qn + ϕ ∈ K and hence that ⟨1 +Qn, ϕ⟩ = ⟨1, ϕ⟩, giving

c2ĥ(0) =

∫
G

ϕdσ =

∫
G

(1 +Qn)ϕdσ.

This is true for all n ∈ N, so we obtain

c2ĥ(0) =

∫
G

|ϕ|2dσ = ∥ϕ∥2 = c2,

i.e. ĥ(0) = 1, proving the third claim.

The above lemma is used to prove the following theorem.5 The proof of this
theorem in Rudin is not long, but I don’t understand the first step in his proof
so I have not attempted to write it out.

Theorem 4. Suppose that G is a connected compact abelian group and that
µ ∈M(G) is of analytic type. If the Lebesgue decomposition of µ is

dµ = dµs + fdm,

where µs and m are mutually singular and f ∈ L1(m), then µs ∈ M(G) is of
analytic type and f is of analytic type, and µ̂s(0) = 0.

3 The theorem of F. and M. Riesz

We are now equipped to prove the theorem of F. and M. Riesz.6

5Walter Rudin, Fourier Analysis on Groups, p. 200, Theorem 8.2.3.
6Walter Rudin, Fourier Analysis on Groups, p. 201, §8.2.4.
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Theorem 5 (F. and M. Riesz). If µ ∈ M(T) and µ̂(n) = 0 for every negative
integer n, then µ is absolutely continuous with respect to Haar measure.

Proof. Write dµ = dµs + fdm, where µs and m are mutually singular and f ∈
L1(m). Theorem 4 tells us that µs is of analytic type, i.e. µ̂s(n) = 0 for n < 0,
and that µ̂s(0) = 0. Therefore, if µs ̸= 0 then there is a minimal positive integer

n0 for which µ̂s(n0) ̸= 0. Defining λ̂(n) = µ̂s(n0 + n), we get that λ ∈ M(T)
and that λ and m are mutually singular. But λ̂(n) = µ̂s(n0 + n) = 0 for n < 0,

so λ is of analytic type, and therefore Theorem 4 says that µ̂s(n0) = λ̂(0) = 0
(because λ and m are mutually singular), a contradiction. Hence µ̂s(n) = 0
for all n ∈ Z, which implies that µs = 0. But this means that µ is absolutely
continuous with respect to m, completing the proof.
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