# Wiener measure and Donsker's theorem 

Jordan Bell

September 4, 2015

## 1 Relatively compact sets of Borel probability measures on $C[0,1]$

Let $E=C[0,1]$, let $\mathscr{B}_{E}$ be the Borel $\sigma$-algebra of $E$, and let $\mathscr{P}_{E}$ be the collection of Borel probability measures on $E$. We assign $\mathscr{P}$ the narrow topology, the coarsest topology on $\mathscr{P}_{E}$ such that for each $F \in C_{b}(E)$ the map $\mu \mapsto \int_{E} F d \mu$ is continuous.

For $f \in E$ and $\delta>0$ we define

$$
\omega_{f}(\delta)=\sup _{s, t \in[0,1],|s-t| \leq \delta}|f(s)-f(t)| .
$$

For $f \in E, \omega_{f}(\delta) \downarrow 0$ as $\delta \downarrow 0$, and for $\delta>0, f \mapsto \omega_{f}(\delta)$ is continuous. We shall use the following characterization of a relatively compact subset $A$ of $E$, which is proved using the Arzelà-Ascoli theorem.

Lemma 1. Let $A$ be a subset of $E . \bar{A}$ is compact if and only if

$$
\sup _{f \in A}|f(0)|<\infty
$$

and

$$
\sup _{f \in A} \omega_{f}(\delta) \downarrow 0, \quad \delta \downarrow 0
$$

We shall use Prokhorov's theorem: ${ }^{1}$ for $X$ a Polish space and for $\Gamma \subset$ $\mathscr{P}_{X}, \bar{\Gamma}$ is compact if and only if for each $\epsilon>0$ there is a compact subset $K_{\epsilon}$ of $X$ such that $\mu\left(K_{\epsilon}\right) \geq 1-\epsilon$ for all $\mu \in \Gamma$. Namely, a subset of $\mathscr{P}_{X}$ is relatively compact if and only if it is tight. We use Prokhorov's theorem to prove a characterization of relatively compact subsets of $\mathscr{P}_{E}$, which we then use to prove the characterization in Theorem 3. ${ }^{2}$

[^0]Lemma 2. Let $\Gamma$ be a subset of $\mathscr{P}_{E}$. $\bar{\Gamma}$ is compact if and only if for each $\epsilon>0$ there is some $M_{\epsilon}<\infty$ and a function $\delta \mapsto \omega_{\epsilon}(\delta)$ satisfying $\omega_{\epsilon}(\delta) \downarrow 0$ as $\delta \downarrow 0$ and such that for all $\mu \in \Gamma$,

$$
\mu\left(A_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu\left(B_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}
$$

where

$$
A_{\epsilon}=\left\{f \in E:|f(0)| \leq M_{\epsilon}\right\}, \quad B_{\epsilon}=\left\{f \in E: \omega_{f}(\delta) \leq \omega_{\epsilon}(\delta) \text { for all } \delta>0\right\}
$$

Proof. Suppose that $\Gamma$ satisfies the above conditions. Because $f \mapsto|f(0)|$ is continuous, $A_{\epsilon}$ is closed. For $\delta>0$, suppose that $f_{n}$ is a sequence in $B_{\epsilon}$ tending to some $f \in E$. Because $g \mapsto \omega_{g}(\delta)$ is continuous, $\omega_{f_{n}}(\delta) \rightarrow \omega_{f}(\delta)$, and because $\omega_{f_{n}}(\delta) \leq \omega_{\epsilon}(\delta)$ for each $n$, we get $\omega_{f}(\delta) \leq \omega_{\epsilon}(\delta)$ and hence $f \in B_{\epsilon}$, showing that $B_{\epsilon}$ is closed. Therefore $K_{\epsilon}=A_{\epsilon} \cap B_{\epsilon}$ is closed, i.e. $K_{\epsilon}=\overline{K_{\epsilon}}$. The set $K_{\epsilon}$ satisfies

$$
\sup _{f \in K_{\epsilon}}|f(0)| \leq M_{\epsilon}
$$

and

$$
\limsup _{\delta \downarrow 0} \sup _{f \in K_{\epsilon}} \omega_{f}(\delta) \leq \limsup _{\delta \downarrow 0} \omega_{\epsilon}(\delta)=0,
$$

thus by Lemma $1, K_{\epsilon}$ is compact. For $\mu \in \Gamma$,

$$
\mu\left(K_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}
$$

and because $K_{\epsilon}$ is compact, this means that $\Gamma$ is tight, so by Prokhorov's theorem, $\Gamma$ is relatively compact.

Now suppose that $\Gamma$ is relatively compact and let $\epsilon>0$. By Prokhorov's theorem, there is a compact set $K_{\epsilon}$ in $E$ such that $\mu\left(K_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}$ for all $\mu \in \Gamma$. Define

$$
M_{\epsilon}=\sup _{f \in K_{\epsilon}}|f(0)|, \quad \omega_{\epsilon}(\delta)=\sup _{f \in K_{\epsilon}} \omega_{f}(\delta), \quad \delta>0
$$

Because $K_{\epsilon}$ is compact, by Lemma 1 we get that $M_{\epsilon}<\infty$ and $\omega_{\epsilon}(\delta) \downarrow 0$ as $\delta \downarrow 0$. For $\mu \in \Gamma$,

$$
\mu\left(A_{\epsilon}\right) \geq \mu\left(K_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu\left(B_{\epsilon}\right) \geq \mu\left(K_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}
$$

showing that $\Gamma$ satisfies the conditions of the theorem.
We now prove the characterization of relatively compact subsets of $\mathscr{P}_{E}$ that we shall use in our proof of Donsker's theorem. ${ }^{3}$

Theorem 3 (Relatively compact sets in $\mathscr{P}$ ). Let $\Gamma$ be a subset of $\mathscr{P}_{E} . \bar{\Gamma}$ is compact if and only if the following conditions are satisfied:

[^1]1. For each $\epsilon>0$ there is some $M_{\epsilon}<\infty$ such that

$$
\mu\left(f:|f(0)| \leq M_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu \in \Gamma .
$$

2. For each $\epsilon>0$ and $\delta>0$ there is some $\eta=\eta(\epsilon, \delta)>0$ such that

$$
\mu\left(f: \omega_{f}(\eta) \leq \delta\right) \geq 1-\frac{\epsilon}{2}, \quad \mu \in \Gamma
$$

Proof. Suppose that $\bar{\Gamma}$ is compact and let $\epsilon>0$. By Lemma 2, there is some $M_{\epsilon}<\infty$ and a function $\eta \mapsto \omega_{\epsilon}(\eta)$ satisfying $\omega_{\epsilon}(\eta) \downarrow 0$ as $\eta \downarrow 0$ and

$$
\mu\left(A_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu\left(B_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu \in \Gamma .
$$

For $\delta>0$, there is some $\eta=\eta(\epsilon, \delta)$ with $\omega_{\epsilon}(\eta) \leq \delta$. Then for $\mu \in \Gamma$,

$$
\mu\left(f: \omega_{f}(\eta) \leq \delta\right) \geq \mu\left(f: \omega_{f}(\eta) \leq \omega_{\epsilon}(\eta)\right) \geq \mu\left(B_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}
$$

Now suppose that the conditions of the theorem hold. For each $\epsilon>0$ and $n \geq 1$ there is some $\eta_{\epsilon, n}>0$ such that

$$
\mu\left(F_{\epsilon, n}\right) \geq 1-\frac{\epsilon}{2^{n+1}}, \quad \mu \in \Gamma
$$

where

$$
F_{\epsilon, n}=\left\{f: \omega_{f}\left(\eta_{\epsilon, n}\right) \leq \frac{1}{n}\right\} .
$$

Let

$$
K_{\epsilon}=\left\{f:|f(0)| \leq M_{\epsilon}\right\} \cap \bigcap_{n=1}^{\infty} F_{\epsilon, n},
$$

for which

$$
\mu\left(K_{\epsilon}\right) \geq \mu\left(f:|f(0)| \leq M_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}, \quad \mu \in \Gamma
$$

For $f \in K_{\epsilon}$, then for each $n \geq 1$ we have $f \in F_{\epsilon, n}$, which means that $\omega_{f}\left(\eta_{\epsilon, n}\right) \leq$ $\frac{1}{n}$, and therefore

$$
\sup _{f \in K_{\epsilon}} \omega_{f}\left(\eta_{\epsilon, n}\right) \leq \frac{1}{n}
$$

Thus for $n \geq 1$, if $0<\eta \leq \eta_{\epsilon, n}$ then

$$
\sup _{f \in K_{\epsilon}} \omega_{f}(\eta) \leq \frac{1}{n}
$$

which shows $\sup _{f \in K_{\epsilon}} \omega_{f}(\eta) \downarrow 0$ as $\eta \downarrow 0$. Then because

$$
\sup _{f \in K_{\epsilon}}|f(0)| \leq M_{\epsilon},
$$

applying Lemma 1 we get that $\overline{K_{\epsilon}}$ is compact. The map $f \mapsto \omega_{f}\left(\eta_{\epsilon, n}\right)$ is continuous, so the set $F_{\epsilon, n}$ is closed, and therefore the set $K_{\epsilon}$ is closed. Because $K_{\epsilon}$ is compact and $\mu\left(K_{\epsilon}\right) \geq 1-\frac{\epsilon}{2}$ for all $\mu \in \Gamma$, it follows from by Prokhorov's theorem that $\Gamma$ is relatively compact.

## 2 Wiener measure

For $t_{1}, \ldots, t_{d} \in[0,1], t_{1}<\cdots<t_{d}$, define $\pi_{t_{1}, \ldots, t_{d}}: E \rightarrow \mathbb{R}^{d}$ by

$$
\pi_{t_{1}, \ldots, t_{d}}(f)=\left(f\left(t_{1}\right), \ldots, f\left(t_{d}\right)\right), \quad f \in E,
$$

which is continuous. We state the following results, which we will use later. ${ }^{4}$
Theorem 4 (The Borel $\sigma$-algebra of $E$ ). $\mathscr{B}_{E}$ is equal to the $\sigma$-algebra generated by $\left\{\pi_{t}: t \in[0,1]\right\}$.

Two elements $\mu$ and $\nu$ of $\mathscr{P}_{E}$ are equal if and only if for any $d$ and any $t_{1}<\cdots<t_{d}$, the pushforward measures

$$
\mu_{t_{1}, \ldots, t_{d}}=\left(\pi_{t_{1}, \ldots, t_{d}}\right)_{*} \mu, \quad \nu_{t_{1}, \ldots, t_{d}}=\left(\pi_{t_{1}, \ldots, t_{d}}\right)_{*} \nu
$$

are equal.
Let $\left(\xi_{t}\right)_{t \in[0,1]}$ be a stochastic process with state space $\mathbb{R}$ and sample space $(\Omega, \mathscr{F}, P)$. For $t_{1}<\cdots<t_{d}$, let $\xi_{t_{1}, \ldots, t_{d}}=\xi_{t_{1}} \otimes \cdots \otimes \xi_{t_{d}}$ and let $P_{t_{1}, \ldots, t_{d}}=$ $\left(\xi_{t_{1}, \ldots, t_{d}}\right)_{*} P:$ for $B \in \mathscr{B}_{\mathbb{R}}^{d}$,

$$
P_{t_{1}, \ldots, t_{d}}(B)=\left(\left(\xi_{t_{1}, \ldots, t_{d}}\right)_{*} P\right)(B)=P\left(\xi_{t_{1}, \ldots, t_{d}}^{-1}(B)\right)=P\left(\left(\xi_{t_{1}}, \ldots, \xi_{t_{d}}\right) \in B\right) .
$$

$P_{t_{1}, \ldots, t_{d}}$ is a Borel probability measure on $\mathbb{R}^{d}$ and is called a finite-dimensional distribution of the stochastic process.

The Kolmogorov continuity theorem ${ }^{5}$ tells us that if there are $\alpha, \beta, K>$ 0 such that for all $s, t \in[0,1]$,

$$
E\left|\xi_{t}-\xi_{s}\right|^{\alpha} \leq K|t-s|^{1+\beta},
$$

then there is a unique $\mu \in \mathscr{P}_{E}$ such that for all $k$ and for all $t_{1}<\cdots<t_{d}$,

$$
\mu_{t_{1}, \ldots, t_{d}}=P_{t_{1}, \ldots, t_{d}}
$$

We now define and prove the existence of Wiener measure. ${ }^{6}$
Theorem 5 (Wiener measure). There is a unique Borel probability measure $W$ on $E$ satisfying:

1. $W(f \in E: f(0)=0)=1$.
2. For $0 \leq t_{0}<t_{1}<\cdots<t_{d} \leq 1$ the random variables

$$
\pi_{t_{1}}-\pi_{t_{0}}, \quad \pi_{t_{2}}-\pi_{t_{1}}, \quad \pi_{t_{3}}-\pi_{t_{2}}, \quad \pi_{t_{d}}-\pi_{t_{d-1}}
$$

are independent $\left(E, \mathscr{B}_{E}, W\right) \rightarrow\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}\right)$.

[^2]3. If $0 \leq s<t \leq 1$, the random variable $\pi_{t}-\pi_{s}:\left(E, \mathscr{B}_{E}, W\right) \rightarrow\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}\right)$ is normal with mean 0 and variance $t-s$.

Proof. There is a stochastic process $\left(\xi_{t}\right)_{t \in[0,1]}$ with state space $\mathbb{R}$ and some sample space $(\Omega, \mathscr{F}, P)$, such that (i) $P\left(\xi_{0}=0\right)=1$, (ii) $\left(\xi_{t}\right)_{t \in[0,1]}$ has independent increments, and (iii) for $s<t, \xi_{t}-\xi_{s}$ is a normal random variable with mean 0 and variance $t-s$. (Namely, Brownian motion with starting point 0 .) Because $\xi_{t}-\xi_{s}$ has mean 0 and variance $t-s$, we calculate (cf. Isserlis's theorem)

$$
E\left|\xi_{t}-\xi_{s}\right|^{4}=3|t-s|^{2}
$$

Thus using the Kolmogorov continuity theorem with $\alpha=4, \beta=1, K=3$, there is a unique $W \in \mathscr{P}_{E}$ such that for all $t_{1}<\cdots<t_{d}$,

$$
W_{t_{1}, \ldots, t_{d}}=P_{t_{1}, \ldots, t_{d}}
$$

i.e. for $B \in \mathscr{B}_{\mathbb{R}}^{d}$,

$$
W\left(\pi_{t_{1}} \otimes \cdots \otimes \pi_{t_{d}} \in B\right)=P\left(\xi_{t_{1}} \otimes \cdots \otimes \xi_{t_{d}} \in B\right)
$$

For $t_{1}<\cdots<t_{d}$ and $B \in \mathscr{B}_{\mathbb{R}}^{d}$, with $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ defined by $T\left(x_{1}, \ldots, x_{d}\right)=$ $\left(x_{1}, x_{2}-x_{1}, \ldots, x_{d}-x_{d-1}\right)$,

$$
\begin{aligned}
& W\left(\pi_{t_{1}} \otimes\left(\pi_{t_{2}}-\pi_{t_{1}}\right) \otimes \cdots \otimes\left(\pi_{t_{d}}-\pi_{t_{d-1}}\right) \in B\right) \\
= & W\left(T \circ\left(\pi_{t_{1}} \otimes \pi_{t_{2}} \otimes \cdots \otimes \pi_{t_{d}}\right) \in B\right) \\
= & W\left(\pi_{t_{1}} \otimes \pi_{t_{2}} \otimes \cdots \otimes \pi_{t_{d}} \in T^{-1}(B)\right) \\
= & P\left(\xi_{t_{1}} \otimes \xi_{t_{2}} \otimes \cdots \otimes \xi_{t_{d}} \in T^{-1}(B)\right) \\
= & P\left(T \circ\left(\xi_{t_{1}} \otimes \xi_{t_{2}} \otimes \cdots \otimes \xi_{t_{d}}\right) \in B\right) \\
= & P\left(\xi_{t_{1}} \otimes\left(\xi_{t_{2}}-\xi_{t_{1}}\right) \otimes \cdots \otimes\left(\xi_{t_{d}}-\xi_{t_{d-1}}\right) \in B\right) .
\end{aligned}
$$

Hence, because $\xi_{t_{1}}, \xi_{t_{2}}-\xi_{t_{1}}, \ldots, \xi_{t_{d}}-\xi_{t_{d-1}}$ are independent,

$$
\begin{aligned}
& \left(\pi_{t_{1}} \otimes\left(\pi_{t_{2}}-\pi_{t_{1}}\right) \otimes \cdots \otimes\left(\pi_{t_{d}}-\pi_{t_{d-1}}\right)\right)_{*} W \\
= & \left(\xi_{t_{1}} \otimes\left(\xi_{t_{2}}-\xi_{t_{1}}\right) \otimes \cdots \otimes\left(\xi_{t_{d}}-\xi_{t_{d-1}}\right)\right)_{*} P \\
= & \left(\xi_{t_{1}}\right)_{*} P \otimes\left(\xi_{t_{2}}-\xi_{t_{1}}\right)_{*} P \otimes \cdots \otimes\left(\xi_{t_{d}}-\xi_{t_{d-1}}\right)_{*} P \\
= & \left(\pi_{t_{1}}\right)_{*} W \otimes\left(\pi_{t_{2}}-\pi_{t_{1}}\right)_{*} W \otimes \cdots \otimes\left(\pi_{t_{d}}-\pi_{t_{d-1}}\right)_{*} W,
\end{aligned}
$$

which means that the random variables $\pi_{t_{1}}, \pi_{t_{2}}-\pi_{t_{1}}, \ldots, \pi_{t_{d}}-\pi_{t_{d-1}}$ are independent.

If $s<t$ and $B_{1}, B_{2} \in \mathscr{B}_{\mathbb{R}}$, and for $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=$ $(x, y-x)$,

$$
\begin{aligned}
W\left(\left(\pi_{s}, \pi_{t}-\pi_{s}\right) \in\left(B_{1}, B_{2}\right)\right) & =W\left(T \circ\left(\pi_{s}, \pi_{t}\right) \in\left(B_{1}, B_{2}\right)\right) \\
& =P\left(\left(\xi_{s}, \xi_{t}\right) \in T^{-1}\left(B_{1}, B_{2}\right)\right) \\
& =P\left(\left(\xi_{s}, \xi_{t}-\xi_{s}\right) \in\left(B_{1}, B_{2}\right)\right),
\end{aligned}
$$

which implies that $\left(\pi_{t}-\pi_{s}\right)_{*} W=\left(\xi_{t}-\xi_{s}\right)_{*} P$, and because $\xi_{t}-\xi_{s}$ is a normal random variable with mean 0 and variance $t-s$, so is $\pi_{t}-\pi_{s}$.

Finally,

$$
W(f: f(0)=0)=W\left(\pi_{0}=0\right)=P\left(\xi_{0}=0\right)=1
$$

$\left(E, \mathscr{B}_{E}, W\right)$ is a probability space, and the stochastic process $\left(\pi_{t}\right)_{t \in[0,1]}$ is a Brownian motion.

## 3 Interpolation and continuous stochastic processes

Let $\left(\xi_{t}\right)_{t \in[0,1]}$ be a continuous stochastic process with state space $\mathbb{R}$ and sample space $(\Omega, \mathscr{F}, P)$. To say that the stochastic process is continuous means that for each $\omega \in \Omega$ the map $t \mapsto \xi_{t}(\omega)$ is continuous $[0,1] \rightarrow \mathbb{R}$. Define $\xi: \Omega \rightarrow E$ by

$$
\xi(\omega)=\left(t \mapsto \xi_{t}(\omega)\right), \quad \omega \in \Omega
$$

For $t \in[0,1]$ and $B$ a Borel set in $\mathbb{R}$,

$$
\xi^{-1} \pi_{t}^{-1} B=\left\{\omega \in \Omega: \xi_{t}(\omega) \in B\right\}=\xi_{t}^{-1} B
$$

and because $\xi_{t}:(\Omega, \mathscr{F}) \rightarrow\left(\mathbb{R}, \mathscr{B}_{\mathbb{R}}\right)$ is measurable this belongs to $\mathscr{F}$. But by Theorem 4, $\mathscr{B}_{E}$ is generated by the collection $\left\{\pi_{t}^{-1} B: t \in[0,1], B \in \mathscr{B}_{\mathbb{R}}\right\}$. Now, for $f: X \rightarrow Y$ and for a nonempty collection $\mathscr{F}$ of subsets of $Y,{ }^{7}$

$$
\sigma\left(f^{-1}(\mathscr{F})\right)=f^{-1}(\sigma(\mathscr{F}))
$$

Therefore $\xi^{-1}\left(\mathscr{B}_{E}\right) \subset \mathscr{F}$, which means that $\xi:(\Omega, \mathscr{F}) \rightarrow\left(E, \mathscr{B}_{E}\right)$ is measurable. This means that a continuous stochastic proess with index set $[0,1]$ induces a random variable with state space $E$. Then the pushforward measure of $P$ by $\xi$ is a Borel probability measure on $E$. We shall end up constructing a sequence of pushforward measures from a sequence of continuous stochastic processes, that converge in $\mathscr{P}_{E}$ to Wiener measure $W$.

Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of independent identically distributed random variables on a sample space $(\Omega, \mathscr{F}, P)$ with $E\left(X_{n}\right)=0$ and $V\left(X_{n}\right)=1$, and let $S_{0}=0$ and

$$
S_{k}=\sum_{i=1}^{k} X_{i}
$$

Then $E\left(S_{k}\right)=0$ and $V\left(S_{k}\right)=k$. For $t \geq 0$ let

$$
Y_{t}=S_{[t]}+(t-[t]) X_{[t]+1} .
$$

[^3]Thus, for $k \geq 0$ and $k \leq t \leq k+1$,

$$
\begin{aligned}
Y_{t} & =S_{k}+(t-k) X_{k+1} \\
& =S_{k}+(t-k)\left(S_{k+1}-S_{k}\right) \\
& =(1-t+k) S_{k}+(t-k) S_{k+1}
\end{aligned}
$$

For each $\omega \in \Omega$, the map $t \mapsto Y_{t}(\omega)$ is piecewise linear, equal to $S_{k}(\omega)$ when $t=k$, and in particular it is continuous. For $n \geq 1$, define

$$
\begin{equation*}
X_{t}^{(n)}=n^{-1 / 2} Y_{n t}=n^{-1 / 2} S_{[n t]}+n^{-1 / 2}(n t-[n t]) X_{[n t]+1}, \quad t \in[0,1] \tag{1}
\end{equation*}
$$

For $0 \leq k \leq n$,

$$
X_{k / n}^{(n)}=n^{-1 / 2} S_{k}
$$

For each $n \geq 1,\left(X_{t}^{(n)}\right)_{t \in[0,1]}$ is a continuous stochastic process on the sample space $(\Omega, \mathscr{F}, P)$, and we denote by $P_{n} \in \mathscr{P}_{E}$ the pushforward measure of $P$ by $X^{(n)}$.

## 4 Donsker's theorem

Lemma 6. If $Z_{n}$ and $U_{n}$ are random variables with state space $\mathbb{R}^{d}$ such that $Z_{n} \rightarrow Z$ in distribution and $U_{n} \rightarrow 0$ in distribution, then $Z_{n}+U_{n} \rightarrow 0$ in distribution.

If $Z_{n}$ are random variables with state space $\mathbb{R}$ that converge in distribution to some random variable $Z$ and $c_{n}$ are real numbers that converge to some real number $c$, then $c_{n} Z_{n} \rightarrow c Z$ in distribution.

For $\sigma \geq 0$, let $\nu_{\sigma^{2}}$ be the Gaussian measure on $\mathbb{R}$ with mean 0 and variance $\sigma^{2}$. The characteristic function of $\nu_{\sigma^{2}}$ is, for $\sigma>0$,

$$
\widetilde{\nu}_{\sigma^{2}}(\xi)=\int_{\mathbb{R}} e^{i \xi x} d \nu_{\sigma^{2}}(x)=\int_{\mathbb{R}} e^{i \xi x} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}} d x=e^{-\frac{1}{2} \sigma^{2} \xi^{2}},
$$

and $\widetilde{\nu}_{0}(\xi)=1$. One checks that $c_{*} \nu_{1}=\nu_{c^{2}}$ for $c \geq 0$.
In following theorem and in what follows, $X^{(n)}$ is the piecewise linear stochastic process defined in (1). We prove that a sequence of finite-dimensional distributions converge to a Gaussian measure. ${ }^{8}$

Theorem 7. For $0 \leq t_{0}<t_{1}<t_{1}<\cdots<t_{d} \leq 1$, the random vectors

$$
\left(X_{t_{1}}^{(n)}-X_{t_{0}}^{(n)}, \ldots, X_{t_{d}}^{(n)}-X_{t_{d-1}}^{(n)}\right), \quad(\Omega, \mathscr{F}, P) \rightarrow\left(\mathbb{R}^{d}, \mathscr{B}_{\mathbb{R}}^{d}\right)
$$

converge in distribution to $\nu_{t_{1}-t_{0}} \otimes \cdots \otimes \nu_{t_{d}-t_{d-1}}$ as $n \rightarrow \infty$.

[^4]Proof. For $0<j \leq d$ and $n \geq 1$ let

$$
r_{j, n}=\frac{\left[n t_{j}\right]}{n}, \quad U_{j, n}=X_{t_{j}}^{(n)}-X_{r_{j, n}}^{(n)}
$$

and for $0 \leq j<d$ and $n \geq 1$ let

$$
s_{j, n}=\frac{\left\lceil n t_{j}\right\rceil}{n}, \quad V_{j, n}=X_{s_{j, n}}^{(n)}-X_{t_{j}}^{(n)}
$$

with which

$$
\begin{aligned}
\left(X_{t_{1}}^{(n)}-X_{t_{0}}^{(n)}, \ldots, X_{t_{d}}^{(n)}-X_{t_{d-1}}^{(n)}\right) & =\left(X_{r_{1, n}}^{(n)}-X_{s_{0, n}}^{(n)}, \ldots, X_{r_{d, n}}^{(n)}-X_{s_{d-1, n}}^{(n)}\right) \\
& +\left(U_{1, n}, \ldots, U_{d, n}\right)+\left(V_{0, n}, \ldots, V_{d-1, n}\right) .
\end{aligned}
$$

Because $E\left(X_{t}^{(n)}\right)=0$,

$$
E\left(U_{j, n}\right)=0, \quad E\left(V_{j, n}\right)=0
$$

Furthermore,

$$
\begin{aligned}
& V\left(U_{j, n}\right) \\
= & V\left(X_{t_{j}}^{(n)}-X_{r_{j, n}}^{(n)}\right) \\
= & n^{-1} V\left(S_{\left[n t_{j}\right]}+\left(n t_{j}-\left[n t_{j}\right]\right) X_{\left[n t_{j}\right]+1}-S_{\left[n r_{j, n}\right]}-\left(n r_{j, n}-\left[n r_{j, n}\right]\right) X_{\left[n r_{j, n}\right]+1}\right) \\
= & n^{-1} V\left(S_{\left[n t_{j}\right]}+\left(n t_{j}-\left[n t_{j}\right]\right) X_{\left[n t_{j}\right]+1}-S_{\left[n t_{j}\right]}-\left(\left[n t_{j}\right]-\left[n t_{j}\right]\right) X_{\left[n r_{j, n}\right]+1}\right) \\
= & n^{-1}\left(n t_{j}-\left[n t_{j}\right]\right)^{2} V\left(X_{\left[n t_{j}\right]+1}\right) \\
= & n^{-1}\left(n t_{j}-\left[n t_{j}\right]\right)^{2},
\end{aligned}
$$

and because $0 \leq n t_{j}-\left[n t_{j}\right]<1$ this tends to 0 as $n \rightarrow \infty$. Likewise, $V\left(V_{j, n}\right) \rightarrow 0$ as $n \rightarrow \infty$.

For $1 \leq j \leq d$,

$$
\begin{aligned}
X_{r_{j, n}}^{(n)}-X_{s_{j-1, n}}^{(n)} & =n^{-1 / 2} S_{\left[n r_{j, n}\right]}+n^{-1 / 2}\left(n r_{j, n}-\left[n r_{j, n}\right]\right) X_{\left[n r_{j, n}\right]+1} \\
& -n^{-1 / 2} S_{\left[n s_{j-1, n}\right]}-n^{-1 / 2}\left(n s_{j-1, n}-\left[n s_{j-1, n}\right]\right) X_{\left[n s_{j-1, n}\right]+1} \\
& =n^{-1 / 2} S_{\left[n t_{j}\right]}-n^{-1 / 2} S_{\left\lceil n t_{j-1}\right\rceil} \\
& =n^{-1 / 2} \frac{\left(\left[n t_{j}\right]-\left\lceil n t_{j-1}\right\rceil-1\right)^{1 / 2}}{\left(\left[n t_{j}\right]-\left\lceil n t_{j-1}\right\rceil-1\right)^{1 / 2}} \sum_{i=\left\lceil n t_{j-1}\right\rceil+1}^{\left[n t_{j}\right]} X_{i} .
\end{aligned}
$$

By the central limit theorem,

$$
\left(\left[n t_{j}\right]-\left\lceil n t_{j-1}\right\rceil-1\right)^{1 / 2} \sum_{i=\left\lceil n t_{j-1}\right\rceil+1}^{\left[n t_{j}\right]} X_{i} \rightarrow \nu_{1}
$$

in distribution as $n \rightarrow \infty$. But

$$
n^{-1 / 2}\left(\left[n t_{j}\right]-\left\lceil n t_{j-1}\right\rceil-1\right)^{1 / 2} \rightarrow\left(t_{j}-t_{j-1}\right)^{1 / 2}
$$

as $n \rightarrow \infty$, and $\left(t_{j}-t_{j-1}\right)_{*}^{1 / 2} \nu_{1}=\nu_{t_{j}-t_{j-1}}$, so by Lemma 6 ,

$$
X_{r_{j, n}}^{(n)}-X_{s_{j-1, n}}^{(n)} \rightarrow \nu_{t_{j}-t_{j-1}}
$$

in distribution as $n \rightarrow \infty$.
For sufficiently large $n$, depending on $t_{0}, \ldots, t_{d}$,

$$
t_{0} \leq s_{0, n}<r_{1, n} \leq t_{1} \leq s_{1, n}<r_{2, n} \leq \cdots \leq t_{d-1} \leq s_{d-1, n}<r_{d, n} \leq t_{d}
$$

Check that $\left(U_{1, n}, \ldots, U_{d, n}\right) \rightarrow 0$ in probability and that $\left(V_{0, n}, \ldots, V_{d-1, n}\right) \rightarrow 0$ in probability, and hence these random vectors converge to 0 in distribution as $n \rightarrow \infty$. The random variables $X_{r_{1, n}}^{(n)}-X_{s_{0, n}}^{(n)}, \ldots, X_{r_{d, n}}^{(n)}-X_{s_{d-1, n}}^{(n)}$ are independent, and therefore their joint distribution is equal to the product of their distributions. Now, if $\mu_{n}=\mu_{n}^{1} \otimes \cdots \otimes \mu_{n}^{d}$ and $\mu_{n}^{j} \rightarrow \mu^{j}$ as $n \rightarrow \infty, 1 \leq j \leq d$, then for $\xi \in \mathbb{R}^{d}$,

$$
\begin{aligned}
\widetilde{\mu}_{n}(\xi) & =\widetilde{\mu}_{n}^{1}\left(\xi_{1}\right) \cdots \widetilde{\mu}_{n}^{d}\left(\xi_{d}\right) \\
& \rightarrow \widetilde{\mu}^{1}\left(\xi_{1}\right) \cdots \widetilde{\mu}^{d}\left(\xi_{d}\right) \\
& =\left(\mu^{1} \otimes \cdots \otimes \mu^{d}\right)^{\sim}(\xi)
\end{aligned}
$$

as $n \rightarrow \infty$, and therefore by Lévy's continuity theorem, $\mu_{n} \rightarrow \mu^{1} \otimes \cdots \otimes \mu^{d}$ as $n \rightarrow \infty$. This means that the joint distribution of $X_{r_{1, n}}^{(n)}-X_{s_{0}, n}^{(n)}, \ldots, X_{r_{d, n}}^{(n)}-$ $X_{s_{d-1, n}}^{(n)}$ converges to

$$
\nu_{t_{1}-t_{0}} \otimes \cdots \otimes \nu_{t_{d}-t_{d-1}}
$$

as $n \rightarrow \infty$. Because $\left(U_{1, n}, \ldots, U_{d, n}\right) \rightarrow 0$ in distribution as $n \rightarrow \infty$ and $\left(V_{0, n}, \ldots, V_{d-1, n}\right) \rightarrow 0$ in distribution as $n \rightarrow \infty$, applying Lemma 6 we get that

$$
\left(X_{t_{1}}^{(n)}-X_{t_{0}}^{(n)}, \ldots, X_{t_{d}}^{(n)}-X_{t_{d-1}}^{(n)}\right) \rightarrow \nu_{t_{1}-t_{0}} \otimes \cdots \otimes \nu_{t_{d}-t_{d-1}}
$$

in distribution as $n \rightarrow \infty$, completing the proof.
Let $t_{0}=0$ and let $0<t_{1}<\cdots<t_{d} \leq 1$. As $X_{0}^{(n)}=0$, the above lemma tells us that

$$
\left(X_{t_{1}}^{(n)}, X_{t_{2}}^{(n)}-X_{t_{1}}^{(n)}, \ldots, X_{t_{d}}^{(n)}-X_{t_{d-1}}^{(n)}\right) \rightarrow \nu_{t_{1}} \otimes \nu_{t_{2}-t_{1}} \otimes \cdots \otimes \nu_{t_{d}-t_{d-1}}
$$

in distribution as $n \rightarrow \infty$. Define $g: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by

$$
g\left(x_{1}, x_{2}, \ldots, x_{d}\right)=\left(x_{1}, x_{1}+x_{2}, \ldots, x_{1}+x_{2}+\cdots+x_{d}\right) .
$$

The function $g$ is continuous and satisfies

$$
g \circ\left(X_{t_{1}}^{(n)}-X_{t_{0}}^{(n)}, \ldots, X_{t_{d}}^{(n)}-X_{t_{d-1}}^{(n)}\right)=\left(X_{t_{1}}^{(n)}, X_{t_{2}}^{(n)}, \ldots, X_{t_{d}}^{(n)}\right) .
$$

Then by the continuous mapping theorem,

$$
\begin{equation*}
\left(X_{t_{1}}^{(n)}, X_{t_{2}}^{(n)}, \ldots, X_{t_{d}}^{(n)}\right) \rightarrow g_{*}\left(\nu_{t_{1}} \otimes \nu_{t_{2}-t_{1}} \otimes \cdots \otimes \nu_{t_{d}-t_{d-1}}\right) \tag{2}
\end{equation*}
$$

in distribution as $n \rightarrow \infty .{ }^{9}$
We prove a result that we use to prove the next lemma, and that lemma is used in the proof of Donsker's theorem. ${ }^{10}$

Lemma 8. For $\epsilon>0$,

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{\delta} P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j}\right|>\epsilon n^{1 / 2}\right)=0 .
$$

Proof. For each $\delta>0$, by the central limit theorem,

$$
([n \delta]+1)^{-1 / 2} S_{[n \delta]+1} \rightarrow Z
$$

in distribution as $n \rightarrow \infty$, where $Z_{*} P=\nu_{1}$. Because $\frac{([n \delta]+1)^{1 / 2}}{(n \delta)^{1 / 2}} \rightarrow 1$ as $n \rightarrow \infty$, by Lemma 6 we then get that

$$
(n \delta)^{-1 / 2} S_{[n \delta]+1} \rightarrow Z
$$

in distribution as $n \rightarrow \infty$. Now let $\lambda>0$, and there is a sequence $\phi_{k}$ in $C_{b}(\mathbb{R})$ such that $\phi_{k} \downarrow 1_{(-\infty,-\lambda] \cup[\lambda, \infty)}=\chi_{\lambda}$ pointwise as $k \rightarrow \infty$. For each $k$, writing $X=S_{[n \delta]+1}$, using the change of variables formula,

$$
\begin{aligned}
P\left(|X| \geq \lambda(n \delta)^{1 / 2}\right) & =\int_{\Omega} \chi_{\lambda(n \delta)^{1 / 2}}(X(\omega)) d P(\omega) \\
& =\int_{\Omega} \chi_{\lambda}\left((n \delta)^{-1 / 2} X(\omega)\right) d P(\omega) \\
& \leq \int_{\Omega} \phi_{k}\left((n \delta)^{-1 / 2} X(\omega)\right) d P(\omega) \\
& =E\left(\phi_{k}\left((n \delta)^{-1 / 2} X\right)\right)
\end{aligned}
$$

Therefore, by the continuous mapping theorem,

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} P\left(\left|S_{[n \delta]+1}\right| \geq \lambda(n \delta)^{1 / 2}\right) & \leq \lim _{n \rightarrow \infty} E\left(\phi_{k}\left((n \delta)^{-1 / 2} S_{[n \delta]+1}\right)\right) \\
& =E\left(\phi_{k} \circ Z\right) .
\end{aligned}
$$

Because $\phi_{k} \downarrow \chi_{\lambda}$ pointwise as $k \rightarrow \infty$, using the monotone convergence theorem and then using Chebyshev's inequality,

$$
E\left(\phi_{k} \circ Z\right) \rightarrow E\left(\chi_{\lambda} \circ Z\right)=P(|Z| \geq \lambda) \leq \lambda^{-3} E|Z|^{3} .
$$

We have established that for each $\lambda>0$,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} P\left(\left|S_{[n \delta]+1}\right| \geq \lambda(n \delta)^{1 / 2}\right) \leq \lambda^{-3} E|Z|^{3} . \tag{3}
\end{equation*}
$$

[^5]
## Define

$$
\tau=\min \left\{j \geq 1:\left|S_{j}\right|>n^{1 / 2} \epsilon\right\}
$$

For $0<\delta<\epsilon^{2} / 2$, it is a fact that

$$
\begin{aligned}
& P\left(\max _{0 \leq j \leq[n \delta]+1}\left|S_{j}\right|>n^{1 / 2} \epsilon\right) \\
\leq & P\left(\left|S_{[n \delta]+1}\right| \geq n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)\right) \\
& +\sum_{j=1}^{[n \delta]} P\left(\left|S_{[n \delta]+1}\right|<n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right) \mid \tau=j\right) P(\tau=j) .
\end{aligned}
$$

If $\tau(\omega)=j$ and $\left|S_{[n \delta]+1}(\omega)\right|<n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)$ then

$$
\left|S_{j}(\omega)-S_{[n \delta]+1}(\omega)\right| \geq\left|S_{j}(\omega)\right|-\left|S_{[n \delta]+1}(\omega)\right|>n^{1 / 2} \epsilon-n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)=(2 n \delta)^{1 / 2}
$$

But by Chebyshev's inequality and the fact that the random variables $X_{1}, X_{2}, \ldots$ are independent with mean 0 and variance 1,

$$
P\left(\left|S_{j}-S_{[n \delta]+1}\right|>(2 n \delta)^{1 / 2}\right) \leq \frac{1}{2 n \delta} E\left(\left(S_{j}-S_{[n \delta]+1}\right)^{2}\right)=\frac{1}{2 n \delta}([n \delta]-j) \leq \frac{1}{2}
$$

so

$$
P\left(\left|S_{[n \delta]+1}(\omega)\right|<n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right) \mid \tau=j\right) \leq \frac{1}{2}
$$

Therefore,

$$
\begin{aligned}
& P\left(\max _{0 \leq j \leq[n \delta]+1}\left|S_{j}\right|>n^{1 / 2} \epsilon\right) \\
\leq & P\left(\left|S_{[n \delta]+1}\right| \geq n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)\right)+\sum_{j=1}^{[n \delta]} \frac{1}{2} \cdot P(\tau=j) \\
= & P\left(\left|S_{[n \delta]+1}\right| \geq n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)\right)+\frac{1}{2} P(\tau \leq[n \delta]) \\
= & P\left(\left|S_{[n \delta]+1}\right| \geq n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)\right)+\frac{1}{2} P\left(\max _{0 \leq j \leq[n \delta]+1}\left|S_{j}\right|>n^{1 / 2} \epsilon\right),
\end{aligned}
$$

so

$$
P\left(\max _{0 \leq j \leq[n \delta]+1}\left|S_{j}\right|>n^{1 / 2} \epsilon\right) \leq 2 P\left(\left|S_{[n \delta]+1}\right| \geq n^{1 / 2}\left(\epsilon-(2 \delta)^{1 / 2}\right)\right)
$$

Now using (3) with $\lambda=\left(\epsilon-(2 \delta)^{1 / 2}\right) \delta^{-1 / 2}$,

$$
\limsup _{n \rightarrow \infty} P\left(\left|S_{[n \delta]+1}\right| \geq\left(\epsilon-(2 \delta)^{1 / 2}\right) \delta^{-1 / 2}(n \delta)^{1 / 2}\right) \leq\left(\epsilon-(2 \delta)^{1 / 2}\right)^{-3} \delta^{3 / 2} E|Z|^{3}
$$

hence

$$
\limsup _{n \rightarrow \infty} P\left(\max _{0 \leq j \leq[n \delta]+1}\left|S_{j}\right|>n^{1 / 2} \epsilon\right) \leq 2\left(\epsilon-(2 \delta)^{1 / 2}\right)^{-3} \delta^{3 / 2} E|Z|^{3}
$$

Dividing both sides by $\delta$ and then taking $\delta \downarrow 0$ we obtain the claim.

We prove one more result that we use to prove Donsker's theorem. ${ }^{11}$
Lemma 9. For $T>0$ and $\epsilon>0$,

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\max _{0 \leq k \leq[n T]+1} \max _{1 \leq j \leq[n \delta]+1}\left|S_{j+k}-S_{k}\right|>n^{1 / 2} \epsilon\right)=0 .
$$

Proof. For $0<\delta \leq T$, let $m=\lceil T / \delta\rceil$, so $T / m<\delta \leq T /(m-1)$. Then

$$
\lim _{n \rightarrow \infty} \frac{[n T]+1}{[n \delta]+1}=\frac{T}{\delta}<m
$$

so for all $n \geq n_{\delta}$ it is the case that $[n T]+1<([n \delta]+1) m$. Suppose that $\omega \in \Omega$ is such that there are $1 \leq j \leq[n \delta]+1$ and $0 \leq k \leq[n T]+1$ satisfying

$$
\left|S_{j+k}(\omega)-S_{k}(\omega)\right|>n^{1 / 2} \epsilon,
$$

and then let $p=[k /([n \delta]+1)]$, which satisfies $0 \leq p \leq m-1$ and

$$
([n \delta]+1) p \leq k<([n \delta]+1)(p+1) .
$$

Because $1 \leq j \leq[n \delta]+1$, either

$$
([n \delta]+1) p<k+j \leq([n \delta]+1)(p+1)
$$

or

$$
([n \delta]+1)(p+1)<k+j<([n \delta]+1)(p+2) .
$$

We separate the first case into the cases

$$
\left|S_{k}(\omega)-S_{([n \delta]+1) p}(\omega)\right|>\frac{1}{2} n^{1 / 2} \epsilon
$$

and

$$
\left|S_{j+k}(\omega)-S_{([n \delta]+1) p}(\omega)\right|>\frac{1}{2} n^{1 / 2} \epsilon
$$

and we separate the second case into the cases

$$
\left|S_{k}-S_{([n \delta]+1) p}(\omega)\right|>\frac{1}{3} n^{1 / 2} \epsilon
$$

and

$$
\left|S_{([n \delta]+1) p}(\omega)-S_{([n \delta]+1)(p+1)}(\omega)\right|>\frac{1}{3} n^{1 / 2} \epsilon,
$$

and

$$
\left|S_{([n \delta]+1)(p+1)}(\omega)-S_{([n+\delta]+1)(p+2)}(\omega)\right|>\frac{1}{3} n^{1 / 2} \epsilon
$$

[^6]It follows that ${ }^{12}$

$$
\begin{aligned}
& \left\{\max _{1 \leq j \leq[n \delta]+1} \max _{0 \leq k \leq[n T]+1}\left|S_{j+k}-S_{k}\right|>n^{1 / 2} \epsilon\right\} \\
\subset & \bigcup_{p=0}^{m-1}\left\{\max _{1 \leq j \leq[n \delta]+1}\left|S_{j+([n \delta]+1) p}-S_{([n \delta]+1) p}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right\} .
\end{aligned}
$$

For $0 \leq p \leq m-1$,

$$
\begin{aligned}
& P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j+([n \delta]+1) p}-S_{([n \delta]+1) p}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right) \\
\leq & P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right)
\end{aligned}
$$

so

$$
\begin{aligned}
& P\left\{\max _{1 \leq j \leq[n \delta]+1} \max _{0 \leq k \leq[n T]+1}\left|S_{j+k}-S_{k}\right|>n^{1 / 2} \epsilon\right\} \\
\leq & \sum_{p=0}^{m-1} P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right) \\
= & m P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right) .
\end{aligned}
$$

Lemma 8 tells us

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{\delta} P\left(\max _{1 \leq j \leq[n \delta]+1}\left|S_{j}\right|>\frac{1}{3} n^{1 / 2} \epsilon\right)=0
$$

and because $m \leq \frac{T}{\delta}+1=\frac{T+\delta}{\delta}$,

$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left\{\max _{1 \leq j \leq[n \delta]+1} \max _{0 \leq k \leq[n T]+1}\left|S_{j+k}-S_{k}\right|>n^{1 / 2} \epsilon\right\}=0
$$

proving the claim.
In the following, $P_{n} \in \mathscr{P}_{E}$ denotes the pushforward measure of $P$ by $X^{(n)}$, for $X^{(n)}$ defined in (1). We now prove Donsker's theorem. ${ }^{13}$

Theorem 10 (Donsker's theorem). $P_{n} \rightarrow W$.
Proof. We shall use Theorem 3 to prove that $\Gamma=\left\{P_{n}: n \geq 1\right\}$ is relatively compact in $\mathscr{P}_{E}$. For $n \geq 1$,

$$
P_{n}(f \in E:|f(0)|=0)=P\left(\omega \in \Omega:\left|X_{0}^{(n)}(\omega)\right|=0\right)=1
$$

[^7]thus the first condition of Theorem 3 is satisfied with $M_{\epsilon}=0$. For the second condition of Theorem 3 to be satisfied it suffices that for each $\epsilon>0$,
$$
\lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\sup _{0 \leq s, t \leq 1,|s-t| \leq \delta}\left|X^{(n)}(s)-X^{(n)}(t)\right|>\epsilon\right)=0 .
$$

Now,
$P\left(\sup _{0 \leq s, t \leq 1,|s-t| \leq \delta}\left|X_{s}^{(n)}-X_{t}^{(n)}\right|>\epsilon\right)=P\left(\sup _{0 \leq s, t \leq n,|s-t| \leq n \delta}\left|Y_{s}-Y_{t}\right|>n^{1 / 2} \epsilon\right)$.
Also,

$$
\begin{aligned}
\sup _{0 \leq s, t \leq n,|s-t| \leq n \delta}\left|Y_{s}-Y_{t}\right| & \leq \sup _{0 \leq s, t \leq n,|s-t| \leq n \delta}\left|Y-s-Y_{t}\right| \\
& \leq \max _{1 \leq j \leq[n \delta]+1} \max _{0 \leq k \leq n+1}\left|S_{j+k}-S_{k}\right|,
\end{aligned}
$$

so applying Lemma 9,

$$
\begin{aligned}
& \lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\sup _{0 \leq s, t \leq 1,|s-t| \leq \delta}\left|X_{s}^{(n)}-X_{t}^{(n)}\right|>\epsilon\right) \\
\leq & \lim _{\delta \downarrow 0} \limsup _{n \rightarrow \infty} P\left(\max _{1 \leq j \leq[n \delta]+1} \max _{0 \leq k \leq n+1}\left|S_{j+k}-S_{k}\right|>n^{1 / 2} \epsilon\right) \\
\rightarrow & 0,
\end{aligned}
$$

from which we get that $\Gamma$ is tight in $\mathscr{P}_{E}$.


[^0]:    ${ }^{1}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 47, Chapter II, Theorem 6.7.
    ${ }^{2}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 213, Chapter VII, Lemma 2.2.

[^1]:    ${ }^{3}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 214, Chapter VII, Theorem 2.2.

[^2]:    ${ }^{4}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 212, Chapter VII, Theorem 2.1
    ${ }^{5}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 216, Chapter VII, Theorem 3.1
    ${ }^{6}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 218, Chapter VII, Theorem 3.2.

[^3]:    ${ }^{7}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 140, Lemma 4.23.

[^4]:    ${ }^{8}$ Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 368, §19.1, Lemma 1.

[^5]:    ${ }^{9}$ Allan Gut, Probability: A Graduate Course, second ed., p. 245, Chapter 5, Theorem 10.4. ${ }^{10}$ Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second ed., p. 68, Lemma 4.18.

[^6]:    ${ }^{11}$ Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second ed., p. 69, Lemma 4.19.

[^7]:    ${ }^{12}$ This should be worked out more carefully. In Karatzas and Shreve, there is $m+1$ where I have $m$.
    ${ }^{13}$ Ioannis Karatzas and Steven E. Shreve, Brownian Motion and Stochastic Calculus, second ed., p. 70, Theorem 4.20.

