The Dirac delta distribution and Green's functions

Jordan Bell

February 7, 2015
$1 \quad u_{s}(x)=|x|^{s}$
If $s \in \mathbb{C}$ and $\Re s \geq 2$, then $u_{s}(x)=|x|^{s}$ is in $C_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right) \cdot{ }^{1} \Delta: C_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right) \rightarrow C_{\mathrm{loc}}^{0}\left(\mathbb{R}^{n}\right)$ and, $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ and $|x|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$,

$$
\begin{aligned}
\left(\Delta u_{s}\right)(x) & =\Delta|x|^{s} \\
& =\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \frac{s}{2} \cdot 2 x_{i} \cdot\left(|x|^{2}\right)^{\frac{s}{2}-1} \\
& =\sum_{i=1}^{n}\left(\frac{s}{2} \cdot 2 \cdot\left(|x|^{2}\right)^{\frac{s}{2}-1}+\frac{s}{2}\left(\frac{s}{2}-1\right) \cdot\left(2 x_{i}\right)^{2} \cdot\left(|x|^{2}\right)^{\frac{s}{2}-2}\right) \\
& =n s \cdot|x|^{s-2}+s(s-2)|x|^{s-2} \\
& =s(s+n-2) \cdot|x|^{s-2} \\
& =s(s+n-2) \cdot u_{s-2}
\end{aligned}
$$

We take $n>2$ in the following.
Typically we talk about functions $\mathbb{C} \rightarrow \mathbb{C}$ that are holomorphic (or meromorphic if they are defined on a subset of \mathbb{C}). But we can also talk about functions $\mathbb{C} \rightarrow V$ that are holomorphic/meromorphic for certain types of topological vector spaces over \mathbb{C}. In particular, we can talk about holomorphic/meromorphic functions that take values in the tempered distributions on \mathbb{R}^{n}. If $\Re s>-n$, then u_{s} is locally integrable (for any point in \mathbb{R}^{n}, there is a neighborhood of the point on which u_{s} is L^{1}), and hence it is a tempered distribution for $\Re s>-n$. Thus for $\Re s>-n, \Delta u_{s}$ is a tempered distribution.

For $\Re s \geq 2$ we have

$$
u_{s-2}=\frac{\Delta u_{s}}{s(s+n-2)},
$$

and hence for $\Re s \geq 0$ we have

$$
u_{s}=\frac{\Delta u_{s+2}}{(s+2)(s+n)} .
$$

[^0]As u_{0} is a constant, $\Delta u_{0}=0$, and so $s-2$ is a removable singularity of the right-hand side. It follows that u_{s} is meromorphic and that its only possible pole is at $s=-n$. One iterates this argument and obtains that u_{s} is meromorphic on \mathbb{C}, with at most simple poles at $s=-n,-n-2,-n-4, \ldots$

Let $\gamma=e^{-|x|^{2}}$ and let f be a Schwartz function on \mathbb{R}^{n}. For $\Re s>-n-1$, we have $u_{s} \cdot(f-f(0) \gamma) \in L^{1}\left(\mathbb{R}^{n}\right)$ (the term $f-f(0) \gamma$ is certainly integrable at infinity and will still be integrable at infinity after being multiplied by $|x|^{s}$, and while $|x|^{s}$ might not be integrable at 0 , the term $f-f(0) \gamma$ goes to 0 like $\left.|x|^{2}\right)$. The tempered distribution u_{s} maps the Schwartz function $f-f(0) \gamma$ to

$$
u_{s}(f-f(0) \gamma)=\int_{\mathbb{R}^{n}}|x|^{s} \cdot(f(x)-f(0) \gamma(x)) d x
$$

In the above equation (for fixed f), the right-hand side is holomorphic for $\Re s>$ $-n-1$, thus so is the left. Hence the residue of the left side at $s=-n$ is 0 :

$$
\operatorname{Res}_{s=-n} u_{s}(f-f(0) \gamma)=0
$$

Thus

$$
\begin{aligned}
\operatorname{Res}_{s=-n} u_{s}(f) & =\operatorname{Res}_{s=-n} u_{s}(f-f(0) \gamma)+\operatorname{Res}_{s=-n} u_{s}(f(0) \gamma) \\
& =\operatorname{Res}_{s=-n} u_{s}(f(0) \gamma) \\
& =f(0) \operatorname{Res}_{s=-n} u_{s}(\gamma) \\
& =\delta(f) \operatorname{Res}_{s=-n} u_{s}(\gamma)
\end{aligned}
$$

Using polar coordinates, with $\sigma\left(S^{n-1}\right)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$,

$$
\begin{aligned}
\operatorname{Res}_{s=-n} u_{s}(\gamma) & =\operatorname{Res}_{s=-n} \int_{\mathbb{R}^{n}}|x|^{s} e^{-|x|^{2}} d x \\
& =\operatorname{Res}_{s=-n} \int_{0}^{\infty} \int_{S^{n-1}}\left|r x^{\prime}\right|^{s} e^{-\left|r x^{\prime}\right|^{2}} r^{n-1} d \sigma\left(x^{\prime}\right) d r \\
& =\sigma\left(S^{n-1}\right) \operatorname{Res}_{s=-n} \int_{0}^{\infty} r^{s+n-1} e^{-r^{2}} d r \\
& =\frac{\sigma\left(S^{n-1}\right)}{2} \operatorname{Res}_{s=-n} \int_{0}^{\infty} t^{\frac{s+n-2}{2}} e^{-t} d t \\
& =\frac{\sigma\left(S^{n-1}\right)}{2} \operatorname{Res}_{s=-n} \Gamma\left(\frac{s+n}{2}\right) .
\end{aligned}
$$

As $\Gamma(z+1)=z \Gamma(z)$,

$$
\begin{aligned}
\operatorname{Res}_{s=-n} u_{s}(\gamma) & =\frac{\sigma\left(S^{n-1}\right)}{2} \operatorname{Res}_{s=-n} \frac{2}{s+n} \\
& =\frac{\sigma\left(S^{n-1}\right)}{2} \cdot 2 \\
& =\sigma\left(S^{n-1}\right)
\end{aligned}
$$

Therefore for any Schwartz function f, we have

$$
\operatorname{Res}_{s=-n} u_{s}(f)=\sigma\left(S^{n-1}\right) \cdot \delta(f)
$$

hence

$$
\operatorname{Res}_{s=-n} u_{s}=\sigma\left(S^{n-1}\right) \cdot \delta
$$

We know that u_{s} has poles at most at $s=-n,-n-2,-n-4, \ldots$, and we have just explicitly found its residue at $s=-n$.

This fact has an important consequence. As u_{s} has a simple pole at $s=-n$, the value of $(s+n) u_{s}$ at $s=-n$ is $\operatorname{Res}_{s=-n} u_{s}$. But

$$
u_{s}=\frac{\Delta u_{s+2}}{(s+2)(s+n)}
$$

so

$$
\Delta u_{-n+2}=(-n+2) \cdot \sigma\left(S^{n-1}\right) \cdot \delta
$$

i.e.

$$
\Delta \frac{1}{|x|^{n-2}}=(-n+2) \cdot \sigma\left(S^{n-1}\right) \cdot \delta
$$

with $\sigma\left(S^{n-1}\right)=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$. Recall that we have assumed $n>2$. In other words, we have just determined the Green's function of the Laplace operator on \mathbb{R}^{n}, $n>2$.
$2 \quad w_{s}(x)=|x|^{s} \cdot \log |x|$
If $\Re s>2$, then $w_{s}(x)=|x|^{s} \cdot \log |x| \in C_{\mathrm{loc}}^{2}\left(\mathbb{R}^{2}\right)$. Let $u_{s}(x)=|x|^{s}$. We have

$$
\begin{aligned}
\left(\Delta w_{s}\right)(x)= & \frac{1}{2} \sum_{i=1}^{2} \frac{\partial^{2}}{\partial x_{i}^{2}}\left(\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}} \log \left(x_{1}^{2}+x_{2}^{2}\right)\right) \\
= & \frac{1}{2} \sum_{i=1}^{2} \frac{\partial}{\partial x_{i}}\left(\frac{s}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \cdot 2 x_{i} \cdot \log \left(x_{1}^{2}+x_{2}^{2}\right)\right. \\
& \left.+\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}} \cdot \frac{2 x_{i}}{x_{1}^{2}+x_{2}^{2}}\right) \\
= & \sum_{i=1}^{2} \frac{\partial}{\partial x_{i}}\left(\frac{s}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \cdot x_{i} \cdot \log \left(x_{1}^{2}+x_{2}^{2}\right)+\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \cdot x_{i}\right) \\
= & \sum_{i=1}^{2} \frac{s}{2}\left(\frac{s}{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-2} \cdot 2 x_{i}^{2} \cdot \log \left(x_{1}^{2}+x_{2}^{2}\right) \\
& +\frac{s}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \cdot \log \left(x_{1}^{2}+x_{2}^{2}\right)+\frac{s}{2}\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \frac{2 x_{i}^{2}}{x_{1}^{2}+x_{2}^{2}} \\
& +\left(\frac{s}{2}-1\right)\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-2} \cdot 2 x_{i}^{2}+\left(x_{1}^{2}+x_{2}^{2}\right)^{\frac{s}{2}-1} \\
= & \sum_{i=1}^{2} s(s-2)|x|^{s-4} \cdot x_{i}^{2} \cdot \log |x|+s|x|^{s-2} \cdot \log |x|+s|x|^{s-4} \cdot x_{i}^{2} \\
& +(s-2)|x|^{s-4} \cdot x_{i}^{2}+|x|^{s-2} \\
= & s(s-2)|x|^{s-2} \log |x|+2 s|x|^{s-2} \log |x|+s|x|^{s-2}+(s-2)|x|^{s-2}+2|x|^{s-2} \\
= & s^{2} w_{s-2}(x)+2 s u_{s-2}(x) .
\end{aligned}
$$

Hence

$$
\Delta w_{s}=s^{2} w_{s-2}+2 s u_{s-2}
$$

and so

$$
(s+2)^{2} w_{s}=-2(s+2) u_{s}+\Delta w_{s+2}
$$

We calculate

$$
\begin{aligned}
\int_{\mathbb{R}^{2}}|x|^{s} \log |x| e^{-|x|^{2}} d x & =\int_{0}^{\infty} \int_{S^{1}}\left|r x^{\prime}\right|^{s} \log \left|r x^{\prime}\right| e^{-\left|r x^{\prime}\right|^{2}} r d \sigma\left(x^{\prime}\right) d r \\
& =2 \pi \int_{0}^{\infty} r^{s+1} \cdot \log r \cdot e^{-r^{2}} d r \\
& =2 \pi \cdot \frac{1}{4} \Gamma\left(1+\frac{s}{2}\right) \psi\left(1+\frac{s}{2}\right)
\end{aligned}
$$

where $\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}$, namely the digamma function. Using $\Gamma(z+1)=z \Gamma(z)$ and

$$
\begin{aligned}
& \psi(z+1)=\psi(z)+\frac{1}{z}, \text { with } \gamma(x)=e^{-x^{2}} \\
& \operatorname{Res}_{s=-2}(s+2) w_{s}(\gamma)=\frac{\pi}{2} \cdot \operatorname{Res}_{s=-2}(s+2) \frac{1}{1+\frac{s}{2}}\left(\psi\left(1+\frac{s}{2}+1\right)-\frac{1}{1+\frac{s}{2}}\right) \\
&=\pi \cdot \operatorname{Res}_{s=-2}\left(-C-\frac{2}{s+2}\right) \\
&=-2 \pi
\end{aligned}
$$

where C is Euler's constant; it is a fact that $\psi(1)=-C .{ }^{2}$ Thus like in the previous section, if f is a Schwartz function then

$$
\operatorname{Res}_{s=-2}(s+2) w_{s}(f)=\delta(f) \operatorname{Res}_{s=-2}(s+2) w_{s}(\gamma)=-2 \pi \cdot \delta(f)
$$

Because

$$
(s+2)^{2} w_{s}=-2(s+2) u_{s}+\Delta w_{s+2}
$$

the value of $(s+2)^{2} w_{s}$ at $s=-2$ is $\Delta w_{0}-2 \cdot \operatorname{Res}_{s=-2} u_{s}$. On the other hand, the value of $(s+2)^{2} w_{s}$ at $s=-2$ is $\operatorname{Res}_{s=-2}(s+2) w_{s}=-2 \pi \cdot \delta$, hence

$$
\Delta w_{0}=-2 \pi \cdot \delta+2 \cdot \operatorname{Res}_{s=-2} u_{s}
$$

We can calculate $\operatorname{Res}_{s=-2} u_{s}$ just like in the previous section. If f is a Schwartz function and $\gamma=e^{-|x|^{2}}$, then

$$
\begin{aligned}
\operatorname{Res}_{s=-2} u_{s}(f) & =\delta(f) \operatorname{Res}_{s=-2} u_{s}(\gamma) \\
& =\delta(f) \operatorname{Res}_{s=-2} \frac{1}{2} \Gamma\left(1+\frac{s}{2}\right) \\
& =2 \pi \cdot \delta(f)
\end{aligned}
$$

Therefore

$$
\Delta w_{0}=2 \pi \cdot \delta
$$

i.e.,

$$
\Delta \log |x|=2 \pi \cdot \delta
$$

Recall that here $n=2$. In other words, we have just determined the Green's function of the Laplace operator on \mathbb{R}^{2}.

3 Dirac comb

Let $\mathbb{T}=\mathbb{R} / \mathbb{Z}$. On \mathbb{R}^{n}, tempered distributions integrate against a larger class of functions than do distributions, so it's stronger to be a tempered distribution. But on \mathbb{T}, any Schwartz function has compact support, and moreover, any C^{∞}

[^1]function on \mathbb{T} is a Schwartz function. Thus distributions on \mathbb{T} integrate smooth functions on \mathbb{T}. For $\Re s>2$, define the following distribution on \mathbb{T} :
$$
u_{s}=\sum_{\substack{0<\frac{p}{q} \leq 1 \\ \operatorname{gcd}(p, q)=1}} \frac{1}{q^{s}} \cdot \delta_{p / q} .
$$

Why is this in fact a distribution? If $f \in C^{\infty}(\mathbb{T})$ then f is certainly bounded (indeed, u_{s} can take any continuous function on \mathbb{T} as an argument, not just smooth functions). Let $|f(t)| \leq K$ for all $t \in \mathbb{T}$. Then,

$$
\left|u_{s}(f)\right| \leq K \sum_{\substack{0<\frac{p}{q} \leq 1 \\ \operatorname{gcd}(p, q)=1}} \frac{1}{q^{\Re s}}<K \sum_{q=1}^{\infty} \frac{q}{q^{\Re s}}
$$

Since $\Re s>2$, this series converges.
Doing some series manipulations we get (probably the hardest step to see is that summing over the products of d and q is the same as summing over q and then over those d that divide it)

$$
\begin{aligned}
\zeta(s) \cdot u_{s} & =\sum_{d \geq 1} \frac{1}{d^{s}} \sum_{q \geq 1} \frac{1}{q^{s}} \sum_{\substack{0<p \leq q \\
\operatorname{gcd}(p, q)=1}} \delta_{p / q} \\
& =\sum_{d \geq 1} \sum_{q \geq 1} \frac{1}{(q d)^{s}} \sum_{\substack{0<p d \leq q d \\
\operatorname{gcd}(p d, q d)=d}} \delta_{\frac{d p}{d q}} \\
& =\sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{\substack{d \mid q \\
d \geq 1}} \sum_{\substack{0<p \leq q \\
\operatorname{gcd}(p, q)=d}} \delta_{p / q} \\
& =\sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{0<p \leq q} \delta_{p / q} \\
& =v_{s} .
\end{aligned}
$$

(The last equality is a definition.) To summarize: $\zeta(s) \cdot u_{s}=v_{s}$.
Supposing we are interested in u_{s}, using the above formula we can instead investigate v_{s}, which for some purposes is more analytically tractable. We shall determine the Fourier series of v_{s}. For $\Re s>2$ and for $n \in \mathbb{Z}$ (recalling that v_{s} is a distribution, i.e. it integrates functions)

$$
\begin{aligned}
\widehat{v}_{s}(n) & =v_{s}\left(e^{-2 \pi i n x}\right) \\
& =\sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{0<p \leq q} \delta_{p / q}\left(e^{-2 \pi i n x}\right) \\
& =\sum_{q=1}^{\infty} \frac{1}{q^{s}} \sum_{0<p \leq q} e^{-2 \pi i n p / q}
\end{aligned}
$$

$p \mapsto e^{-2 \pi i n p / q}, \mathbb{Z} / q \rightarrow \mathbb{C}$, is a character, and, unless it is the trivial character, the sum over \mathbb{Z} / q is equal to 0 . So if $q \nmid n$ then the inner sum is 0 , and if $q \mid n$ then the inner sum is equal to q. (If the language of characters of \mathbb{Z} / q isn't familiar, you can check this fact directly; to show the inner sum is 0 , you show that the inner sum is equal to itself times something that is nonzero.) Thus

$$
\widehat{v}_{s}(n)=\sum_{\substack{q \mid n \\ q \geq 1}} \frac{1}{q^{s-1}}
$$

For $n=0$, we get

$$
\widehat{v}_{s}(0)=\zeta(s-1) .
$$

Otherwise, the above can be written using a standard arithmetic function, the sum of powers of positive divisors. Let $\sigma_{\alpha}(n)$ denote the sum of the α th powers of the positive divisors of n. Thus for $n \neq 0$ we have

$$
\widehat{v}_{s}(n)=\sigma_{1-s}(n)
$$

Using $\zeta(s) \cdot u_{s}=v_{s}$ we get

$$
\widehat{u}_{s}(n)= \begin{cases}\frac{\zeta(s-1)}{\zeta(s)} & n=0 \\ \frac{\sigma_{1-s}(n)}{\zeta(s)} & n \neq 0\end{cases}
$$

The expression on the right-hand side has poles at $s=2$ and at the zeros of the Riemann zeta function. Otherwise, for a fixed s, the right-hand side has at most polynomial growth in n, and therefore it is the Fourier series of a distribution on \mathbb{T} (see Katznelson, p. 48, Chapter 1, Exercise 7.5), and for $\Re s \leq 2$ we shall define u_{s} to be this distribution. In summary: u_{s} is originally defined as a distribution for $\Re s>2$, and now we have defined it to be a distribution for $s \neq 2$ and $\zeta(s) \neq 0$. Thus u_{s} is a meromorphic distribution valued functions on \mathbb{C} with poles at $s=2$ and at the zeros of the Riemann zeta function.

Since $\zeta(1)=\infty$, if $n \neq 0$ then $\widehat{u}_{1}(n)=0$. The only pole of the Riemann zeta function is at $s=1$, hence $\zeta(0) / \zeta(1)=0$. Thus $\widehat{u}_{1}(0)=0$, and it follows that as a distribution on \mathbb{T},

$$
u_{1}=0
$$

(although the distribution u_{1} is 0 , this doesn't mean that we can put $s=1$ into the original definition of u_{s} and assert that this is 0 , as the original definition of u_{s} was only for $\Re s>2$, and we have analytically continued u_{s} as a meromorphic distribution valued function on \mathbb{C}. Likewise, although $\zeta(0)=-\frac{1}{2}$, it is incorrect to conclude that $1+1+1+\cdots=-\frac{1}{2}$, although for certain formal arguments this may be a correct interpretation.).

[^0]: ${ }^{1}$ This is all an expansion and gloss on Paul Garrett's note Meromorphic continuations of distributions, which is on his homepage.

[^1]: ${ }^{2}$ Historical note: In the papers of Euler's that I've seen where he mentions the Euler constant, the notation he uses is either C or O, not once the modern γ.

