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1 us(x) = |x|s

If s ∈ C and ℜs ≥ 2, then us(x) = |x|s is in C2
loc(Rn).1 ∆ : C2

loc(Rn) → C0
loc(Rn)

and, ∆ =
∑n

i=1
∂2

∂x2
i
and |x|2 = x21 + · · ·+ x2n,

(∆us)(x) = ∆|x|s

=

n∑
i=1

∂

∂xi

s

2
· 2xi · (|x|2)

s
2−1

=

n∑
i=1

(s
2
· 2 · (|x|2) s

2−1 +
s

2

(s
2
− 1

)
· (2xi)2 · (|x|2)

s
2−2

)
= ns · |x|s−2 + s(s− 2)|x|s−2

= s(s+ n− 2) · |x|s−2

= s(s+ n− 2) · us−2.

We take n > 2 in the following.
Typically we talk about functions C → C that are holomorphic (or meromor-

phic if they are defined on a subset of C). But we can also talk about functions
C → V that are holomorphic/meromorphic for certain types of topological vec-
tor spaces over C. In particular, we can talk about holomorphic/meromorphic
functions that take values in the tempered distributions on Rn. If ℜs > −n,
then us is locally integrable (for any point in Rn, there is a neighborhood of the
point on which us is L1), and hence it is a tempered distribution for ℜs > −n.
Thus for ℜs > −n, ∆us is a tempered distribution.

For ℜs ≥ 2 we have

us−2 =
∆us

s(s+ n− 2)
,

and hence for ℜs ≥ 0 we have

us =
∆us+2

(s+ 2)(s+ n)
.

1This is all an expansion and gloss on Paul Garrett’s note Meromorphic continuations of
distributions, which is on his homepage.
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As u0 is a constant, ∆u0 = 0, and so s − 2 is a removable singularity of the
right-hand side. It follows that us is meromorphic and that its only possible pole
is at s = −n. One iterates this argument and obtains that us is meromorphic
on C, with at most simple poles at s = −n,−n− 2,−n− 4, . . ..

Let γ = e−|x|2 and let f be a Schwartz function on Rn. For ℜs > −n − 1,
we have us · (f − f(0)γ) ∈ L1(Rn) (the term f − f(0)γ is certainly integrable at
infinity and will still be integrable at infinity after being multiplied by |x|s, and
while |x|s might not be integrable at 0, the term f − f(0)γ goes to 0 like |x|2).
The tempered distribution us maps the Schwartz function f − f(0)γ to

us(f − f(0)γ) =

∫
Rn

|x|s · (f(x)− f(0)γ(x))dx.

In the above equation (for fixed f), the right-hand side is holomorphic for ℜs >
−n− 1, thus so is the left. Hence the residue of the left side at s = −n is 0:

Ress=−nus(f − f(0)γ) = 0.

Thus

Ress=−nus(f) = Ress=−nus(f − f(0)γ) + Ress=−nus(f(0)γ)

= Ress=−nus(f(0)γ)

= f(0)Ress=−nus(γ)

= δ(f)Ress=−nus(γ).

Using polar coordinates, with σ(Sn−1) = 2πn/2

Γ(n/2) ,

Ress=−nus(γ) = Ress=−n

∫
Rn

|x|se−|x|2dx

= Ress=−n

∫ ∞

0

∫
Sn−1

|rx′|se−|rx′|2rn−1dσ(x′)dr

= σ(Sn−1)Ress=−n

∫ ∞

0

rs+n−1e−r2dr

=
σ(Sn−1)

2
Ress=−n

∫ ∞

0

t
s+n−2

2 e−tdt

=
σ(Sn−1)

2
Ress=−nΓ(

s+ n

2
).

As Γ(z + 1) = zΓ(z),

Ress=−nus(γ) =
σ(Sn−1)

2
Ress=−n

2

s+ n

=
σ(Sn−1)

2
· 2

= σ(Sn−1).
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Therefore for any Schwartz function f , we have

Ress=−nus(f) = σ(Sn−1) · δ(f),

hence
Ress=−nus = σ(Sn−1) · δ.

We know that us has poles at most at s = −n,−n− 2,−n− 4, . . ., and we have
just explicitly found its residue at s = −n.

This fact has an important consequence. As us has a simple pole at s = −n,
the value of (s+ n)us at s = −n is Ress=−nus. But

us =
∆us+2

(s+ 2)(s+ n)
,

so
∆u−n+2 = (−n+ 2) · σ(Sn−1) · δ,

i.e.

∆
1

|x|n−2
= (−n+ 2) · σ(Sn−1) · δ,

with σ(Sn−1) = 2πn/2

Γ(n/2) . Recall that we have assumed n > 2. In other words,

we have just determined the Green’s function of the Laplace operator on Rn,
n > 2.
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2 ws(x) = |x|s · log |x|
If ℜs > 2, then ws(x) = |x|s · log |x| ∈ C2

loc(R2). Let us(x) = |x|s. We have

(∆ws)(x) =
1

2

2∑
i=1

∂2

∂x2i

(
(x21 + x22)

s
2 log(x21 + x22)

)
=

1

2

2∑
i=1

∂

∂xi

(s
2
(x21 + x22)

s
2−1 · 2xi · log(x21 + x22)

+(x21 + x22)
s
2 · 2xi

x21 + x22

)
=

2∑
i=1

∂

∂xi

(s
2
(x21 + x22)

s
2−1 · xi · log(x21 + x22) + (x21 + x22)

s
2−1 · xi

)
=

2∑
i=1

s

2

(s
2
− 1

)
(x21 + x22)

s
2−2 · 2x2i · log(x21 + x22)

+
s

2
(x21 + x22)

s
2−1 · log(x21 + x22) +

s

2
(x21 + x22)

s
2−1 2x2i

x21 + x22

+
(s
2
− 1

)
(x21 + x22)

s
2−2 · 2x2i + (x21 + x22)

s
2−1

=

2∑
i=1

s(s− 2)|x|s−4 · x2i · log |x|+ s|x|s−2 · log |x|+ s|x|s−4 · x2i

+(s− 2)|x|s−4 · x2i + |x|s−2

= s(s− 2)|x|s−2 log |x|+ 2s|x|s−2 log |x|+ s|x|s−2 + (s− 2)|x|s−2 + 2|x|s−2

= s2ws−2(x) + 2sus−2(x).

Hence
∆ws = s2ws−2 + 2sus−2,

and so
(s+ 2)2ws = −2(s+ 2)us +∆ws+2.

We calculate∫
R2

|x|s log |x|e−|x|2dx =

∫ ∞

0

∫
S1

|rx′|s log |rx′|e−|rx′|2rdσ(x′)dr

= 2π

∫ ∞

0

rs+1 · log r · e−r2dr

= 2π · 1
4
Γ
(
1 +

s

2

)
ψ
(
1 +

s

2

)
,

where ψ(z) = Γ′(z)
Γ(z) , namely the digamma function. Using Γ(z+1) = zΓ(z) and
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ψ(z + 1) = ψ(z) + 1
z , with γ(x) = e−x2

,

Ress=−2(s+ 2)ws(γ) =
π

2
· Ress=−2(s+ 2)

1

1 + s
2

(
ψ
(
1 +

s

2
+ 1

)
− 1

1 + s
2

)
= π · Ress=−2

(
−C − 2

s+ 2

)
= −2π,

where C is Euler’s constant; it is a fact that ψ(1) = −C.2 Thus like in the
previous section, if f is a Schwartz function then

Ress=−2(s+ 2)ws(f) = δ(f)Ress=−2(s+ 2)ws(γ) = −2π · δ(f).

Because
(s+ 2)2ws = −2(s+ 2)us +∆ws+2,

the value of (s+ 2)2ws at s = −2 is ∆w0 − 2 · Ress=−2us. On the other hand,
the value of (s+ 2)2ws at s = −2 is Ress=−2(s+ 2)ws = −2π · δ, hence

∆w0 = −2π · δ + 2 · Ress=−2us.

We can calculate Ress=−2us just like in the previous section. If f is a Schwartz

function and γ = e−|x|2 , then

Ress=−2us(f) = δ(f)Ress=−2us(γ)

= δ(f)Ress=−2
1

2
Γ
(
1 +

s

2

)
= 2π · δ(f).

Therefore
∆w0 = 2π · δ,

i.e.,
∆ log |x| = 2π · δ.

Recall that here n = 2. In other words, we have just determined the Green’s
function of the Laplace operator on R2.

3 Dirac comb

Let T = R/Z. On Rn, tempered distributions integrate against a larger class of
functions than do distributions, so it’s stronger to be a tempered distribution.
But on T, any Schwartz function has compact support, and moreover, any C∞

2Historical note: In the papers of Euler’s that I’ve seen where he mentions the Euler
constant, the notation he uses is either C or O, not once the modern γ.
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function on T is a Schwartz function. Thus distributions on T integrate smooth
functions on T. For ℜs > 2, define the following distribution on T:

us =
∑

0<
p
q
≤1

gcd(p,q)=1

1

qs
· δp/q.

Why is this in fact a distribution? If f ∈ C∞(T) then f is certainly bounded
(indeed, us can take any continuous function on T as an argument, not just
smooth functions). Let |f(t)| ≤ K for all t ∈ T. Then,

|us(f)| ≤ K
∑

0<
p
q
≤1

gcd(p,q)=1

1

qℜs
< K

∞∑
q=1

q

qℜs
.

Since ℜs > 2, this series converges.
Doing some series manipulations we get (probably the hardest step to see is

that summing over the products of d and q is the same as summing over q and
then over those d that divide it)

ζ(s) · us =
∑
d≥1

1

ds

∑
q≥1

1

qs

∑
0<p≤q

gcd(p,q)=1

δp/q

=
∑
d≥1

∑
q≥1

1

(qd)s

∑
0<pd≤qd

gcd(pd,qd)=d

δ dp
dq

=

∞∑
q=1

1

qs

∑
d|q
d≥1

∑
0<p≤q

gcd(p,q)=d

δp/q

=

∞∑
q=1

1

qs

∑
0<p≤q

δp/q

= vs.

(The last equality is a definition.) To summarize: ζ(s) · us = vs.
Supposing we are interested in us, using the above formula we can instead

investigate vs, which for some purposes is more analytically tractable. We shall
determine the Fourier series of vs. For ℜs > 2 and for n ∈ Z (recalling that vs
is a distribution, i.e. it integrates functions)

v̂s(n) = vs(e
−2πinx)

=

∞∑
q=1

1

qs

∑
0<p≤q

δp/q(e
−2πinx)

=

∞∑
q=1

1

qs

∑
0<p≤q

e−2πinp/q.
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p 7→ e−2πinp/q, Z/q → C, is a character, and, unless it is the trivial character,
the sum over Z/q is equal to 0. So if q ̸ |n then the inner sum is 0, and if q|n
then the inner sum is equal to q. (If the language of characters of Z/q isn’t
familiar, you can check this fact directly; to show the inner sum is 0, you show
that the inner sum is equal to itself times something that is nonzero.) Thus

v̂s(n) =
∑
q|n
q≥1

1

qs−1
.

For n = 0, we get
v̂s(0) = ζ(s− 1).

Otherwise, the above can be written using a standard arithmetic function, the
sum of powers of positive divisors. Let σα(n) denote the sum of the αth powers
of the positive divisors of n. Thus for n ̸= 0 we have

v̂s(n) = σ1−s(n).

Using ζ(s) · us = vs we get

ûs(n) =

{
ζ(s−1)
ζ(s) n = 0,

σ1−s(n)
ζ(s) n ̸= 0.

The expression on the right-hand side has poles at s = 2 and at the zeros of the
Riemann zeta function. Otherwise, for a fixed s, the right-hand side has at most
polynomial growth in n, and therefore it is the Fourier series of a distribution
on T (see Katznelson, p. 48, Chapter 1, Exercise 7.5), and for ℜs ≤ 2 we shall
define us to be this distribution. In summary: us is originally defined as a
distribution for ℜs > 2, and now we have defined it to be a distribution for
s ̸= 2 and ζ(s) ̸= 0. Thus us is a meromorphic distribution valued functions on
C with poles at s = 2 and at the zeros of the Riemann zeta function.

Since ζ(1) = ∞, if n ̸= 0 then û1(n) = 0. The only pole of the Riemann zeta
function is at s = 1, hence ζ(0)/ζ(1) = 0. Thus û1(0) = 0, and it follows that
as a distribution on T,

u1 = 0

(although the distribution u1 is 0, this doesn’t mean that we can put s = 1 into
the original definition of us and assert that this is 0, as the original definition of
us was only for ℜs > 2, and we have analytically continued us as a meromorphic
distribution valued function on C. Likewise, although ζ(0) = − 1

2 , it is incorrect
to conclude that 1 + 1 + 1 + · · · = − 1

2 , although for certain formal arguments
this may be a correct interpretation.).
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