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1 Dirichlet’s approximation theorem

Let m ≥ 1, and for v ∈ Rm write

|v|∞ = max{|vj | : 1 ≤ j ≤ m}.

For a positive integer r, let

Vr = {k ∈ Zm : 0 < |k|∞ ≤ r},

which has Nr = (2r + 1)m − 1 elements. For any k ∈ Vr,

| ⟨v, k⟩ | ≤ m|k|∞|v|∞ ≤ mr|v|∞,

Let I1, . . . , INr−1 be consecutive closed intervals with

[0,mr|v|∞] =

Nr−1⋃
j=1

Ij .

Then there is some j and some k′, k′′ ∈ Vr, k
′ ̸= k′′, with | ⟨v, k′⟩ |, | ⟨v, k′′⟩ | ∈ Ij .

If ⟨v, k′⟩ , ⟨v, k′′⟩ have the same sign, then k = k′ − k′′ satisfies | ⟨v, k⟩ | ≤ |Ij |,
and if ⟨v, k′⟩ , ⟨v, k′′⟩ have different signs then k = k′+k′′ satisfies | ⟨v, k⟩ | ≤ |Ij |.
In either case, k ∈ V2r, and k satisfies

| ⟨v, k⟩ | ≤ |Ij | =
mr|v|∞
Nr − 1

=
mr|v|∞

(2r + 1)m − 2
.

2 Diophantine vectors

For real τ, γ > 0, let D(τ, γ) be the set of those v ∈ Rm such that for any
nonzero k ∈ Zm,

| ⟨v, k⟩ | ≥ γ|k|−τ
∞ .

In other words,

D(τ, γ) =
⋂

k∈Zm\{0}

{v ∈ Rm : | ⟨v, k⟩ | ≥ γ|k|−τ
∞ } =

⋂
k∈Zm\{0}

D(τ, γ, k).
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Each D(τ, γ, k) is closed, so D(τ, γ) is closed. Let

D(τ) =
⋃
γ>0

D(τ, γ).

If γ1 ≥ γ2 and v ∈ D(τ, γ1), let k ∈ Zm\{0}. Then | ⟨v, k⟩ | ≥ γ1|k|−τ
∞ ≥ γ2|k|−τ

∞ ,
so v ∈ D(τ, γ2), i.e.

D(τ, γ1) ⊂ D(τ, γ2), γ1 ≥ γ2.

Therefore
D(τ,N−1

1 ) ⊂ D(τ,N−1
2 ) N1 ≤ N2,

and
D(τ) =

⋃
N≥1

D(τ,N−1),

showing that D(τ) is an Fσ set.
If 0 ≤ τ < m − 1 and γ > 0, suppose by contradiction that there is some

v ∈ D(τ, γ). Now, by Dirichlet’s theorem, for each positive integer r there is
some kr ∈ V2r satisfying | ⟨v, kr⟩ | ≤ m|v|∞2−mr−m+1. Then, as |kr|∞ ≤ 2r,

m|v|∞2−mr−m+1 ≥ | ⟨v, kr⟩ | ≥ γ|kr|−τ
∞ ≥ γ(2r)−τ = γ(2r)τ−m+1(2r)m−1,

hence

(2r)−τ+m−1 ≥ 2

cm|v|∞
.

As τ < m− 1, taking r → ∞ yields a contradiction. Therefore

D(τ) = ∅, 0 ≤ τ < m− 1.

3 Measures of sets

Denote by µ Lebesgue measure on Rm. Let e1, . . . , em be the standard basis for
Rm, so

|v|1 =

m∑
j=1

|vj | =
m∑
j=1

| ⟨v, ej⟩ |.

Let C = {v ∈ Rm : |v|∞ ≤ 1}. Let Am be the supremum of the (m − 1)-
dimensional Hausdorff measure of the intersection of an (n − 1)-dimensional
affine subspace of Rm and C.

We calculate the following.1

Theorem 1. For τ > m− 1 and γ > 0,

µ(C \D(τ, γ)) ≤ 4γmAm3m−1ζ(τ + 2−m).

1Dmitry Treschev and Oleg Zubelevich, Introduction to the Perturbation Theory of Hamil-
tonian Systems, p. 166, Theorem 9.3.
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Proof. Let k ∈ Zm \ {0}, and for t ∈ R, let

Pk,t = {x ∈ Rm : ⟨x, k⟩ = t},

and let
Uk =

{
x ∈ Rm : | ⟨x, k⟩ | < γ|k|−τ

∞
}
.

U is the set of points between the hyperplanes Pk,−γ|k|−τ
∞

and Pk,γ|k|−τ
∞

. The

distance between the hyperplanes Pk,s and Pk,s is
|s−t|
|k|2 , so the distance between

the hyperplanes Pk,−γ|k|−τ
∞

and Pk,γ|k|−τ
∞

is dk =
2γ|k|−τ

∞
|k|2 . And |x|2 ≥ |x|∞, so

dk ≤ 2γ|k|−τ−1
∞ . But µ(C ∩ Uk) ≤ dAm, so

µ(C ∩ U) ≤ 2γ|k|−τ−1
∞ Am.

Now, Uk = Rm \D(τ, γ, k), so

C \D(τ, γ) = C \
⋂

k∈Zm\{0}

D(τ, γ, k) =
⋃

k∈Zm\{0}

(C ∩ Uk).

We remind ourselves that for r a positive integer, the set Vr = {k ∈ Zm : 0 <
|k|∞ ≤ r} has Nr = (2r + 1)m − 1 elements. Therefore

{k ∈ Zm \ {0} : |k|∞ = r} = Vr \ Vr−1

has
Nr −Nr−1 = (2r + 1)m − (2r − 1)m ≤ 2m(2r + 3)m−1

elements, using am−bm = (a−b)(am−1+am−2b+· · ·+abm−2+bm−1). Therefore

µ(C \D(τ, γ)) ≤
∑

k∈Zm\{0}

µ(C ∩ Uk)

≤
∑

k∈Zm\{0}

2γ|k|−τ−1
∞ Am

= 2γAm

∞∑
r=1

∑
{k∈Zm\{0}:|k|∞=r}

r−τ−1

≤ 2γAm

∞∑
r=1

2m(2r + 1)m−1 · r−τ−1

= 4γmAm

∞∑
r=1

(2r + 1)m−1r−τ−1.

We estimate
∞∑
r=1

(2r + 1)m−1r−τ−1 ≤
∞∑
r=1

(3r)m−1r−τ−1 = 3m−1
∞∑
r=1

rm−τ−2,

and therefore

µ(C \D(τ, γ)) ≤ 4γmAm · 3m−1ζ(τ + 2−m).
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But
C \D(τ) =

⋂
N≥1

(C \D(τ,N−1)),

and by Theorem 1, if τ > m − 1 then µ(C \ D(τ,N−1)) → 0 as N → ∞.
Therefore

µ(C ∩D(τ)) = 0, τ > m− 1.

4 Cohomological equation

Let Tm = {z ∈ Cm : |z1| = 1, . . . , |zm| = 1} and write ν for the Haar measure

on Tm for which ν(Tm) = 1. For k ∈ Zm let χk(z) =
∏m

j=1 z
kj

j . Let ∆(τ, γ) be
the set of those z ∈ Tm such that

|χk(z)− 1| ≥ γ|k|−τ
1 , k ∈ Zm \ {0}.

Let
∆(τ) =

⋃
γ>0

∆(τ, γ),

and then
∆ =

⋃
τ>0

∆(τ).

For λ ∈ Tm define Rλ : Tm → Tm by

Rλ(z) = λ · z = (λ1z1, . . . , λmzm).

In the following theorem, (1) is called a cohomological equation.2

Theorem 2. For λ ∈ Tm, λ ∈ ∆ if and only if for any h ∈ C∞(Tm) there is
some ψ ∈ C∞(Tm) such that

h(z)−
∫
Tm

hdν = ψ(Rλz)− ψ(z), z ∈ Tm. (1)

Proof. It is a fact that χk ∈ T̂m and that k 7→ χk is an isomorphism of topo-
logical groups Zd → T̂m. For f ∈ L1(ν), f̂ : Zm → C is defined by

f̂(k) =

∫
Tm

f(z)χk(z)dν(z) =

∫
Tm

f(z)χk(z)
−1dν(z).

If the Fourier series of f converges pointwise,

f(z) =
∑
k∈Zm

f̂(k)χk(z), z ∈ Tm.

2Anatole Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, p. 71,
Theorem 11.5.
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It is a fact that f ∈ C∞(Tm) if and only if for any R > 0 there is some CR such
that

|f̂(k)| ≤ CR|k|−R
1 , k ∈ Zm \ {0}.

For ψ ∈ L1(Tm) and k ∈ Tm, because ν is invariant under multiplication in Tm,

ψ̂ ◦Rλ(k) =

∫
Tm

ψ(λz)χk(z)dν(z)

=

∫
Tm

ψ(z)χk(λ−1x)dν(z)

= χk(λ)ψ̂(k).

Suppose that for every h is C∞ that there is some ψ ∈ C∞(Tm) satisfying
(1). Taking the Fourier transform of (1),

ĥ(k)− δ0(k) ·
∫
Tm

hdν = χk(λ)ψ̂(k)− ψ̂(k), k ∈ Zm,

then, if χk(λ) ̸= 1,

ψ̂(k) =
ĥ(k)

χk(λ)− 1
.

Now suppose by contradiction that λ ̸∈ ∆. This means that there are τN → ∞
such that for each N , there is some γN > 0 and some kN ∈ Zm \ {0} such that
|χkN

(λ)− 1| < γN |kN |−τN
1 . Define

ĥ(k) = |χk(λ)− 1|1/2 · 1{kN}(k).

For R > 0 let τN ≥ 2R. Then for k ∈ Zm, either ĥ(k) = 0 or if k = kN then

|ĥ(k)| = |χkN
(λ)− 1|1/2 < γ

1/2
N |kN |−τN/2

1 ≤ γ
1/2
N |kN |−R

1 = γ
1/2
N |k|−R

1 ,

which shows that h is C∞. There is some ψ ∈ C∞(Tm) satisfying (1), according
to which, for χk(λ) ̸= 1,

ψ̂(k) =
ĥ(k)

χk(λ)− 1
.

But |ψ̂(k)| is either 0 or if k = kN then |χkN
(λ)−1|−1/2 > γ

−1/2
N |kN |τN/2

1 . Thus
the Fourier coefficients of ψ are unbounded, which contradicts that ψ is C∞.
Therefore λ ∈ ∆.

Now suppose that λ ∈ D and let h ∈ C∞(Tm). Define ψ by

ψ̂(k) =

{
ĥ(k)

χk(λ)−1 χk(λ) ̸= 1

0 χk(λ) = 1.

The facts that λ ∈ D and that h is C∞ yield that ψ is C∞. It is straightforward
from the definition of ψ̂(k) that ψ satisfies (1).
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