Diophantine vectors

Jordan Bell

March 31, 2016

1 Dirichlet's approximation theorem

Let $m \geq 1$, and for $v \in \mathbb{R}^{m}$ write

$$
|v|_{\infty}=\max \left\{\left|v_{j}\right|: 1 \leq j \leq m\right\}
$$

For a positive integer r, let

$$
V_{r}=\left\{k \in \mathbb{Z}^{m}: 0<|k|_{\infty} \leq r\right\}
$$

which has $N_{r}=(2 r+1)^{m}-1$ elements. For any $k \in V_{r}$,

$$
|\langle v, k\rangle| \leq m|k|_{\infty}|v|_{\infty} \leq m r|v|_{\infty},
$$

Let $I_{1}, \ldots, I_{N_{r}-1}$ be consecutive closed intervals with

$$
\left[0, m r|v|_{\infty}\right]=\bigcup_{j=1}^{N_{r}-1} I_{j} .
$$

Then there is some j and some $k^{\prime}, k^{\prime \prime} \in V_{r}, k^{\prime} \neq k^{\prime \prime}$, with $\left|\left\langle v, k^{\prime}\right\rangle\right|,\left|\left\langle v, k^{\prime \prime}\right\rangle\right| \in I_{j}$. If $\left\langle v, k^{\prime}\right\rangle,\left\langle v, k^{\prime \prime}\right\rangle$ have the same sign, then $k=k^{\prime}-k^{\prime \prime}$ satisfies $|\langle v, k\rangle| \leq\left|I_{j}\right|$, and if $\left\langle v, k^{\prime}\right\rangle,\left\langle v, k^{\prime \prime}\right\rangle$ have different signs then $k=k^{\prime}+k^{\prime \prime}$ satisfies $|\langle v, k\rangle| \leq\left|I_{j}\right|$. In either case, $k \in V_{2 r}$, and k satisfies

$$
|\langle v, k\rangle| \leq\left|I_{j}\right|=\frac{m r|v|_{\infty}}{N_{r}-1}=\frac{m r|v|_{\infty}}{(2 r+1)^{m}-2} .
$$

2 Diophantine vectors

For real $\tau, \gamma>0$, let $D(\tau, \gamma)$ be the set of those $v \in \mathbb{R}^{m}$ such that for any nonzero $k \in \mathbb{Z}^{m}$,

$$
|\langle v, k\rangle| \geq \gamma|k|_{\infty}^{-\tau}
$$

In other words,

$$
D(\tau, \gamma)=\bigcap_{k \in \mathbb{Z}^{m} \backslash\{0\}}\left\{v \in \mathbb{R}^{m}:|\langle v, k\rangle| \geq \gamma|k|_{\infty}^{-\tau}\right\}=\bigcap_{k \in \mathbb{Z}^{m} \backslash\{0\}} D(\tau, \gamma, k) .
$$

Each $D(\tau, \gamma, k)$ is closed, so $D(\tau, \gamma)$ is closed. Let

$$
D(\tau)=\bigcup_{\gamma>0} D(\tau, \gamma)
$$

If $\gamma_{1} \geq \gamma_{2}$ and $v \in D\left(\tau, \gamma_{1}\right)$, let $k \in \mathbb{Z}^{m} \backslash\{0\}$. Then $|\langle v, k\rangle| \geq \gamma_{1}|k|_{\infty}^{-\tau} \geq \gamma_{2}|k|_{\infty}^{-\tau}$, so $v \in D\left(\tau, \gamma_{2}\right)$, i.e.

$$
D\left(\tau, \gamma_{1}\right) \subset D\left(\tau, \gamma_{2}\right), \quad \gamma_{1} \geq \gamma_{2}
$$

Therefore

$$
D\left(\tau, N_{1}^{-1}\right) \subset D\left(\tau, N_{2}^{-1}\right) \quad N_{1} \leq N_{2}
$$

and

$$
D(\tau)=\bigcup_{N \geq 1} D\left(\tau, N^{-1}\right)
$$

showing that $D(\tau)$ is an F_{σ} set.
If $0 \leq \tau<m-1$ and $\gamma>0$, suppose by contradiction that there is some $v \in D(\tau, \gamma)$. Now, by Dirichlet's theorem, for each positive integer r there is some $k_{r} \in V_{2 r}$ satisfying $\left|\left\langle v, k_{r}\right\rangle\right| \leq m|v|_{\infty} 2^{-m} r^{-m+1}$. Then, as $\left|k_{r}\right|_{\infty} \leq 2 r$,

$$
m|v|_{\infty} 2^{-m} r^{-m+1} \geq\left|\left\langle v, k_{r}\right\rangle\right| \geq \gamma\left|k_{r}\right|_{\infty}^{-\tau} \geq \gamma(2 r)^{-\tau}=\gamma(2 r)^{\tau-m+1}(2 r)^{m-1},
$$

hence

$$
(2 r)^{-\tau+m-1} \geq \frac{2}{c m|v|_{\infty}}
$$

As $\tau<m-1$, taking $r \rightarrow \infty$ yields a contradiction. Therefore

$$
D(\tau)=\emptyset, \quad 0 \leq \tau<m-1
$$

3 Measures of sets

Denote by μ Lebesgue measure on \mathbb{R}^{m}. Let e_{1}, \ldots, e_{m} be the standard basis for \mathbb{R}^{m}, so

$$
|v|_{1}=\sum_{j=1}^{m}\left|v_{j}\right|=\sum_{j=1}^{m}\left|\left\langle v, e_{j}\right\rangle\right| .
$$

Let $C=\left\{v \in \mathbb{R}^{m}:|v|_{\infty} \leq 1\right\}$. Let A_{m} be the supremum of the $(m-1)$ dimensional Hausdorff measure of the intersection of an $(n-1)$-dimensional affine subspace of \mathbb{R}^{m} and C.

We calculate the following. ${ }^{1}$
Theorem 1. For $\tau>m-1$ and $\gamma>0$,

$$
\mu(C \backslash D(\tau, \gamma)) \leq 4 \gamma m A_{m} 3^{m-1} \zeta(\tau+2-m) .
$$

[^0]Proof. Let $k \in \mathbb{Z}^{m} \backslash\{0\}$, and for $t \in \mathbb{R}$, let

$$
P_{k, t}=\left\{x \in \mathbb{R}^{m}:\langle x, k\rangle=t\right\},
$$

and let

$$
U_{k}=\left\{x \in \mathbb{R}^{m}:|\langle x, k\rangle|<\gamma|k|_{\infty}^{-\tau}\right\}
$$

U is the set of points between the hyperplanes $P_{k,-\gamma|k|_{\infty}^{-\tau}}$ and $P_{k, \gamma|k|_{\infty}^{-\tau}}$. The distance between the hyperplanes $P_{k, s}$ and $P_{k, s}$ is $\frac{|s-t|}{|k|_{2}}$, so the distance between the hyperplanes $P_{k,-\gamma|k|_{\infty}^{-\tau}}$ and $P_{k, \gamma|k|_{\infty}^{-\tau}}$ is $d_{k}=\frac{2 \gamma|k|_{\infty}^{-\tau}}{|k|_{2}}$. And $|x|_{2} \geq|x|_{\infty}$, so $d_{k} \leq 2 \gamma|k|_{\infty}^{-\tau-1}$. But $\mu\left(C \cap U_{k}\right) \leq d A_{m}$, so

$$
\mu(C \cap U) \leq 2 \gamma|k|_{\infty}^{-\tau-1} A_{m}
$$

Now, $U_{k}=\mathbb{R}^{m} \backslash D(\tau, \gamma, k)$, so

$$
C \backslash D(\tau, \gamma)=C \backslash \bigcap_{k \in \mathbb{Z}^{m} \backslash\{0\}} D(\tau, \gamma, k)=\bigcup_{k \in \mathbb{Z}^{m} \backslash\{0\}}\left(C \cap U_{k}\right)
$$

We remind ourselves that for r a positive integer, the set $V_{r}=\left\{k \in \mathbb{Z}^{m}: 0<\right.$ $\left.|k|_{\infty} \leq r\right\}$ has $N_{r}=(2 r+1)^{m}-1$ elements. Therefore

$$
\left\{k \in \mathbb{Z}^{m} \backslash\{0\}:|k|_{\infty}=r\right\}=V_{r} \backslash V_{r-1}
$$

has

$$
N_{r}-N_{r-1}=(2 r+1)^{m}-(2 r-1)^{m} \leq 2 m(2 r+3)^{m-1}
$$

elements, using $a^{m}-b^{m}=(a-b)\left(a^{m-1}+a^{m-2} b+\cdots+a b^{m-2}+b^{m-1}\right)$. Therefore

$$
\begin{aligned}
\mu(C \backslash D(\tau, \gamma)) & \leq \sum_{k \in \mathbb{Z}^{m} \backslash\{0\}} \mu\left(C \cap U_{k}\right) \\
& \leq \sum_{k \in \mathbb{Z}^{m} \backslash\{0\}} 2 \gamma|k|_{\infty}^{-\tau-1} A_{m} \\
& =2 \gamma A_{m} \sum_{r=1}^{\infty} \sum_{\left\{k \in \mathbb{Z}^{m} \backslash\{0\}:|k|_{\infty}=r\right\}} r^{-\tau-1} \\
& \leq 2 \gamma A_{m} \sum_{r=1}^{\infty} 2 m(2 r+1)^{m-1} \cdot r^{-\tau-1} \\
& =4 \gamma m A_{m} \sum_{r=1}^{\infty}(2 r+1)^{m-1} r^{-\tau-1}
\end{aligned}
$$

We estimate

$$
\sum_{r=1}^{\infty}(2 r+1)^{m-1} r^{-\tau-1} \leq \sum_{r=1}^{\infty}(3 r)^{m-1} r^{-\tau-1}=3^{m-1} \sum_{r=1}^{\infty} r^{m-\tau-2}
$$

and therefore

$$
\mu(C \backslash D(\tau, \gamma)) \leq 4 \gamma m A_{m} \cdot 3^{m-1} \zeta(\tau+2-m)
$$

But

$$
C \backslash D(\tau)=\bigcap_{N \geq 1}\left(C \backslash D\left(\tau, N^{-1}\right)\right)
$$

and by Theorem 1, if $\tau>m-1$ then $\mu\left(C \backslash D\left(\tau, N^{-1}\right)\right) \rightarrow 0$ as $N \rightarrow \infty$. Therefore

$$
\mu(C \cap D(\tau))=0, \quad \tau>m-1
$$

4 Cohomological equation

Let $\mathbb{T}^{m}=\left\{z \in \mathbb{C}^{m}:\left|z_{1}\right|=1, \ldots,\left|z_{m}\right|=1\right\}$ and write ν for the Haar measure on \mathbb{T}^{m} for which $\nu\left(\mathbb{T}^{m}\right)=1$. For $k \in \mathbb{Z}^{m}$ let $\chi_{k}(z)=\prod_{j=1}^{m} z_{j}^{k_{j}}$. Let $\Delta(\tau, \gamma)$ be the set of those $z \in \mathbb{T}^{m}$ such that

$$
\left|\chi_{k}(z)-1\right| \geq \gamma|k|_{1}^{-\tau}, \quad k \in \mathbb{Z}^{m} \backslash\{0\}
$$

Let

$$
\Delta(\tau)=\bigcup_{\gamma>0} \Delta(\tau, \gamma)
$$

and then

$$
\Delta=\bigcup_{\tau>0} \Delta(\tau) .
$$

For $\lambda \in \mathbb{T}^{m}$ define $R_{\lambda}: \mathbb{T}^{m} \rightarrow \mathbb{T}^{m}$ by

$$
R_{\lambda}(z)=\lambda \cdot z=\left(\lambda_{1} z_{1}, \ldots, \lambda_{m} z_{m}\right)
$$

In the following theorem, (1) is called a cohomological equation. ${ }^{2}$
Theorem 2. For $\lambda \in \mathbb{T}^{m}, \lambda \in \Delta$ if and only if for any $h \in C^{\infty}\left(\mathbb{T}^{m}\right)$ there is some $\psi \in C^{\infty}\left(\mathbb{T}^{m}\right)$ such that

$$
\begin{equation*}
h(z)-\int_{\mathbb{T}^{m}} h d \nu=\psi\left(R_{\lambda} z\right)-\psi(z), \quad z \in \mathbb{T}^{m} \tag{1}
\end{equation*}
$$

Proof. It is a fact that $\chi_{k} \in \widehat{\mathbb{T}}^{m}$ and that $k \mapsto \chi_{k}$ is an isomorphism of topological groups $\mathbb{Z}^{d} \rightarrow \widehat{\mathbb{T}}^{m}$. For $f \in L^{1}(\nu), \widehat{f}: \mathbb{Z}^{m} \rightarrow \mathbb{C}$ is defined by

$$
\widehat{f}(k)=\int_{\mathbb{T}^{m}} f(z) \overline{\chi_{k}(z)} d \nu(z)=\int_{\mathbb{T}^{m}} f(z) \chi_{k}(z)^{-1} d \nu(z) .
$$

If the Fourier series of f converges pointwise,

$$
f(z)=\sum_{k \in \mathbb{Z}^{m}} \widehat{f}(k) \chi_{k}(z), \quad z \in \mathbb{T}^{m}
$$

[^1]It is a fact that $f \in C^{\infty}\left(\mathbb{T}^{m}\right)$ if and only if for any $R>0$ there is some C_{R} such that

$$
|\widehat{f}(k)| \leq C_{R}|k|_{1}^{-R}, \quad k \in \mathbb{Z}^{m} \backslash\{0\}
$$

For $\psi \in L^{1}\left(\mathbb{T}^{m}\right)$ and $k \in \mathbb{T}^{m}$, because ν is invariant under multiplication in \mathbb{T}^{m},

$$
\begin{aligned}
\widehat{\psi \circ R_{\lambda}}(k) & =\int_{\mathbb{T}^{m}} \psi(\lambda z) \overline{\chi_{k}(z)} d \nu(z) \\
& =\int_{\mathbb{T}^{m}} \psi(z) \overline{\chi_{k}\left(\lambda^{-1} x\right)} d \nu(z) \\
& =\chi_{k}(\lambda) \widehat{\psi}(k)
\end{aligned}
$$

Suppose that for every h is C^{∞} that there is some $\psi \in C^{\infty}\left(\mathbb{T}^{m}\right)$ satisfying (1). Taking the Fourier transform of (1),

$$
\widehat{h}(k)-\delta_{0}(k) \cdot \int_{\mathbb{T}^{m}} h d \nu=\chi_{k}(\lambda) \widehat{\psi}(k)-\widehat{\psi}(k), \quad k \in \mathbb{Z}^{m}
$$

then, if $\chi_{k}(\lambda) \neq 1$,

$$
\widehat{\psi}(k)=\frac{\widehat{h}(k)}{\chi_{k}(\lambda)-1} .
$$

Now suppose by contradiction that $\lambda \notin \Delta$. This means that there are $\tau_{N} \rightarrow \infty$ such that for each N, there is some $\gamma_{N}>0$ and some $k_{N} \in \mathbb{Z}^{m} \backslash\{0\}$ such that $\left|\chi_{k_{N}}(\lambda)-1\right|<\gamma_{N}\left|k_{N}\right|_{1}^{-\tau_{N}}$. Define

$$
\widehat{h}(k)=\left|\chi_{k}(\lambda)-1\right|^{1 / 2} \cdot 1_{\left\{k_{N}\right\}}(k) .
$$

For $R>0$ let $\tau_{N} \geq 2 R$. Then for $k \in \mathbb{Z}^{m}$, either $\widehat{h}(k)=0$ or if $k=k_{N}$ then

$$
|\widehat{h}(k)|=\left|\chi_{k_{N}}(\lambda)-1\right|^{1 / 2}<\gamma_{N}^{1 / 2}\left|k_{N}\right|_{1}^{-\tau_{N} / 2} \leq \gamma_{N}^{1 / 2}\left|k_{N}\right|_{1}^{-R}=\gamma_{N}^{1 / 2}|k|_{1}^{-R}
$$

which shows that h is C^{∞}. There is some $\psi \in C^{\infty}\left(\mathbb{T}^{m}\right)$ satisfying (1), according to which, for $\chi_{k}(\lambda) \neq 1$,

$$
\widehat{\psi}(k)=\frac{\widehat{h}(k)}{\chi_{k}(\lambda)-1} .
$$

But $|\widehat{\psi}(k)|$ is either 0 or if $k=k_{N}$ then $\left|\chi_{k_{N}}(\lambda)-1\right|^{-1 / 2}>\gamma_{N}^{-1 / 2}\left|k_{N}\right|_{1}^{\tau_{N} / 2}$. Thus the Fourier coefficients of ψ are unbounded, which contradicts that ψ is C^{∞}. Therefore $\lambda \in \Delta$.

Now suppose that $\lambda \in D$ and let $h \in C^{\infty}\left(\mathbb{T}^{m}\right)$. Define ψ by

$$
\widehat{\psi}(k)= \begin{cases}\frac{\widehat{h}(k)}{\chi_{k}(\lambda)-1} & \chi_{k}(\lambda) \neq 1 \\ 0 & \chi_{k}(\lambda)=1\end{cases}
$$

The facts that $\lambda \in D$ and that h is C^{∞} yield that ψ is C^{∞}. It is straightforward from the definition of $\widehat{\psi}(k)$ that ψ satisfies (1).

[^0]: ${ }^{1}$ Dmitry Treschev and Oleg Zubelevich, Introduction to the Perturbation Theory of Hamiltonian Systems, p. 166, Theorem 9.3.

[^1]: ${ }^{2}$ Anatole Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, p. 71, Theorem 11.5.

