Denjoy's theorem on circle diffeomorphisms

Jordan Bell

April 3, 2014

In this note I'm just presenting the proof of Denjoy's theorem in Michael Brin and Garrett Stuck's *Introduction to dynamical systems*, Cambridge University Press, 2002.

Let $S^1 = \mathbb{R}/\mathbb{Z}$. For $\alpha \in \mathbb{R}$, define $R_\alpha : S^1 \to S^1$ by $R_\alpha(x) = x + \alpha + \mathbb{Z}$.

We say that a homeomorphism $f: S^1 \to S^1$ is orientation preserving if it lifts to an increasing homeomorphism $F: \mathbb{R} \to \mathbb{R}$: $\pi \circ F = f \circ \pi$.

The *rotation number* of an orientation preserving homeomorphism f is defined by

$$\rho(f) = \lim_{n \to \infty} \frac{F^n(x) - x}{n}$$

One proves that this is independent both of the lift F of f and the point $x \in \mathbb{R}$. Some facts about the rotation number: it is an invariant of topological conjugacy, and $\rho(f)$ is rational if and only if f has a periodic point. A periodic point is $x \in S^1$ such that $f^n(x) = x$ for some $n \ge 1$.

There are some lemmas in Chapter 7 that I don't want to write out. The important theorem that we're going to use without proof is that if $f: S^1 \to S^1$ is an orientation preserving homeomorphism that is topologically transitive with irrational rotation number $\rho(f)$, then f is topologically conjugate to $R_{\rho(f)}$. This reduces our problem to showing that a map is topologically transitive.

We will use the following lemma in the proof of Denjoy's theorem.

Lemma 1. Let $f: S^1 \to S^1$ be a C^1 diffeomorphism and let J be an interval in S^1 . Let $g = \log f'$. If the interiors of $J, f(J), \ldots, f^{n-1}(J)$ are pairwise disjoint, then for any $x, y \in J$ and any $n \in \mathbb{Z}$ we have

$$\operatorname{Var}(g) \ge |\log((f^n)'(x)) - \log((f^n)'(y))|.$$

Proof. The intervals $[x, y], [f(x), f(y)], \ldots, [f^{n-1}(x), f^{n-1}(y)]$ are pairwise disjoint, so they are part of a partition of [0, 1]. The total variation of g is defined as a supremum over all partitions, so in particular it will be \geq the sum coming from any particular partition or a subset of that partition.

$$\begin{aligned} \operatorname{Var}(g) &\geq \sum_{k=0}^{n-1} |g(f^{k}(y)) - g(f^{k}(x))| \\ &\geq \left| \sum_{k=0}^{n-1} g(f^{k}(y)) - g(f^{k}(x)) \right| \\ &= \left| \log \prod_{k=0}^{n-1} f'(f^{k}(y)) - \log \prod_{k=0}^{n-1} f'(f^{k}(x)) \right| \\ &= \left| \log((f^{n})'(x)) - \log((f^{n})'(y)) \right|. \end{aligned}$$

Now we can prove Denjoy's theorem.

Theorem 2. If $f: S^1 \to S^1$ is a C^1 diffeomorphism that is orientation preserving, that has irrational rotation number $\rho(f)$, and whose derivative $f': S^1 \to \mathbb{R}$ has bounded variation, then f is topologically conjugate to $R_{\rho(f)}$.

Proof. Suppose by contradiction that f is not topologically transitive. It's a fact proved in Chapter 7 of Brin and Stuck that this implies that $\omega(x)$ is perfect and nowhere dense, and is independent of the point x. (Recall that $\omega(x) = \bigcap_{n\geq 1} \overline{\bigcup_{i\geq n} f^i(x)}$.) It follows that there is an interval I = (a, b) in its complement.

The intervals $f^n(I)$, $n \in \mathbb{Z}$, are pairwise disjoint, for otherwise f would have a periodic point. Let μ be Haar measure on S^1 . Then

$$\sum_{n\in\mathbb{Z}}\mu(f^n(I))\leq 1.$$

Let $x \in S^1$. Suppose for the moment that there are infinitely $n \ge 1$ such that the intervals $(x, f^{-n}(x)), (f(x), f^{1-n}(x)), \ldots, (f^n(x), x)$ are pairwise disjoint; we shall prove that this is true later. By applying the lemma we proved with $y = f^{-n}(x)$ we get

$$\operatorname{Var}(g) \ge \left| \log \frac{(f^n)'(x)}{(f^n)'(y)} \right| = \left| \log((f^n)'(x)(f^{-n})'(x)) \right|.$$

To see the equality in the above line it helps to write out what $(f^{-n})'(x)$ is.

Then for infinitely many n we have

$$\begin{split} \mu(f^{n}(I)) + \mu(f^{-n}(I)) &= \int_{I} (f^{n})'(x) dx + \int_{I} (f^{-n})'(x) dx \\ &= \int_{I} ((f^{n})'(x) + (f^{-n})'(x)) dx \\ &\geq \int_{I} \sqrt{(f^{n})'(x)(f^{-n})'(x)} dx \\ &= \int_{I} \sqrt{\exp\log((f^{n})'(x)(f^{-n})'(x))} dx \\ &\geq \int_{I} \sqrt{\exp(-|\log((f^{n})'(x)(f^{-n})'(x))|)} dx \\ &\geq \int_{I} \sqrt{\exp(-|\log((f^{n})'(x)(f^{-n})'(x))|)} dx \\ &\geq \int_{I} \sqrt{\exp(-|\operatorname{Var}(g)|} dx \\ &= \exp\left(-\frac{1}{2}\operatorname{Var}(g)\right) \mu(I). \end{split}$$

Since $\mu(I) > 0$ this implies that $\sum_{n \in \mathbb{Z}} \mu(f^n(I)) = \infty$, a contradiction. Therefore f is topologically transitive, and so it is topologically conjugate to the $R_{\rho(f)}$. \Box

It is indeed necessary that f' has bounded variation. Brin and Stuck give an example on p. 161 that they attribute to Denjoy: for any irrational number $\rho \in (0, 1)$, there is a nontransitive orientation preserving C^1 diffeomorphism of S^1 with rotation number ρ . The only condition of Denjoy's theorem that isn't satisfied here is that f' have bounded variation.