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1 Definitions

Let H be a complex Hilbert space. If λ ∈ C, we also write λ to denote λ · idH ∈
B(H).

For T ∈ B(H), the spectrum σ(T ) of T is the set of those λ ∈ C such that
the map T − λ is not bijective.1 It happens that it is useful for some purposes
to write σ(T ) as a union of three particular disjoint subsets of itself.

• The point spectrum σpoint(T ) is the set of those λ ∈ C such that T − λ is
not injective. Equivalently, λ ∈ σpoint(T ) if λ is an eigenvalue of T .2

• The continuous spectrum σcont(T ) is the set of those λ ∈ C such that T−λ
is injective, has dense image, and is not surjective.

• The residual spectrum σres(T ) is the set of those λ ∈ C such that T − λ is
injective and does not have dense image.

It is apparent that the sets σpoint(T ), σcont(T ), and σres(T ) are disjoint, and
that

σ(T ) = σpoint(T ) ∪ σcont(T ) ∪ σres(T ).

If T ∈ B(H) then σ(T ) ̸= ∅, but any of the above three sets may be empty;
they merely can’t all be empty for a given operator.

1σ(T ) is defined to be the set of λ ∈ C such that v 7→ Tv − λv is not a bijection. It is a
fact that if T ∈ B(H) and v 7→ Tv − λv is a bijection then it is an element of B(H). That it
is linear can be proved quickly. The fact that it is bounded is proved using the open-mapping
theorem, which states that a surjective bounded linear map from one Banach space to another
is an open map, from which it follows that a bijective bounded linear map from one Banach
space to another has a bounded inverse.

2The point spectrum is often called the discrete spectrum. From the definition by itself it
is not apparent what σpoint(T ) has to do either with points or discreteness.
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2 Residual spectrum

If T ∈ B(H) is a normal operator then σres(T ) = ∅.3 We prove this. Suppose
that T −λ is injective. We have to show that im (T −λ) is dense in H, and thus
that λ ̸∈ σres(T ). (λ might be in σcont(T ) or might not be in σ(T ); we merely
want to show that it is not in σres(T ).) We have

H = im (T − λ)⊕ (im (T − λ))⊥.

Let w ∈ (im (T − λ))⊥; we have to show that w = 0. For all v ∈ H,

⟨(T − λ)v, w⟩ = 0,

so for all v ∈ H we have ⟨v, (T − λ)∗w⟩ = 0 and therefore (T − λ)∗w = 0, so
w ∈ ker(T − λ)∗ = ker(T − λ).4 As T − λ is injective, w = 0, completing the
proof.

3 Point spectrum

If A ∈ B(H) is normal then it is straightforward to show that kerA = kerA∗.
Also, if T ∈ B(H) is normal then for any z ∈ C, T − z is normal. Thus,
ker(T − z) = {0} if and only if ker((T − z)∗) = {0}. That is, λ ∈ σpoint(T ) if
and only if λ ∈ σpoint(T

∗). For X ⊆ C we define X∗ = {z : z ∈ X}. We have
shown that if T ∈ B(H) is normal then

σpoint(T )
∗ = σpoint(T

∗).

4 Continuous spectrum

If λ ∈ σcont(T ), then im (T − λ) is dense in H. Also,

(T − λ)−1 : im (T − λ) → H

is a surjective linear map (the inverse of a linear map is itself a linear map) that
is not continuous. For im (T −λ) is dense in H, so if (T −λ)−1 were continuous
then it would have a unique extension to a continuous, hence bounded, map
H → H. Using this and the fact that T − λ is not surjective will give a
contradiction.

5 Approximate point spectrum

Let λ ∈ C \ (σpoint(T ) ∪ σres(T )). I claim that λ ∈ σcont(T ) if and only if λ is
in the approximate point spectrum of T , the set of those λ ∈ C such that there

3T ∈ B(H) is normal if T ∗T = TT ∗; in particular, a self-adjoint operator is normal.
Equivalently, T ∈ B(H) is normal if and only if ∥Tv∥ = ∥T ∗v∥ for all v ∈ H.

4If S is normal then kerS = kerS∗. Proof: If v ∈ kerS then ⟨Sv, Sv⟩ = 0, hence
⟨S∗Sv, v⟩ = 0, hence ⟨SS∗v, v⟩ = 0, hence ⟨S∗v, S∗v⟩ = 0, hence S∗v = 0, hence v ∈ kerS∗.
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is is a sequence vn ∈ H with ∥vn∥ = 1 and ∥(T − λ)vn∥ → 0 as n → ∞. It is
a fact that for T ∈ B(H), T is invertible if and only if T (H) is dense in H and
there is some α > 0 such that ∥Tv∥ ≥ α ∥v∥ for all v ∈ H.5 If λ ∈ σcont(T ),
then T − λ is not invertible but the image of T − λ is dense in H, then it must
therefore be that T − λ is not bounded below. That is, there is no α > 0 such
that for every w ∈ H we have ∥(T − λ)w∥ ≥ α ∥w∥. Then for each n there
is some w ∈ H such that ∥(T − λ)wn∥ < 1

n ∥wn∥. Let vn = wn

∥wn∥ . We have

∥vn∥ = 1 and ∥(T − λ)vn∥ < 1
n , showing that λ ∈ σap(T ).

On the other hand, if λ ∈ σap(T ) then there is a sequence vn ∈ H such that
∥(T − λ)vn∥ → 0 as n → ∞. Then for any α > 0, there is some vn such that
∥(T − λ)vn∥ < α = α ∥vn∥, so T −λ is not invertible and hence λ ∈ σ(T ). Since
we assumed that λ ∈ C \ (σpoint(T ) ∪ σres(T )), we then have λ ∈ σcont(T ).

Halmos shows in Problem 62 of his Hilbert Space Problem Book that σap(T )
is a closed subset of C, and proves in Problem 63 that ∂σ(T ) ⊆ σap(T ): the
boundary of the spectrum of T is contained in the approximate point spectrum
of T .

6 Normal operators

We showed earlier that if T ∈ B(H) is normal then σpoint(T )
∗ = σpoint(T

∗),
where, for X ⊆ C, X∗ = {z : z ∈ X}. This is one reason why it can be
helpful to know that an operator is normal. Using this we can show something
more about normal operators. Let T ∈ B(H) be normal and suppose that
λ, µ ∈ σpoint(T ) are distinct. Then there are nonzero v, w ∈ H with Tv = λv
and Tw = µw. Using T ∗w = µw we get

λ ⟨v, w⟩ = ⟨λv,w⟩
= ⟨Tv,w⟩
= ⟨v, T ∗w⟩
= ⟨v, µw⟩
= µ ⟨v, w⟩ .

As λ ̸= µ, this means that ⟨v, w⟩ = 0. In words, if T ∈ B(H) is normal, then
its eigenspaces are mutually orthogonal.

7 Compact operators

Let K(H) be the closure in B(H) of the set of finite-rank operators. We call
the elements of K(H) compact operators. The following are equivalent ways to
state that an operator is compact.

5In words, T ∈ B(H) is invertible if and only if it has dense image and is bounded below.
This result is proved in Paul Halmos, Introduction to Hilbert Space and the Theory of Spectral
Multiplicity, p. 38, §21, Theorem 3.
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• T ∈ B(H) is compact if and only if for every bounded subset S of H, the
closure of the image T (S) is compact.

• T ∈ B(H) is compact if and only if for every sequence vn ∈ H with
∥vn∥ = 1, T (vn) has a convergent subsequence.

• Let B be the closed unit ball in H, and let B be a topological space with
the weak topology: a net vα ∈ B converges weakly to v ∈ B if for all w ∈ H
we have ⟨vα, w⟩ → ⟨v, w⟩. If H is separable, then the weak topology on B
is metrizable and thus can be characterized using merely sequences instead
of nets.6 T ∈ B(H) is compact if and only if the restriction of T to B is
continuous B → H, where B has the weak topology and H has the norm
topology.

If K ∈ K(H) and V is a closed subspace of V such that K(V ) ⊆ V , then
the restriction of K to V is an element of K(V ).

B(H) is a C∗-algebra, and K(H) is a C∗-subalgebra of B(H). If T ∈ K(H)
and S ∈ B(H), then

ST, TS ∈ K(H).

Hence K(H) is an ideal of the C∗-algebra B(H).7

Useful facts about compact operators are proved in Yuri A. Abramovich and
Charalambos D. Aliprantis, An Invitation to Operator Theory, p. 272, §7.1.

8 Fredholm alternative

The Fredholm alternative states that if K ∈ K(H), λ ̸= 0, and ker(K−λ) = {0}
then (K−λ)−1 ∈ B(H).8 Equivalently, if K ∈ K(H), λ ̸= 0, and λ ̸∈ σpoint(K)
then λ ̸∈ σ(K). Equivalently, if K ∈ K(H), then

σ(K) ⊆ σpoint(K) ∪ {0}.

The above forms are the ones that we want to use. The following is the one
that we want to prove, which is equivalent because a nonzero multiple of a
compact operator is compact: If K ∈ K(H) and ker(idH − K) = {0} then
(idH −K)−1 ∈ B(H).

We prove two standalone lemmas that we then use to prove the Fredholm
alternative.

6This is proved in Paul Halmos, Hilbert Space Problem Book, Problem 18.
7The C∗-algebra B(H)/K(H) is called the Calkin algebra of H. T ∈ B(H) is called a

Fredholm operator if T +K(H) is an invertible element of the Calkin algebra. In particular,
if T ∈ K(H) then idH − T is a Fredholm operator.

T ∈ B(H) is a Fredholm operator if and only if the following three conditions holds: imT
is closed in H, kerT is finite dimensional, and kerT ∗ is finite dimensional. This equivalence
is called Atkinson’s theorem. The index of a Fredholm operator is dimkerT − dimkerT ∗. If
T ∈ K(H), then idH − T has index 0.

8We are following Paul Halmos, Hilbert Space Problem Book, p. 293, Problem 140.
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• Let K ∈ K(H) let A = idH −K ∈ B(H), and suppose that A(H) = H.
Define Kn = ker(An). We have K1 ⊆ K2 ⊆ · · · . Assume by contradiction
that K1 ̸= {0}. Then there is some nonzero f1 ∈ K1. As A(H) = H, there
is some f2 ∈ H with Af2 = f1; but A

2f2 = Af1 = 0 and Af2 = f1 ̸= 0,
so f2 ∈ K2 \ K1. Let fn+1 ∈ Kn+1 \ Kn with Afn+1 = fn. Therefore
K1,K2, . . . are a strictly increasing sequence of subspaces of H. Using
Gram-Schmidt, there is an orthonormal sequence e1, e2, . . . with en ∈ Kn

for all n; we caution that we do not necessarily have Aen+1 = en. As
Aen+1 ∈ Kn, ⟨Aen+1, en+1⟩, giving

∥Ken+1∥2 = ∥en+1 −Aen+1∥2 = ∥en+1∥2 + ∥Aen+1∥2 ≥ 1 ∥en+1∥2 = 1.

Each en is an element of the closed unit ball B, and en → 0 weakly
(this is the case for any orthonormal sequence in H, basis or not, and is
proved using Bessel’s inequality). Since K is compact, it is continuous
B → H where B has the weak topology and H has the norm topology;
but en → 0, K(0) = 0, and ∥Ken∥ ≥ 1, so Ken does not converge to 0 in
H, a contradiction. Therefore K1 = {0}, that is, kerA = {0}.

• Let K ∈ K(H) and let A = idH −K ∈ B(H). Suppose by contradiction
that A is not bounded below on (kerA)⊥. So for every α > 0 there is
some w ∈ (kerA)⊥ such that ∥Aw∥ ≥ α ∥w∥. Then for all n there is some
wn ∈ (kerA)⊥ with ∥Awn∥ < 1

n ∥wn∥. Let vn = wn

∥wn∥ ∈ (kerA)⊥. Then

∥Avn∥ <
1

n
.

As K is compact, there is some subsequence va(n) such that Kva(n) con-
verges to some v ∈ H. Avn → Av and Avn → 0, so v ∈ kerA. On the
other hand, because vn = Avn+Kvn → v and (kerA)⊥ is closed, we have
v ∈ (kerA)⊥, so v ∈ kerA ∩ (kerA)⊥ = {0}. But as ∥vn∥ = 1 for each
n, we have ∥v∥ = 1, a contradiction. Therefore, A is bounded below on
(kerA)⊥.

If K ∈ K(H) and A = idH − K, then by the second of the two lemmas,
we have that A is bounded below on (kerA)⊥: there is some α > 0 such that
∥Av∥ ≥ α ∥v∥ for all v ∈ (kerA)⊥. If

wn ∈ A(H) = A(kerA⊕ (kerA)⊥) = A((kerA)⊥)

with wn → w ∈ H, then there are vn ∈ (kerA)⊥ such that Avn = wn. As wn
converges, for all ϵ > 0 there is someN such that if n,m ≥ N then ∥wn − wm∥ ≤
ϵ, so ∥A(vn − vm)∥ = ∥Avn −Avm∥ ≤ ϵ. But

∥A(vn − vm)∥ ≥ α ∥vn − vm∥ ,

so
∥vn − vm∥ ≤ ϵ

α
,
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so vn is a Cauchy sequence and hence converges, say to v. vn ∈ (kerA)⊥, which
is closed, so v ∈ (kerA)⊥. Then wn = Avn → Av ∈ A(H). Therefore, if
K ∈ K(H) and A = idH −K, then A(H) is closed in H.

Let K ∈ K(H) and A = idH − K, and suppose that kerA = {0}. By the
above paragraph, A(H) is closed in H. K∗ ∈ K(H) and A∗ = idH −K∗,9 so
by the above paragraph we also get that A∗(H) is closed in H. It is a fact that
if T ∈ B(H) then kerT ∗ = (T (H))⊥, so using this with T = A∗ we get

kerA = (A∗(H))⊥;

taking orthogonal complements and using the fact that the double orthogonal
complement of a subspace is its closure and that A∗(H) is closed, we obtain

(kerA)⊥ = A∗(H).

Since kerA = {0}, we have A∗(H) = H. Then we can apply the first of the
two lemmas: as A∗ = idH − K∗, K∗ ∈ K(H), and A∗(H) = H, we have
kerA∗ = {0}. We now apply the second of the two lemmas: A∗ is bounded
below on (kerA∗)⊥ = H. Using the fact that if T ∈ B(H) is bounded below
and has dense image then T−1 ∈ B(H), we get (A∗)−1 ∈ B(H) (A∗(H) = H so
A∗ certainly has dense image). Taking adjoints commutes with taking inverses,
so A−1 ∈ B(H). This completes the proof of the Fredholm alternative.

9 Compact self-adjoint operators

It is a fact that if T ∈ B(H) is self-adjoint then10

∥T∥ = sup
∥v∥≤1

| ⟨Tv, v⟩ | = sup
∥v∥=1

| ⟨Tv, v⟩ |.

Let T ∈ B(H) be compact and self-adjoint and T ̸= 0. Since T is self-adjoint,
⟨Tv, v⟩ ∈ R, so either ∥T∥ = sup∥v∥=1 ⟨Tv, v⟩ or ∥T∥ = − inf∥v∥=1 ⟨Tv, v⟩. Say
the first is the case. Let ∥vn∥ = 1 and ⟨Tvn, vn⟩ → ∥T∥ as n → ∞. Then, as
T = T ∗,

⟨Tvn − ∥T∥ vn, T vn − ∥T∥ vn⟩ = ⟨Tvn, T vn⟩ − ⟨Tvn, ∥T∥ vn⟩ − ⟨∥T∥ vn, T vn⟩
+ ⟨∥T∥ vn, ∥T∥ vn⟩

= ∥Tvn∥2 − 2 ∥T∥ ⟨Tvn, vn⟩+ ∥T∥2 ∥vn∥2

≤ ∥T∥2 ∥vn∥2 − 2 ∥T∥ ⟨Tvn, vn⟩+ ∥T∥2 ∥vn∥2

= 2 ∥T∥2 − 2 ∥T∥ ⟨Tvn, vn⟩ .
9The adjoint of a compact operator is itself a compact operator. This is true even for

Banach spaces, and a proof of this is given by Paul Garrett in his note Compact operators
on Banach spaces: Fredholm-Riesz. A bounded linear map K : X → Y , where X and Y are
Banach spaces, is said to be compact if for every bounded subset S of X, the closure of K(S)
in Y is compact.

10This is proved in Anthony W. Knapp, Advanced Real Analysis, p. 37, Proposition 2.2.
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Thus ∥Tvn − ∥T∥ vn∥ → 0 as n→ ∞, that is, Tvn − ∥T∥ vn → 0. On the other
hand, as ∥vn∥ = 1 for each n, there is some subsequence va(n) such that Tva(n)
converges, say to v. Together with Tvn − ∥T∥ vn → 0 this gives ∥T∥ va(n) → v

as n→ ∞, from which we get ∥v∥ = 1
∥T∥ > 0. Thus v ̸= 0. And

(T − ∥T∥)v = (T − ∥T∥) lim
n→∞

va(n) = lim
n→∞

(T − ∥T∥)va(n) = 0,

which means that ∥T∥ ∈ σpoint(T ). Likewise, in the case ∥T∥ = − inf∥v∥=1 ⟨Tv, v⟩
we get −∥T∥ ∈ σpoint(T ).

10 Multiplication operators

Let (X,Σ, µ) be a σ-finite measure space. L2(X) is a Hilbert space11 with inner
product

⟨f, g⟩ =
∫
fg∗dµ,

where g∗(x) = g(x).
A multiplication operator on L2(X) is an operator Mϕ : L2(X) → L2(X),

ϕ ∈ L∞(X), of the form

(Mϕf)(x) = ϕ(x)f(x).

As

∥Mϕf∥2 =

∫
X

ϕ(x)f(x)ϕ(x)f(x)dµ(x) ≤ ∥ϕ∥2∞ ∥f∥2 ,

where ∥ϕ∥∞ is the essential supremum of ϕ(x) for x ∈ X, we have ∥Mϕ∥ ≤ ∥ϕ∥
and so Mϕ ∈ B(H). L∞(X) is a C∗-algebra, and so is B(L2(X)). If X is
σ-finite then I claim that

ϕ 7→Mϕ, L∞(X) → B(L2(X))

is an injective homomorphism of C∗-algebras. It is straightforward to show
that this map is a homomorphism of C∗-algebras, and this does not use the
assumption that X is σ-finite. For our benefit, we shall show that ϕ 7→ Mϕ is
injective. If ϕ ̸= 0, then ∥ϕ∥∞ > 0, so for

E = {x ∈ X : |ϕ(x)| ≥ 1

2
∥ϕ∥∞}

11Whether L2(X) is separable depends on the measure space (X,µ). Let S be the set of
all measurable subsets of X with finite measure, and let ρ(A,B) = µ(A ∪ B \ A ∩ B), the
measure of the symmetric difference of A and B. One shows that S is a pseudometric space
with pseudometric ρ. It is a fact that L2(X) is separable if and only if S is separable; cf. Paul
Halmos, Measure Theory, p. 177, §42. For this to be the case, it suffices that X is σ-finite
and that its σ-algebra is countably generated.

7



we have 0 < µ(E) ≤ ∞. Because (X,µ) is σ-finite, there is some subset F of E
with 0 < µ(F ) <∞. As f = ϕ∗ · χF ∈ L2(X), we have

Mϕf =

∫
F

ϕ(x)ϕ(x)dµ(x)

≥
∫
F

1

4
∥ϕ∥2∞ dµ(x)

=
1

4
∥ϕ∥2∞ · µ(F )

> 0,

soMϕ ̸= 0. Generally, an injective homomorphism of C∗-algebras is an isometry,
so ∥Mϕ∥ = ∥ϕ∥∞.

AsMϕϕ∗ =MϕMϕ∗ =MϕM
∗
ϕ andMϕϕ∗ =Mϕ∗ϕ, we haveMϕM

∗
ϕ =M∗

ϕMϕ,
namely, a multiplication operator is a normal operator. Since residual spectrum
of a normal operator is empty, the residual spectrum of a multiplication operator
is empty.

For ϕ ∈ L∞(X), we define the essential range of ϕ to be the set{
z ∈ C : if ϵ > 0 then µ({x ∈ X : |f(x)− z| < ϵ}) > 0

}
.

Equivalently, the essential range of ϕ is the set of those z ∈ C such that for all
ϵ > 0,

µ(ϕ−1(Dϵ(z))) > 0,

in words, those z ∈ C such that the inverse image of every ϵ-disc about z has
positive measure. Equivalently, the essential range of ϕ is the intersection of all
closed subsets K of C such that for almost all x ∈ X, ϕ(x) ∈ K. It is a fact
that if ϕ ∈ L∞(X) then the essential range of ϕ is a compact subset of C.

Let ϕ ∈ L∞(X). If λ is not in the essential range of ϕ, then there is some
ϵ > 0 such that µ(ϕ−1(Dϵ(λ))) = 0, which means that for almost all x ∈ X we
have |ϕ(x)− λ| ≥ ϵ. Define ψ(x) = 1

ϕ(x)−λ . For almost all x ∈ X,

|ψ(x)| = 1

|ϕ(x)− λ|
≤ 1

ϵ
,

hence ψ ∈ L∞(X). Then

MψMϕ−λ =Mϕ−λMψ =M(ϕ−λ)·ψ =M1 = idL2(X),

so Mϕ−λ is invertible. But Mϕ−λ =Mϕ − λ, so Mϕ − λ is invertible and hence
λ ̸∈ σ(Mϕ).

If λ is in the essential range of ϕ, then for each n we have 0 < µ(ϕ−1(D1/n(λ))) ≤
∞; since Σ is σ-finite, for each n there is a subset En of ϕ−1(D1/n(λ)) with

0 < µ(En) < ∞, and so χEn ∈ L2(X). We have, since |ϕ(x) − λ| < 1
n for
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x ∈ En,

∥(Mϕ − λ)χEn
∥2 =

∫
X

|(ϕ(x)− λ)χEn
(x)|2dµ(x)

=

∫
En

|ϕ(x)− λ|2dµ(x)

≤ 1

n2

∫
En

dµ(x)

=
1

n2

∫
X

χEn
dµ(x)

=
1

n2
∥χEn

∥2 ,

so for each n,

∥(Mϕ − λ)χEn∥ ≤ 1

n
∥χEn∥ .

It follows that Mϕ − λ is not invertible, as it is not bounded below. Therefore
λ ∈ σ(Mϕ). Therefore the essential range of ϕ ∈ L∞(X) is equal to the spectrum
of Mϕ ∈ B(L2(X)).

We say that ϕ ∈ L∞(X) is invertible if there is some ψ ∈ L∞(X) such that
ϕ(x)ψ(x) = 1 for almost all x ∈ X. (It would not make sense to demand that
ϕ(x)ψ(x) = 1 for all x ∈ X.) For ϕ ∈ L∞(X) to be invertible, it is necessary
and sufficient that there is some α > 0 such that |ϕ(x)| ≥ α for almost all x ∈ X
(lest its inverse not have an essential supremum).

If λ is not just an element of the essential range ϕ but is an isolated element
of the essential range, then we can say more than just that λ ∈ σ(Mϕ). In this
case, there is some ϵ > 0 such that the intersection of Dϵ(λ) and the essential
range of ϕ is equal to the singleton {λ}. Let E be a subset of ϕ−1(Dϵ(λ)) with
0 < µ(E) <∞. For almost all x ∈ X, ϕ(x) is an element of the essential range
of ϕ, hence for almost all x ∈ E we have ϕ(x) = λ. Therefore, for almost all
x ∈ X we have

(MϕχE)(x) = ϕ(x)χE(x) = λχE(x).

Hence (Mϕ − λ)χE = 0, and as µ(E) > 0 we have χE ̸= 0. Therefore, if λ is an
isolated element of the essential range of ϕ then λ ∈ σpoint(Mϕ).

12

11 Functional calculus

Let T ∈ B(H) be self-adjoint. The spectrum σ(T ) is a compact subset of R,
and one checks that the set C(σ(T )) of continuous functions σ(T ) → C is a
C∗-algebra, with norm ∥f∥ = supλ∈σ(T ) |f(λ)|.

12If λ is an isolated element of the essential range of ϕ then one finds that the inverse image
of the singleton {λ} has positive measure. I would be surprised if this were not the origin of
the term point spectrum. Being isolated corresponds to being discrete.
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Let C[x] be the set of polynomials with complex coefficients. For T ∈ B(H)
self-adjoint and p(x) =

∑n
k=0 akx

k ∈ C[x], we define

p(T ) ∈ B(H)

by

p(T ) =

n∑
k=0

akT
k.

T 7→ p(T ) is a homomorphism of C∗-algebras, where13(
n∑
k=0

akx
k

)∗

=

n∑
k=0

akx
k.

It is a fact that14

σ(p(T )) = p(σ(T )),

where for M ⊆ C we define p(M) = {p(z) : z ∈M}. It is also a fact that

∥p(T )∥ = ∥p∥ = sup
λ∈σ(T )

|p(λ)|;

this is proved using the result that the norm of a normal operator T is equal
to its spectral radius, which is given by the two following expressions that one
proves are equal:

r(T ) = lim
n→∞

∥Tn∥1/n = max
λ∈σ(T )

|λ|.

The above is used to define f(T ) for any continuous function f : σ(T ) → C.
This map C(σ(T )) → B(H) is called the continuous functional calculus. It is
an isometric homomorphism of C∗-algebras. The continuous functional calculus
can be used to prove things about the spectrum of self-adjoint operators that
do not obviously have to do with making sense of continuous functions applied
to these operators.

Let T ∈ B(H) be self-adjoint and let λ ∈ σ(T ) be an isolated point in σ(T ).
I will show that that λ ∈ σpoint(T ). Since λ is isolated in σ(T ), the function
f : σ(T ) → C defined by

f(z) =

{
1 z = λ,

0 z ̸= λ,

is continuous. Since f is continuous, f(T ) ∈ B(H), and because f = f∗, f(T )
is self-adjoint. Let P = f(T ). As ∥P∥ = ∥f∥ = 1, P ̸= 0. Define g ∈ C(σ(T ))
by g(x) = (x− λ)f(x). Then g(x) = 0 for all x ∈ σ(T ), so g(T ) = 0, i.e.

(T − λ)P = 0.

Hence imP ⊆ ker(T − λ). As P ̸= 0, there is some v ∈ H with Pv ̸= 0. Then
(T − λ)Pv = 0, Pv ̸= 0, so λ ∈ σpoint(T ).

13If we had not stipulated that T be self-adjoint then we would have to define the conjugation
of polynomials as conjugation of polynomial functions: for p defined by p(z) =

∑n
k=0 akz

k,
then p∗ is defined by p∗(z) =

∑n
k=0 ak(z)

k.
14See Paul Halmos, Hilbert Space Problem Book, p. 62, Problem 97.
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12 Spectral measures

It is a fact that if f ≥ 0 then f(T ) ≥ 0, where, for a self-adjoint operator T ,
T ≥ 0 means ⟨Tv, v⟩ ≥ 0 for all v ∈ H. For T ∈ B(H) self-adjoint and v ∈ H,
using the continuous functional calculus talked about in the previous section we
define ϕ : C(σ(T )) → C by

ϕ(f) = ⟨v, f(T )v⟩ .

ϕ is a positive linear functional: if f is real-valued and f(x) ≥ 0 for all x ∈ σ(T ),
then ϕ(f) ≥ 0. σ(T ) is indeed a locally compact Hausdorff space and since σ(T )
is compact the continuous functions of compact support on σ(T ) are precisely
the continuous functions on σ(T ), so we satisfy the conditions of the Riesz-
Markov theorem. Thus there exists a unique regular Borel measure µ on the
Borel σ-algebra of σ(T ) such that, for all f ∈ C(σ(T )),

⟨v, f(T )v⟩ = ϕ(f) =

∫
σ(T )

f(x)dµ(x).

Lebesgue’s decomposition theorem states that

µ = µac + µsing + µpp,

where

• µac is absolutely continuous with respect to Lebesuge measure: if A is a
measurable subset of σ(T ) and its Lebesgue measure is 0, then µac(A) = 0.

• µsing and Lebesgue measure are mutually singular,15 and if λ ∈ σ(T ) then
µsing({λ}) = 0.

• There is a countable subset J of σ(T ) such that

µpp =
∑
λ∈J

aλδλ, aλ ∈ C.

We define Hac to be the set of those v ∈ H such that µ is equal to the
absolutely continuous part of its Lebesgue decomposition, i.e. the other two
parts are 0, and we define Hsing and Hpp likewise. (Note that we first took
v ∈ H and then defined µ using v.) One proves that Hac, Hsing and Hpp are
closed subspaces of H and that they are invariant under T , and defines the
absolutely continuous spectrum of T to be the spectrum of the restriction of T
to Hac; the singular spectrum of T to be the spectrum of the restriction of T to
Hsing; and the pure point spectrum of T to be the spectrum of the restriction of
T to Hpp. It is a fact that16

σ(T ) = σac(T ) ∪ σsing(T ) ∪ σpp(T ),

but these three sets might not be disjoint.
15There are disjoint measurable sets A and B with A ∪ B = σ(T ) such that µsing(A) = 0

and the Lebesgue measure of B is 0.
16See Reed and Simon, Methods of Modern Mathematical Physics. I: Functional Analysis,

revised and enlarged ed., p. 231, §VII.2.

11


