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1 Preliminaries

By an arithmetical function we mean a function whose domain contains the
positive integers. We say that an arithmetical function f is multiplicative
when ged(n,m) = 1 implies f(nm) = f(n)f(m), and that it is completely
multiplicative when f(nm) = f(n)f(m) for all n,m > 1.

Write

Un:{ezmk/":lgkgn}:{e%““/":nggnfl},

the nth roots of unity. For n > 1, there is an element ¢ of U, with ¢ # 1.
Because £ — (¢ is a bijection U, — U, we have (3 ., & = > ¢cy, &, hence
(1-29) ZieUn & =0. But ¢ # 1, which means that

n—1
ZeQ’”’“/”:Z§:0, n > 1.
k=0 e,

Write _
A, = {62’”’“/" :1 <k <n,ged(k,n) =1},

the primitive nth roots of unity. Let ¢ be the Euler phi function:
p(n) = {k: 1<k <n,ged(k,n) =1} = |A,].

¢ is multiplicative, and for prime p and for r > 1, ¢(p") = p"~*(p — 1).
Let p be the Mdbius function:

H(n) _ Z e27rik/n _ Z ¢

1<k<n,gcd(k,n)=1 £€l,

For p prime, as A, = U, \ {1},

plp)=-1+> &=0-1=-1L

€U,



For r > 2, as Apr = Upr \ Upr—1,

pp)=— > £+ Y £=-0+0=0.

&EUprfl EeUpr
Furthermore, one proves that p is multiplicative. Thus

1 n is a square-free integer with an even number of prime factors
u(n) = ¢ —1 nis a square-free integer with an odd number of prime factors

0 otherwise.

The Md&bius inversion formula states that if f and g are arithmetic func-
tions satisfying

gn)=>_f(d), n>1,

d|n

then

[ =3 un/dg(d),  n=1.
d|

We can write
Un = U Ad7

d|n

and AgN A, =0 for d # e. So

n=>_¢(d).
d|n

Therefore by the Mébius inversion formula,

o(n) = 3" d- p(n/d).

d|n

Also, for n > 1,

Dould)y=) Y = ¢=o0 (1)

d|n dln £€A, ceu,

d(n) =) "1,
d|n
the number of divisors of n, for example, d(6) = 4. Let

w(n) = Z 1,

pln

Let

the number of prime divisors of n: for n = p{* -+ -p®", a1,...,a, > 1, we have
w(n) = r, for example w(12) = w(2? - 3) = 2.



2 Definition and basic properties of cyclotomic

polynomials
Forn > 1, let
P () = 11 (=™ = ] @-9),
1<k<n,gcd(k,n)=1 EEA,

the nth cyclotomic polynomial. The first of the following two identities was
found by Euler [45, pp. 199-200, Chap. III, §VI]|.

Lemma 1. For n > 1,

"t —1= H@d(x),
d|

and for = & U,,
By () = [ (= 10/,

dln

Proof. For F,(z) = 2" — 1, each of >™*/? 1 < k < n, is a distinct root of
Fa(z), 50

" — 1 = H ({17 _ eQﬂ'ik/n)

1<k<n

— H H (J) _ eQﬂ'ik/n)

d|n 1<k<n,gcd(k,n)=d

— H H (.’L‘ _ e27rijd/n)

din 1<j<n/dged(j,n/d)=1

= H (I)n/d(x)

d|n

= [[ ®al=).

That is, log F, = Y din log ®,4. Therefore applying the Mdbius inversion formula
yields log @, = >, #(n/d) log Fq and so @, = ][, Ff(n/d). O

Lemma 2. When p is a prime,
O,(z)=aP 4+ 1
When p is an odd prime,

Pop(x) =Pt —aP 24 2P — a1



Proof. When p is a prime, 2P — 1 = ®1(z) - D,(x), i.e.

P —1 P —1
(b = = = p—1 e 1.
Gy o e M A

When p is an odd prime,

Bo (1) %P —1 % —1 (2P =1)(zP +1) aP+1

xTr) = = = = ,
2 Q1 (z)P2(z)Pp(x) (2P — 1)Po(x) (zP = 1)(z+1) xz+1
and because (z + 1)(aP~! — P72 4 2P73 — ... 4 22 — x4+ 1) = 2P + 1,

Bop(x) =aP ™t —aP 2 4P — o 2? — 1

Lemma 3. If p is a prime and m > 1,

For k > 1,
@,y (27" plm
Dk, (x) = _
pk ( ) {q’m(l‘p )/‘I’m(xpk 1) me7
Proof. Using Lemma 1,
() = [] (2t =1
dl(pm)
- H (z% — 1)rm/d) . H (x4 — 1)pm/d)
dl(pm),pld d|(pm),ptd
- H(xpe — 1)Hm/e) . H (x4 — 1)pem/d)
elm d|(pm),ptd
= B, (aP) - H (x4 — 1)pem/d),

d|(pm),ptd

If m = ap and d|(pm) and p 1 d, then u(pm/d) = p(ap®/d) = 0 and

Dy () = By (2P - H(xd _ 1)#(ap2/d) = &, (2P).
dla

If ptm and d | (pm) and p{ d, then p(pm/d) = p(p)u(m/d) = —p(m/d) and

Py () = O (a?) - [[ (@ =10 =@, (27)  [[ (2 — 1)~/
d|(pm),ptd dlm



For k > 2,

k—1
Qi (1) = Pppp—1, (x) = Ppr—yy, (aF) = -+ = Ppp (2P ),
and using the expression we obtained for ®,,,(x) we get the expression stated
for @, (). O

Lemma 4. For n = p{"---p%, where p; are prime and «; > 1, and N =

P1-DPr,
&, (x) = D (z"/N).

Proof. If djn and d { N then u(d) = 0, hence

O, () = [J(a"/* = 1)H@

d|n

= H(:L'n/d — 1)N(d)

d|N
— ((xn/N)N/d_ 1)u(d)

= ®pn (V).

Lemma 5. If n > 1 then

B, (z7) =27, ().

Proof.
P, (x7Y) = H(x—d _ 1)u(n/d) — H(l _ xd)u(n/d)(x—d)u(n/d)7
d|n d|n

hence

q)n(xil) = H(fx*d)ﬂ(”/d) . H(xd _ 1)u(n/d).

d|n d|n
Because n > 1 it holds that },, u(n/d) = 0, and using this and >_;, d -

p(n/d) = ¢(n) yields
B, (z7Y) =27 M, ().

Lemma 6. If r > 1 is odd then

Dy (z) = O, (—x).



Proof. Because r is odd, if dy,...,d; are the divisors of r then
di,...,d;,2dq,...,2d,

are the divisors of 2r, so

Oyr(z) = [ (@ = 1)/

d|(2r)
=TI — 1yeerrd (24 — 1yeter/ )
d|r d|r
= H 1)HCr/d) (g2 _ 1 yu(r/d)
d|r
= H 1)@t/ d)tpr/d) (pd o 1)n(r/d)
d|r
— H 1ynr/d),
d|r
Because 7 is odd, any divisor d of r is odd and then 2¢ + 1 = —((—z)? — 1), so
By, (z) = H(,l)u(r/d)((,x)d — 1)/ = (1)) H 1)rr/d),
d|r
Because 7 is odd and > 1, ¢(r) is even, so we have obtained the claim. O

Theorem 7. ®,, € Z[z].

Proof. Tt is a fact that if R is a unital commutative ring, f € R[x] is a monic
polynomial and g € R[z] is a polynomial, then there are ¢,r € R[z] with

g=qf +r,

r=0or degr < deg f.
First, ®1(x) =  — 1 € Z[z]. For n > 1, assume that ®4(z) € Z[z] for
1 <d < n. Then let
H q)dv

d|n,d<n

which by hypothesis belongs to Z[z]. Since each ®4 is monic, so is f. On the one
hand, since g(z) = 2™ — 1 € Z|x], there are ¢,r € Z[x] with g = ¢f +r and r =0
or degr < deg f. On the other hand, by Lemma 1 we have g = &, f € C[z].
Thus ®,f = qf +r € Clz], sor = f- (P, —q) € Clz]. If &, # ¢ then
degr = deg f + deg(®,, — q) > deg f, contradicting that » = 0 or degr < deg f.
Therefore ®,, = g € C[z], and because ¢ € Z[x] this means that ®,, € Z[z]. O

In fact, it can be proved that ®,, is irreducible in Q[z]. Gauss states in entry
40 of his mathematical diary, dated October 9, 1796, that @, is irreducible in
Q[z] when p is prime, and he proves this in Disgisitiones Arithmeticae, Art.



341. Gauss further states in entry 136 of his mathematical diary, dated June
12, 1808, that for any n, ®,, is irreducible in Q[z], and Kronecker proves this in
his 1854 Mémoire sur les facteurs irréductibles de ’expression ™ — 1. Gauss’s
work on cyclotomic polynomials is surveyed by Neumann [40]. For any £ € A,,,
®,,(&) = 0, and since ®,, is irreducible in Q[z] and is monic, ® is the minimal
polynomial of € over Q, which implies that [Q(£) : Q] = deg ®,, = ¢(n).

There is a group isomorphism Gal(Q(£)/Q) — (Z/n)* [16, p. 596, Theorem
26).

The discriminant [44, p. 12, Proposition 2.7]:

(,1)¢(n)/2n¢(n)
lenp¢(n)/<p—1) ’

It can be proved that Og(ezri/n) = Z[e* /"] [39, p. 60, Proposition 10.2].

Let p be prime, let ¢ = p” for » > 1, let F, be a finite field with ¢ elements,
and for n > 1 with ged(n, ¢) = 1, let v be the multiplicative order of ¢ modulo n:
v is the minimum positive integer satisfying ¢ = 1 (mod n). It can be proved
that there are monic, degree v, irreducible polynomials Pi, ..., Py, € Fylz]
such that ®, = Pi--- Py € Fylz] [28, p. 65, Theorem 2.47|; cf. Bourbaki
[7, p. 581] on Kummer. In particular, ¢ is a generator of the multiplicative
group (Z/n)* if and only if v = ¢(n) if and only if ®,, is irreducible in F,[x]. We
remark that (Z/n)* is cyclic if and only if n is 2, 4, some power of an odd prime,
or twice some power of an odd prime (Gauss, Disquisitiones Arithmeticae, Art.
89-92). This follows from (i) the multiplicative group (Z/n)* is isomorphic with
the direct product (Z/p{*)* x --- x (Z/p2)* for n = p{* ---p&r, (i) (Z/2%)* is
isomorphic with Z/2 x Z/2°72 « > 2, and (iii) (Z/p®)* is a cyclic group with
p*~1(p — 1) elements when p is an odd prime, a > 1 [16, p. 314, Corollary 20].

d(Q(e*™/™)) =

3 Special values
Lemma 8. ®,(0) = —1, and for n > 2, ,(0) = 1.
Proof. ®1(z) =2 —1, so ®1(0) = —1. For n > 2, using (1),
®,(0) = H(,l)u(n/d) = (=1)Zan #/ D — () Zan D = (Z1)0 =1,
dn
O

Let A be the von Mangoldt function: A(n) = logp if n = p® for some
prime p and some integer & > 1, and is A(n) = 0 otherwise. Thus A(2) = log 2,
A(8) =log2, A(3) =log3, and A(6) = 0. One sees that

logn = Z A(d).

d|n



Therefore by the M&bius inversion formula,

A(n) = Z w(n/d)logd.

d|n
Theorem 9. For n > 1,
B, (1) =M™
and

(1) = %eA(")(b(n).

n

Proof. For n > 1,
x71—1+...+x+1: H @d(ib),
d|n,d>1

hence

logn = Z log ®,4(1).

din,d>1

Therefore by the Mébius inversion formula,

log @,,(1) = Z u(n/d)logd:Zu(n/d)logd:A(n).

d|n,d>1 d|n

Because 2" — 1 = Hd|n ®,(x), taking the logarithm and then taking the

derivative yields
nz"t Z o/ ()
" —1 din ‘I)d(a:)

Py(x) _ 1
B (z) — 717 hence

®y(z) =2 —1 and so

-1 zx-1

na" 1 I ()
B Z @d(x)’

d|n,d>1

i.e.

nxnfl _ (:L.nfl +.’En72 ++x—|—]_) Z @&(fﬂ)

n _ !
r 1 d|n,d>1 (I)d(x)

Doing polynomial long division we find

-1 n—-1_ ,n—-2 _ . . _ -1
(n—1)x x -1 24 (n—2)a" P+ 2+ L.

rz—1

Hence

(n—1)2" 2+ n—-2)z" 3+ 42041 Z (@)

n—1 n—2 - - ’
At e dln,d>1 a(w)



and for z = 1 this is

By the Md&bius inversion formula,

() 5 o
‘I’"(l)_d%;lu( fd)—5—

and using (i) ®,(1) = 2™ for n > 1, (ii) > dn #(n/d) =0 for n > 1, and (iii)
> djn 4 pu(n/d) = ¢(n), we have

1 1 1
@), (1) = A d};mn/d) R d};mn/@ = 5" Mg(n).

Because ®,, € Z[z], it is the case that @, (—i) = @, (4).

Theorem 10. ®(i) =i — 1, Po(i) =i+ 1, P4(i) = 0, and otherwise we have
the following.

e If n is odd and has a prime factor p =1 (mod 4), then ®,,(i) = 1.

e If p=3 (mod 4) is prime and k > 1 is odd, then ®,x (i) = i.

o If p=3 (mod 4) is prime and k > 1 is even, then @, (i) = —i.

e If p=3 (mod 4) is prime and k > 1 is odd, then ®q (i) = —i.

o If p=3 (mod 4) is prime and k > 1 is even, then ®,,. (i) = 1.

o If p,g =3 (mod 4) are distinct primes and k,[ > 1, then ® k(i) = —1.
o If p,g =3 (mod 4) are distinct primes and k,1 > 1, then ®gx (i) = —1.
e If p is an odd prime and k > 1, then ®y,x (i) = p.

o If w(n) > 3 then @, (i) = 1.

Proof. ®1(z) =2 —1, Pa(x) =+ 1,50 P1(i) =¢— 1 and Po(i) =i+ 1. As
1€ A4, (134(2) =0.

Suppose that n is odd, that p =1 (mod 4) is a prime factor of n, and write
n = p*m with ged(m, p) = 1. Lemma 3 tells us

B (a”)
®,, (zP" ")’

and as p*~! =1 (mod 4) and i* = 1, this yields




Suppose that n is odd, that p =3 (mod 4) is a prime factor of n, and write
n = pFm with ged(m,p) = 1. If k is odd then p¥ =3 (mod 4), so

0,07 () (i)
(I)n(l) - (I)m(’ipk_l) - (bm(z) - q)m(l) 3

and if m = 1 then ’
_ Pi(-9)

(I)n(l)_ _i_l_.

= 1.

d(i) i1

If k is even then p* =1 (mod 4), so

and if m = 1 then ®,,(i) = —i.
Suppose that n = 2¥, k > 3. Lemma 4 tells us that

2k,71 2k'71

D, (x) = By(a™?) = By(a? ) =22  +1,

thus -
®,(i)=i> +1=1+1=2.

Suppose that n = 2m with m > 1 odd. Lemma 6 tells us ®,,(z) = Pgp,(z) =
D, (—x), s0 D, (i) = Dy (—1).
Suppose that n = 2¥m with k£ > 2 and m > 1 odd. Lemma 3 tells us

),

) = ®n(—22" ). For k = 2 this yields

2k71

Dot () = Doi1 () = D0

and then Lemma 6 tells us <I>2m(x2k71

Dy (i) = D,,(1),

and for k > 2,

Kurshan and Odlyzko [25]
Montgomery and Vaughan [36, pp. 131-132, Exercise 9].

Theorem 11. If n =], —5 3 (mod 5 P With w(n) odd, then

d(n)/2
: 1
<I>n<e2m/5>|=< +f/5> '

10



Proof. Write e(z) = €2 let d | n, d > 1, and writed = py - - - p-q1 - - - ¢ where
Pls--, Pk =2 (mod 5) and ¢q,...,¢ =3 (mod 5) are prime. Then w(d) = k+1
and, as 23 =3 (mod 5),

d=2F3" = 2%23 = 2k (_1)!  (mod 5).

If w(d) = 0 (mod 4) then 2¥* = 1 (mod 5) and if w(d) = 2 (mod 4) then

2k = —1 (mod 5), and therefore if w(d) is even then d =1 (mod 5) or d = —1

(mod 5). Since |e(—1/5) — 1| = |e(1/5) — 1|, we have |e(d/5) — 1| = |e(1/5) —1].
If w(d) =1 (mod 4) then 28! = 2 (mod 5) and if w(d) = 3 (mod 4) then

2k+l = —2 (mod 5), and therefore if w(d) is odd then d = 2 (mod 5) or d = —2

(mod 5). Since |e(—2/5) — 1| = |e(2/5) — 1], we have |e(d/5) — 1] = |e(2/5) —1].
Now using Lemma 1 and |e(1/5) — 1|71 = |e(2/5) — 1|,

@ (e(1/5))] = [ ] le(d/5) — 1]/
d|n

I le@s—-ur I le2/s) -1

d|n,w(d) even d|n,w(d) odd

Hence, for w(n) = 2v + 1 and for A =|e(1/5) — 1|7 and B = |e(2/5) — 1],
. (2v+1 ~ (2v+1
log |® 1 = 1 1
CIXCUEIED S QA IEXED Sl (W) I
=2%]og A + 2% log B
= log(4B)*""/?),
and using d(n) = Zfi%) (“0M) = 240" this is [®,(e(1/5))] = (AB)4™/2. Fi-
nally,
AB =

le(2/5) — 1] 1+5
|

SR 7] = /8 + 1= =

4 Primes in arithmetic progressions

For prime p, p { n, the following theorem relates the order of an element of
the multiplicative group (Z/p)* with ®,, [44, p. 13, Lemma 2.9]. We remind
ourselves that ®,, € Z[z] (Theorem 7), and so ®,(a) € Z for a € Z.

Lemma 12. Let p be prime, p1n, and a € Z. Then p | ®,,(a) if and only if n
is the multiplicative order of @ modulo p.

Proof. Suppose that p | ®,,(a). Now, let b € Z with p | ®,,(b). By Lemma 1, b —
1 =14, ®a(b), and because ®,,(b) =0 (mod p) this yields b" —1 =0 (mod p),

i.e. b =1 (mod p); in particular, p{b. Let v = min{k > 0:a* =1 (mod p)},

11



the multiplicative order of @ modulo p, so v | n, and suppose by contradiction
that v <n. Using 2 — 1 =[], ®a(x) we have b” —1 =[], ®a(b). Using this
with b = a, as a¥ = 1 (mod p) and because p is prime it follows that for some
do <v<mn, Pyg,(a) =0 (mod p). As v | n,

b —1=3,(0)04,(0) - J[ Pald).
d|n,d#dg,n

Applying the above with b = a yields a” — 1 = 0 (mod p?). Moreover, by the
binomial theorem, ®,(a + p) = ®,,(a) =0 (mod p) and Dy, (a + p) = Py, (a) =
0 (mod p), so applying the above with b = a + p yields (a + p)" — 1 = 0
(mod p?). But by the binomial theorem, (a + p)" — 1 = Z;‘l:o (?)a"‘jpj -1,
whence (a +p)” —1 =a" +na" 'p—1 (mod p?), hence a™ + na™ p—1=0
(mod p?). Together with a™ —1 =0 (mod p?) this yields na”'p =0 (mod p?),
i.e. na" 1 =0 (mod p), contradicting that p{n,a. Therefore v = n.

Suppose that a” = 1 (mod p) and that ¥ Z 1 (mod p) for 0 < v < n. As
[14, ®a(a) = a™ —1 =0 (mod p), there is some dy | n for which ®4,(a) =0
(mod p). Suppose by contradiction that dy < n. As dy | n,

at —1= H Dy(a) = Dy, (a) - H Dy(a) =0 (mod p),

d|do d|do,d<do

contradicting that a¥ #Z 1 (mod p) for 0 < v < n. Therefore ®,(a) = 0
(mod p), i.e. p| ®p(a). O

Lemma 13. Let p be prime, p { n. There is some a € Z such that p | &, (a) if
and only if p =1 (mod n).

Proof. Suppose that ¢ € Z and p | ®,(a). Then by Lemma 12, n is the mul-
tiplicative order of a modulo p. As the multiplicative group (Z/p)* has p — 1
elements, this implies that n | (p — 1), i.e. p— 1 =0 (mod n).

Suppose that p = 1 (mod n), i.e. n | (p —1). Because (Z/p)* is a cyclic
group with p—1 elements, it is a fact that there is some a € Z, a+pZ € (Z/p)*,
whose multiplicative order modulo p is n. (Generally, if G is a cyclic group with
m elements and n divides m then there is some g € G with order n.) Then by
Lemma 12, p | ®,,(a). O

We now use Lemma 13 to prove an instance of Dirichlet’s theorem on primes
in arithmetic progressions [44, p. 13, Lemma 2.9].

Theorem 14. For any n > 1, there are infinitely many primes p with p = 1
(mod n).

Proof. The claim for n = 1 follows from the claim for n = 2. For n > 2, by
Lemma 8, ®,,(0) = 1, namely the constant coefficient of ®,,(x) is 1. Suppose by
contradiction that there are at most finitely many such primes pq, ..., p; and let
M=mnpy---pt. For Ne€Z, ®,(NM)=1 (mod M) and from M | (®,,(NM) —
1) it follows that p; | (P, (NM) —1),1<i<t,and n | (®,(NM)—1). Hence

12



if p is a prime factor of ®,(NM) then p £ p;, 1 <i<t,and ptn. As @, is a
monic polynomial that is not a constant, for all sufficiently large N, ®,(NM) is
an integer > 2 and thus has a prime factor p, amd we have established that p t n.
Therefore Lemma 13 tells us that p =1 (mod n). But we have also established
that p # p;, 1 < i < r, a contradiction. Therefore there are infinitely many
primes p with p =1 (mod n). O

One can prove that for any integers n,b > 2 it holds that

% ) < B () < 2 5P,

Using this, Thangadurai and Vatwani [42] prove that for n > 2, the least prime
p =1 (mod n) satisfies

p <20+l _q
5 Zsigmondy’s theorem

20, pp. 167-169, §8.3.1]

6 Newton’s identities and Ramanujan sums

For positive integers n and n, let

Z e27rijk/n _ Z gkr’

1<j<n,ged(n,j)=1 §€hn

cn (k)

called a Ramanujan sum.

Lemma 15.

cn(k) = Z d-u(n/d).

dlged(n, k)
Proof. Let

m nlk.

() = D 2mi/ = {0 ntk

j=1
We can write n,, (k) as

(k) = 3 calk),
d|n
so by the Md&bius inversion formula,

cn(k) = u(n/d)na(k).
d|n

13



Theorem 16. For n > 1 and for |z| < 1,

D, (z) = exp <— Z C"fnm) xm> .

m=1

Proof. Using that € — £~ ! is a bijection A, = A,

Because n > 1, ®,,(0) = 1, and integrating,

)
merl

P, (z) = exp 7Zm+125m+1 exp(Z

m=0 e,

A formula due to Holder [36, p. 110, Theorem 4.1] is that

i ged(n, 1)) - 6(n).

en(R) = i ged(m, 1)

This identity is used to prove the following lemma that we use later.

Lemma 17. If n is square-free then k — p(n)c, (k) is multiplicative.

Lemma 18. For n > 1 and Res > 1,

S el = C(s) -3 /)i~
k=1 dln

14



Proof. By Lemma 15,

dea)k™ ="k > p(n/d)d
k=1

k=1 d|n,d|k

=3 (md)“u(n/d)d

d|n m=1

=33 mtdu(n/d)d

d|n m=1
=> m™*> d*u(n/d)d
m=1 d|n

= ((s) - Y p(n/d)d* >
d|n

Write
(z—a;) =Y (~1fspa"*,

1 k=0

n n

J
and put, for k > 1,

Newton’s identities [19, p. 32, Proposition 3.4] state that for & > 1,

k-1
Pr = Z(_l)j_lsjpk—j + (=1 ks,
j=1
Write
#(n)
Op(x) = an(k)x
k=0

Let n > 1, and for integer j define

0 ged(n,j) >1,

namely the principal Dirichlet character modulo n. We can then write

(I)n(.'L‘) — H (:E _ eQm’k/n) _ x—n—&-qﬁ(n) H(x _ aj)
j=1

1<k<n,gcd(n,k)=1

15



for aj = x1(5)e®>™/™, and thus

n

g, (@) = [[(@ - a).

Jj=1

Because 1 (j) = x1(j) for k > 1,

i = Za _ ZX 27r1jk/n _ Z 627rijk:/n _ Cn(k')

1<j<n,ged(n,j)=1

Now, from
xn*(b(n) Z an(k)wk _ Z(_l)kskxnfk
k=1 k=0

we have, for 0 < k < n,

(=1)Fsp = an(d(n) — k).
In fact by Lemma 20, a,(¢(n) — k) = an(k), so a,(k) = (—1)*s;,. Thus (3)
yields the following, and in particular

an(l) = —c, (1) = —un).

Theorem 19. Forn > 1 and k > 1,

kan (k) = —cn(k Zan Jen(k = j)-

a

Let n be a product of distinct odd primes and for a € Z let x(a) = (5)
be the Jacobi symbol. Dedekind, in Supplement I to Dirichlet’s Vorlesungen
iber Zahlentheorie [15, pp. 208-210], §116, proves that

> (eI = x ()it V A (4)
1<j<n

this is proved earlier by Gauss in his Summatio quarumdam serierum singular-
ium [22, pp. 9-45], dated 1808. The expression G(h,x) = 21<j<n x(j)e?miih/n
is called a Gauss sum. Dedekind, in Supplement VII to Dirichlet’s Vorlesun-
gen, says what amounts to the following. Define

An(l‘) _ H ( 271'20,/11 Z an

and

Bn(l‘) — H ( 27r1b/n Zﬁn 7

1<b<n,x(b)=—1

16



and write

Sn(k) = ST ek (k) = 3 p2mikb/n

1<a<n,x(a)=1 1<b<n,x(b)=—1

Then

and by (4), writing
* (71)(7171)/2”’

3
I

we have
Su(k) = Tu(k) = > x(5)e”™ /™ = x(k)v/n*,

hence
25, (k) = n(k) + x(RIVim,  2To(k) = en(k) — x(R)Vrr.

We have established in Lemma 15 that ¢, (k) € Z, so this shows that Sy, (k), T,,(k) €
Q(v/n*). Newton’s identities yield for k > 1,

k—
Z (0 — ) Su(k — j) = kan(n— k)

and
k—1

To(k) == Bu(n— §)Tu(k — §) — kBn(n — k),

j=1

and it follows that a,(k), Bn(k) € (\/ ) Furthermore, o, (k), 8, (k) are alge-
braic integers, so an(k), Bn(k) € Og(mm)- If D is a square-free, it is a fact [16,
p. 698, §15.3] that O /) = Z[w] for

VD D=23 (mod4)
w =
# D=1 (mod4),

and n* = (=1)»=/2p =1 (mod 4), we have O o) = Z[(1+v/n*)/2]. Thus

an(k), Bn(k) € Z[(1 + vn*)/2]. ,
It is a fact that Q(v/n*) C Q(e?™/™) [23, p. 19, Proposition 5.13]
Gauss, Disquisitiones Arithmeticae, Art. 357

7 Algebraic theorems about coefficients of cyclo-
tomic polynomials

For n > 1, we write
#(n)

= Z an (k)z*
k=0

17



Let
A = m n(k
(n) Oskﬁa;((n) lan (k)]

and
#(n)

S(n) = lan(k)|-
k=0
It is immediate that A(n) < S(n).

Lemma 20. For n > 1 and for 0 < k < ¢(n),

an(¢(n) — k) = an(k).

Proof. For P(x) =37, a(j)z?, check that a(j) = a(n — j) for each 0 < j <n
is equivalent to 2" P(z~!) = P(x). But because n > 1, by Lemma 5 we have
®,(z71) = 2=¢"d,, (), so we obtain the claim. O

Migotti [35] proves the following, and also calculates a1o5(7) = —2. The
following is also proved by Bang [2]; cf. Beiter [4].

Theorem 21 (Bang). For odd primes p < g,
ape(k) € {0,-1,1}.
Proof. By Lemma 1,

(21— 1)z — 1)
(o7 = 1)t — 1)

(1—x) 3Pz

Dpq(z) =

1—ap
=(1-1x) Z xo‘q-Zx’Bp
0<a<p—1 820
— Z 2a+Bp _ Z pat+Bp+1
0<a<p-1,820 0<a<p—1,520

— > (=1)%goathrts,

0<a<p-1,4>0,0<6<1

Suppose by contradiction that ayq + B1p + §1 = asq + Bop + 62 with 61 = Js.
Then g(a; — as) = p(B2 — B1), which implies that p divides oy — as. But 0 <
a1,y < p—lmeans 0 < |a; —as| < p—1, 80 @1 —as = 0 and thence 82— 1 = 0,
which means that (a1, 81,91) = (ag, 82,2). Therefore, for 0 < k < ¢(pq) there
are zero, one, or two triples («, 3,0) such that k = ag + Bp + ¢; if there are two
such triples, then one has 6 = 0 and one has § = 1. If there are no such triples,
then a,, (k) = 0. If there is one such triple (a, 3,6), then a,, (k) = (—1)°. If there
are two such triples, then a, (k) = (—=1)° + (=1)! = 0. O

18



Lam and Leung [26] determine the following explicit formula.

Theorem 22 (Lam and Leung). Suppose that p < ¢ are primes. Then there
are nonnegative integers r,s such (p — 1)(¢ — 1) = rp + sq, and for 0 < k <

d(pg) = (p —1)(¢ — 1),

1 0<i<r,0<j<swithk=1ip+jq
apg(k) =< -1 r+1<i<q—1,5+1<j<p-—1with k+ pg=ip+ jq

0 otherwise
Furthermore,
{k:0 <k <d(pqg), apg(k) =1} = (r+1)(s + 1)

and
{k:0<k<o(pqg),apg(k) = -1} = (p—s—1)(¢—r—1).

Proof. Because ged(p, g) = 1, there is some 0 < r < g — 1 such that
rp=-p+1 (mod q).

If r = g — 1 then we get from the above that 1 = 0 (mod ¢), which is false
because ¢ # 1, so in fact 0 < r < ¢ — 2. Now,

_(=Dlg=1—-rp _pg—p—q+l-rp
q q

is an integer and

pla—r—1—qg+1_ —g+1
q g

S =

> 1,

hence s > 0. Also, s < W <p-—1,80 s <p—2. We then have

m+sqg=rp+(p—1)(g—1)—rp=(p—1)(¢g—1).

For £ € Apq, because ®4(£P) =0 and $,(£7) =0,

Sy == )y, DEy == > (€.
1=0 i=r+1 7=0 Jj=s+1

(Because 0 < r < g—2and 0 < s < p — 2, each of the above four sums has a
nonempty index set.) From this we have

@@ﬁZ@M«ZW>ZWVﬂ

i=0 3=0 i=r+1 j=s+1

19



Because {774 = 1, this implies that each £ € A, is a zero of the polynomial

flx) = (;xip> Zoqu _ ( Z xm) Z zia z P

1=r+1 Jj=s+1
that this is indeed a polynomial follows from
(r+)p+(s+l)g—pg=rp+sqg+p+q—pg=1.

The first product is a monic polynomial of degree rp + sq = ¢(pq). The second
product is a polynomial of degree

(g=Dp+(p—1)g—pg=—p—q+pg=d(pg) — 1.

Therefore f(z) is a monic polynomial of degree ¢(pg). Because each £ € A, is
a zero of f(z) and f(z) is monic, f(x) = Ppe(z). O

Carlitz [10] proves the following.

Theorem 23. Let p < q be primes, let
qu= -1 (mod p), 0<u<np,

let 6(pq) be the number of terms of ®,,, with nonzero coefficients, and let 6y (pq)
be the number of terms of ®,, with positive coefficients. Then

0(pq) = 260(pq) — 1
and
0o(pq) = (p — u)(ug +1)/p.

Cobeli, Gallot, Moree and Zaharescu [13] give an exposition of a,q, (k) where
p < q < r are primes, p is fixed, and ¢, r are free.
Bang [2] proves the following.

Theorem 24 (Bang). For odd primes p < ¢ <,
A(pgr) <p -1

Beiter [5] proves the following improvement for a case of the above theorem.
If p,g,7, 3 < p < q < r, are odd primes for which either ¢ = +1 (mod p) or
r = +1 (mod p), then

Alpgr) < =(p+1).

N =

Bloom [6] proves the following.

Theorem 25 (Bloom). For odd primes p < g < r <'s,

A(pgrs) < p(p—1)(pq — 1).
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Gallot and Moree [21]
The following is from Lehmer [27], who says that it appears in an unpublished
letter of Schur to Landau; cf. Bourbaki [8, V. 165, §11, Exercise 19].

Theorem 26 (Schur). For any odd m > 3 there are primes p; < pa < -+ < pp,
with p; + p2 > pn,. For such primes,

Upypye-pm (Pm) = —m + 1.

Proof. Write
7(z) = [{p: p is prime and p < z}|.

For m > 3, suppose by contradiction that if p; < py < --- < p,, are primes
then p; 4+ pa < Py, and thus 2p; < pp,. For k > 1, as there are infinitely many
primes, let p; be the least prime > k, and let £k < p; < ps <--- < py,. Then

w(2k) — (k) =7(2k) —7w(p1) + 1 <7(2p1) —7(p1) +1<(m—1)+1=m
This yields, for j > 1,
72 <m+ a2 <m+m+a(27) < < gm.
But the prime number theorem tells us

2J

27 ~
() jlog?2’

J = 00,

with which we get a contradiction.

Let m > 3 be odd and let p; < pa < -+ < p,, be primes satisfying p; + ps >
Pm, and let n = pips - pp. Since p; + p2 > Py, for 1 < j,k < m we have
pj +pr > pm + 1. It follows that if d is a divisor of n aside from 1 and
P1y-- -3 Pm; and u(n/d) 7é 07 then

(z? — 1)H(n/d) € 2P H7[q).

Therefore

O, () + 2P 2] = [[(a? = DPO/D 4 g 172
dln
- H (2 — 1)Mn/d) 4 gpmt1710]
dln,pu(d/n)#0

(zPi — n(n/p;) + 2Pt Z2]

',:]s

=(zx—-1)"
j=1

(zP7 — 1) xpm+1Z[x}

[
|
=
L
',:]s

=

=
=(@—-1)" (=142 - aPm) 4 2P 7 7).
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Now,
(x—1)7 (=14 aP 4 — 2P 4 2P U7 g]
=1+= L. +xi”m) (1 =Pt — . — aPm) +xpm,+1Z[$].

For 1 < i < m, there is one and only one 0 < j < p,, such that p; +j = py,.
This implies that the coefficient of zP™ in the above expression is —m + 1. [

Lehmer also states that in Rolf Bungers’ 1934 dissertation, Uber die Ko-
effizienten von Kreisteilungspolynomen (University of Gottingen), it is proved
that if there exist infinitely many twin primes then for any M there are primes
p < q < r such that A(pgr) > M. Lehmer proves this without the hypothesis
that there are infinitely many twin primes.

For power series A(z) = > po apz® and B(z) = Y 7o, bia®, write

A=<B
if |ag| < by for all k. For power series A, B, P,Q with A < P and B <X Q,
lar + br| < lak| + |be] < pr + Qs
so A+ B<XP+Q@Q, and

Z al—bj S Z |a1bj|§ Z Pidgj,

i+j=k i+j=k i+j=k

so AB < PQ.
Now,

o0 o0 o0
wdiljzxkd’ 1jzxkd7 (2? — 1)1 jzmkd,
k=0 k=0

and since p(n/d) € {0,1, -1},

@n(fﬂ):H(IEd*I)H(n/d) jH (Zxkd> :Hl_lxd (5)
d|n

d|n k=0 d|n

_1

Hence, because 1 X —,
—T

=~ 1
P, (z) < .
@ =1l

Let n — p(n) be the partition function, the number of ways of writing n as a sum
of positive integers, where the order does not matter. p(0) = 1 and p(n) = 0 for
n < 0, and for example, p(4) = 5 because 4 = 4,3+1,242,2+14+1,1+14+1+1.
It is a fact that for |z| < 1,

[T = ntyt,
k=0

j=1

found by Euler.
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Theorem 27.
lan (k)| < p(k),

and so

A(n) = ppax lan (k)| < . Srlgsaﬁn)p(k) < p(p(n)) < p(n).

It is proved by Hardy and Ramanujan [12, p. 166, Chapter VII] that for

ﬂ\/gand)\n:,/nfi,

i oW K An
p(n) O<)\3 ), n — oo.

K

This implies

eKvn
n) ~ , n — 00
p(n) 5
Therefore,
Kyn
An) =0 (e - ) . S(n)=0@E"VT),  no oo
Now let

Qn(x) = H(l a4 2% 4. 4,
d|n

It is straightforward that for 0 < k < n, the coefficient of z* in @, (z) is equal
to the coefficient of z* in 4 . For n > 1, because the degree of ®,,(z) is
¢(n) < n, using (5) we get

D, () = Qn(x).

d(n) = Z 1,
d|n
the number of positive integer divisors of n. It is straightforward that

[T =nir2,

Let

d|n
SO n
_ _ _ d(n)/2
Q= I15-[[4- "

But from ®,,(z) < @, () we have that S(n) is < the sum of the coefficients of
the polynomial Q,(x), i.e.

S(n) < Qn(1) = nd™/2,

This is found by Bateman [3]; cf. [36, p. 64, Exercise 7].
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Theorem 28 (Bateman).

S(n) < exp (;d(n) log n) .

A result due to Wigert [12, p. 19, Theorem 6], proved using the prime number

theorem, is that

log 1
limsuplogd(n) - ososn

n—o00 log

=log 2.

Thus, for each € > 0, there is some n. such that when n > n.,

log 1
logd(n) - 0808R <log2 +,
logn
SO |
ogn
logd < —2 log 2).
ogdn) < (e +10g2)
Then d(n) ) |
n ogn ogn
log S < ——= . < —_— log2) ).
ogS(n) < 5 ogn < 5 exp(loglogn(e+ og ))

Wirsing [46]

Konyagin, Maier and Wirsing [24]

Maier [29], [30], [31], [32]

Bachman [1]

Bzdega [9]

Nicolas and Terjanian [41]

Let U, (z) = %&1), i.e. W (z) = [I4jn,a<n Pa(z), which belongs to Z[z] and
is monic. Moree [37] proves the following.

8 Analytic theorems about coefficients of cyclo-
tomic polynomials

Erdés [17]

Erdss and Vaughan [18] prove the following.

Vaughan [43] proves the next theorem. Vaughan’s original proof is compli-
cated and delightful, and we first outline it and then give a radically simplified
proof using Theorem 11, attributed to Saffari by Montgomery and Vaughan [36,
pp. 131-132, Exercise 9|.

For n = [],<, ,=2.3 (mod 5P With w(n) odd, let ¢, =
n is square-free and p(n) = —1, it follows from Lemma 17 that m — ¢, is

multiplicative. Because c¢,, = O(m™1), the following Euler product expansions
hold [36, p. 20, Theorem 1.9]:

o0 o0
Z cmm ™ = HZcpkp_ks, Res >0
m=1

p k=0

_o(m)  Because
m
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and

o0 o0
> xm)emm ™ =D x®* )™, Res>0,
m=1 p k=0

where x is the quadratic Dirichlet character modulo 5. Using Hélder’s formula
(2) one works out that for p | n,

ic et A
P - _ —(s+1
P 1 p ( )

and for p {n,
> 1
—ks
Zcpkp = _ n—(s+1)’
P 1 p ( )
thus -
Zcmmfs:C(lJrs)l_[(lfp*S)7 Res > 0.
m=1 p\n

Using Holder’s formula and that x is completely multiplicative, one works out
that for p | n,

oo 3 1 +p_s
k ks
x(p®)eppp = —m———————
kzzo ) 1—x(p)p~ =+
and for p {n,
= 1
k —ks
X\P")CprP = PR
kzzo ®5)e 1—x(p)p~ =+
thus

Z x(m)emm™® = L(1+ s, X) H(l +p7 ), Res > 0.

m=1 pln

Using (i) the fact that the Gauss sum Zﬁzl x(r)e? /5 is equal to x(a)v/5, (ii)

the fact that cs,,, = ¢+, and (iii) e2mim/5 4 g2midm/5 — 9 . Re e2™™/5  one works

out that for x > 0,

4 - Re Z cme2ﬂ'im/5e—m/3c — Z Cm (\/g X(m)e—m/w + e—om/T _ e—m/x) )

m=1 m=1

Using this and the above Euler product expansions we get for s > 0,

/ (Re Z cme(m/f))e_m/””> z e
0 m=1

T (B pa s 0 [0 r) - - 570 + 9 [T -5

pln pln
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For z > 0, writing f(z) = Re Y ov_, ¢,,e2™™/%e~™/% one has for 0 < o < 1,

| et < 2 S o)

O z>1
SO
sup f(z)
[eS) o o
20/0 fl@)a e — —
:%(U) V5 Lt +ox) [Ja+p) -1 =577 +o) J[JA-»7)
pin pln
T 1-o

As 0 — 0 we have oT'(6) =14+ O(0), (1 =577){(1 + o) = logh + O(c), and
1—p 7 =oclogp+ O(c?), thus

sup () 2 V5 L(1,x) 2% = 1 VB L(1,x) - dn)

x>1

e

But Theorem 16 tells us that for |z| < 1,

|®,(2)] = exp <Re Z cmzm> ,

m=1
50 |®,,(e>™/5e=1/7)| = ef(*) and thus
1
sup (8,2 = exp (V5 L0, d(w)).
|z|<1

As x is the quadratic Dirichlet character modulo 5, it is a fact that L(1, x) can
be explicitly evaluated (this is an instance of Dirichlet’s class number formula),

and using this one checks that exp (3 - V5 L(1,x)) = 12—‘/5 Therefore

d(n)/2
1
sup |<I>n(z)>< “/5) .

z]<1 2

Theorem 29 (Vaughan). If n =[], , o3 (mod 5)P With w(n) odd, then

d(n)/2
; 1 )
<I>n<e2’”/5>|:< “f) :

2

There are infinitely many n such that

log 2)(1
log A(n) > exp 108208 n) )
loglogn
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Proof. O
Vaughan further proves the following.

Theorem 30 (Vaughan). There is some C' such that for infinitely many £,

log m&i( |a,n(k)| > Ckl/Q(log ]{7)—1/4.
nz

9 Fourier analysis

Let T =R/Z. For p > 1, define

1= ( [ 1 If(o:)”dx)l/p

and || f|| e = supgepo,1) |f(#)]. By Jensen’s inequality, if 1 < p < ¢ < oo then

1flle < 1fllpa -
For f € L'(T), define f:Z — C by

~

1
fir) = [ e @y

Define

1/p
I, - (3 o)

and ||| = suprez | Fk). For 1 <p<g<ox,

91, <117

Plancherel’s theorem tells us that

11l = 7]

The Hausorff-Young inequality states that for 1 < p < 2 and % + % =1,

17

Nikolsky’s inequality [14, p. 102, Theorem 2.6] says that if f(k) = 0 for
|k| > n, namely f is a trigonometric polynomial of degree n, then for 0 < p <
q < oo and for r > £ an integer,

o’

e

< .
ra = ||f||LT’

[fllpe < @nr+ 1777 [|f]l L, -
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On the other hand, using Jensen’s inequality for sums one proves that if f is a
trigonometric polynomial of degree n, then for 1 < p < ¢ < o0,

|41, = neni=t 4],

For f: T — C, define
|4, = lsupp f1 = [{n € 2 fm) 2 0}.

McGehee, Pigno and Smith [33] prove that there is some K such that for all N,
if nq,...,ny are distinct integers and ¢y, ...,cy € C satisfy |cx| > 1, then

N
§ :Cke%rmkt
k=1

That is, if f : T — C is a trigonometric polynomial with |f(n)| > 1 when
f(n) # 0, then

> Klog N.

Ll

1l = Klog | ]|,
For F : Z/N — C, define F : Z/N — C by

1 — -\ —2mij
:NZF(])e migk/N - 0<k < N-—1.

One checks that [36, pp. 109-110, §4.1]
N-1
F(j)=Y F(k)e*k/N — 0<j<N-1
=0

o

and

2

R | N-1
[FR)P =+ O IFG)
— j=0

0
For ag,...,an—1 € C, define f : T — C by

N-1
f(i[]) — Z akeQTrlkw
k=0

x>

and define F': Z/N — C by
N-1
F(j)=f(/N) = ape®™ /N~ 0<j<N-1,
k=0

for which we calculate F(k) =ag, for 0 <k < N —1. Then

N-1 N-1 R 1 N-1 1 N—
Sl = X IR = 5 3 PO Ngjm%
=0 =0 =

=0

Carlitz [11]



10 Algebraic topology

Mu

siker and Reiner [38]
Meshulam [34]
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