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1 Linear operators

For a complex Hilbert space H let L (H) be the bounded linear operators H →
H. It is a fact that A ∈ L (H) is self-adjoint if and only if ⟨Ah, h⟩ ∈ R for all
h ∈ H.1 For a bounded self-adjoint operator A it is a fact that2

∥A∥ = sup
∥h∥=1

| ⟨Ah, h⟩ |.

A ∈ L (H) is called positive if it is self-adjoint and

⟨Ah, h⟩ ≥ 0, h ∈ H;

because we have taken H to be a complex Hilbert space, for A to be positive it
suffices that the inequality is satisfied.

For A,B ∈ L (Cn), we define their Hadamard product A ∗B ∈ L (H) by

(A ∗B)ei =

n∑
j=1

⟨Aei, ej⟩ ⟨Bei, ej⟩ ej .

So,
⟨(A ∗B)ei, ej⟩ = ⟨Aei, ej⟩ ⟨Bei, ej⟩ .

The Schur product theorem states that if A,B ∈ L (Cn) are positive then
their Hadamard product A ∗B is positive.3

1John B. Conway, A Course in Functional Analysis, second ed., p. 33, Proposition 2.12.
2John B. Conway, A Course in Functional Analysis, second ed., p. 34, Proposition 2.13.
3Ward Cheney and Will Light, A Course in Approximation Theory, p. 81, chapter 12.
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2 Positive definite functions

Let X be a real or complex linear space, let f : X → C be a function, and for
x1, . . . , xn ∈ X, define Ff ;x1,...,xn ∈ L (Cn) by

Ff ;x1,...,xnei =

n∑
j=1

f(xi − xj)ej ,

where {e1, . . . , en} is the standard basis for Cn. Thus for u =
∑n

i=1 uiei ∈ Cn,

⟨Ff ;x1,...,xn
u, u⟩ =

〈
n∑

i=1

ui

n∑
j=1

f(xi − xj)ej ,

n∑
k=1

ukek

〉

=

n∑
i=1

ui

n∑
j=1

f(xi − xj)

〈
ej ,

n∑
k=1

ukek

〉

=

n∑
i=1

n∑
j=1

uiujf(xi − xj).

We call f positive definite if for all x1, . . . , xn ∈ X, Ff ;x1,...,xn
is a positive

operator, i.e. for u ∈ Cn,

⟨Ff ;x1,...,xn
u, u⟩ ≥ 0.

We call f strictly positive definite for all distinct x1, . . . , xn ∈ X and nonzero
u ∈ Cn,

⟨Ff ;x1,...,xnu, u⟩ > 0.

3 Completely monotone functions

A function f : [0,∞) → R is called completely monotone if

1. f ∈ C[0,∞)

2. f ∈ C∞(0,∞)

3. (−1)kf (k)(x) ≥ 0 for k ≥ 0 and x ∈ (0,∞)

Because a completely monotone function is continuous, f(x) tends to f(0) as
x ↓ 0. Because a completely monotone function is nonincreasing and convex,
f(x) has a limit, which we call f(∞), as x ↑ ∞.

TheBernstein-Widder theorem states that a function f satisfying f(0) =
1 is completely monotone if and only if it is the Laplace transform of a Borel
probability measure on [0,∞).4

4Peter D. Lax, Functional Analysis, p. 138, chap-
ter 14, Theorem 3; http://djalil.chafai.net/blog/2013/03/23/

the-bernstein-theorem-on-completely-monotone-functions/
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Theorem 1 (Bernstein-Widder theorem). A function f : [0,∞) → R satisfies
f(0) = 1 and is completely monotone if and only if there is a Borel probability
measure µ on [0,∞) such that

f(x) =

∫ ∞

0

e−xtdµ(t), x ∈ [0,∞).

Proof. If f is the Laplace transform of some probability measure µ on B[0,∞),
then using the dominated convergence theorem yields that f is continuous and
by induction that f ∈ C∞(0,∞). For k ≥ 0 and for x ∈ (0,∞),

f (k)(x) =

∫ ∞

0

(−t)ke−xtdµ(t),

as
∫∞
0

tke−xtdµ(t) ≥ 0 so (−1)kf (k)(x) ≥ 0. Hence f is completely monotone,

and f(0) =
∫∞
0

dµ(t) = 1.
If f satisfies f(0) = 1 and is completely monotone, then for each k ≥ 0,

the function (−1)kf (k) : (0,∞) → R is nonnegative and is nonincreasing, so
for k ≥ 1 and t ∈ (0,∞), using that (−1)kf (k) is nondecreasing and that
(−1)k−1f (k−1) is nonnegative,

(−1)kf (k)(t) ≤ 2

t

∫ t

t/2

(−1)kf (k)(u)du

=
2

t
(−1)k

(
f (k−1)(t)− f (k−1)(t/2)

)
≤ 2

t
(−1)k−1f (k−1)(t/2).

Doing induction, for any k ≥ 1,

(−1)kf (k)(t) ≤
k−1∏
j=1

(
2j

t

)
· f ′
(

t

2k−1

)

≤
k−1∏
j=1

(
2j

t

)
· 2

k

t

(
f

(
t

2k−1

)
− f

(
t

2k

))

= t−k2k(k−1)/2

(
f

(
t

2k−1

)
− f

(
t

2k

))
.

Because f(x) → f(0) as x ↓ 0,

f

(
t

2k−1

)
− f

(
t

2k

)
→ 0, t ↓ 0,

and because f(x) → f(∞) as x ↑ ∞,

f

(
t

2k−1

)
− f

(
t

2k

)
→ 0, t ↑ ∞.
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Hence for each k ≥ 1,
|f(t)| = ok(t

−k), t ↓ 0, (1)

and
|f(t)| = ok(t

−k), t ↑ ∞. (2)

Furthermore, for any x ∈ (0,∞), f (k)(t) → f (k)(x) as t → x, so it is immediate
that

(t− x)kf (k)(t) → 0, t → x. (3)

For x ≥ 0 and k ≥ 1, integrating by parts, using (2) and (1) or (3) respectively
as x = 0 or x > 0,

f(x)− f(∞) = −
∫ ∞

x

f ′(t)dt

= −(t− x)f ′(t)
∣∣∣∞
x

+

∫ ∞

x

f ′′(t)(t− x)dt

=

∫ ∞

x

f ′′(t)(t− x)dt

=
(t− x)2

2
f ′′(t)

∣∣∣∞
x

−
∫ ∞

x

f ′′′(t)
(t− x)2

2
dt

= −
∫ ∞

x

f ′′′(t)
(t− x)2

2
dt

= (−1)k
∫ ∞

x

f (k)(t)
(t− x)k−1

(k − 1)!
dt.

Hence for x ≥ 0 and n ≥ 0,

f(x)− f(∞) =
(−1)n+1

n!

∫ ∞

x

f (n+1)(t)(t− x)ndt.

Define
ϕn(y) = (1− y/n)n1[0,n](y).

For n ≥ 1, by change of variables,

f(x)− f(∞) =
(−1)n+1

n!

∫ ∞

x/n

f (n+1)(nu)(nu− x)nndu

=
(−1)n+1

(n− 1)!

∫ ∞

x/n

f (n+1)(nu)(nu)n
(
1− x

nu

)n
du

=
(−1)n+1

(n− 1)!

∫ ∞

0

(nu)nϕn(x/u)f
(n+1)(nu)du

=
(−1)n+1

(n− 1)!

∫ ∞

0

(n/t)nϕn(xt)f
(n+1)(n/t)t−2dt.

For t ≥ 0, define

sn(t) =
(−1)n+1

(n− 1)!

∫ ∞

1/t

(nu)nf (n+1)(nu)du,
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where sn(0) = 0, and for t < 0 let sn(t) = 0. sn is continuous and because f is
completely monotone, sn is nondecreasing, so there is a unique positive measure
σn on BR such that5

σn((a, b]) = sn(b)− sn(a), a ≤ b.

On the other hand, sn is absolutely continuous, so σn is absolutely continuous
with respect to Lebesgue measure λ1, and for λ1-almost all t ∈ R,6

dσn

dλ1
(t) = s′n(t).

Now for t > 0, by the fundamental theorem of calculus and the chain rule,

s′n(t) =
(−1)n+1

(n− 1)!
(n/t)nf (n+1)(n/t) · t−2,

and therefore

f(x)− f(∞) =

∫ ∞

0

ϕn(xt)s
′
n(t)dλ1(t)

=

∫ ∞

0

ϕn(xt)
dσn

dλ1
(t)dλ1(t)

=

∫ ∞

0

ϕn(xt)dσn(t).

The total variation of σn is equal to the total variation of sn, and because sn
is nondecreasing,

∥σn∥ =

∫ ∞

0

|s′n(t)|dt =
∫ ∞

0

s′n(t)dt = sn(∞)− sn(0) = sn(∞),

which is

∥σn∥ =
(−1)n+1

(n− 1)!

∫ ∞

0

(nu)nf (n+1)(nu)du = f(0)− f(∞),

showing that {σn : n ≥ 1} is bounded for the total variation norm. We claim
that {σn : n ≥ 1} is tight: for each ϵ > 0 there is a compact subset Kϵ of R such
that σn(K

c
ϵ ) < ϵ for all n. Taking this for granted, Prokhorov’s theorem7

states that there is a subsequence σkn of σn that converges narrowly to some
positive measure σ on BR. Finally, the sequence t 7→ ϕn(xt) tends in Cb([0,∞))
to t 7→ e−xt, and it thus follows that8∫ ∞

0

ϕn(xt)dσn(t) →
∫ ∞

0

e−xtdσ(t),

5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 393, Theorem 10.48.

6H. L. Royden, Real Analysis, third ed., p. 303, Exercise 16.
7V. I. Bogachev, Measure Theory, volume II, p. 202, Theorem 8.6.2.
8cf. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A

Hitchhiker’s Guide, third ed., p. 511, Corollary 15.7.
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so

f(x)− f(∞) =

∫ ∞

0

e−xtdσ(t).

Let
µ = σ + f(∞)δ0,

with which ∫ ∞

0

e−xtdµ(t) =

∫ ∞

0

e−xtdσ(t) + f(∞),

hence

f(x) =

∫ ∞

0

e−xtdµ(t).

Because f(0) = 1,
∫∞
0

dµ(t) = 1, showing that µ is a probability measure.

4 Fourier transforms

For a topological space X and a positive Borel measure µ on X, F ⊂ X is
called a support of µ if (i) F is closed, (ii) µ(F c) = 0, and (iii) if G is open
and G ∩ F ̸= ∅ then µ(G ∩ F ) > 0. If F1 and F2 are supports of µ, it is
straightforward that F1 = F2. It is a fact that if X is second-countable then µ
has a support, which we denote by suppµ.9

Lemma 2. If µ is a Borel measure on a topological space X and µ has a support
suppµ, if f : X → [0,∞) is continuous and

∫
X
fdµ = 0 then f(x) = 0 for all

x ∈ suppµ.

Proof. Let F = suppµ and let E = {x ∈ X : f(x) ̸= 0}. E is an open subset of
X. Suppose by contradiction that there is some x ∈ E ∩F , i.e. that E ∩F ̸= ∅.
Because f is continuous and f(x) > 0, there is some open neighborhood G of x
for which f(y) > f(x)/2 for y ∈ U . Then x ∈ G∩F , so G∩F ̸= ∅ and because
F is the support of µ, µ(G ∩ F ) > 0 and a fortiori µ(G) > 0. Then

0 =

∫
X

fdµ ≥
∫
G

f(y)dµ(y) ≥
∫
G

f(x)

2
dµ(y) =

f(x)

2
µ(G) > 0,

a contradiction. Therefore E ∩ F = ∅, i.e. for all x ∈ F , f(x) = 0.

The following lemma asserts that a certain function is nonzero λd-almost
everywhere, where λd is Lebesgue measure on Rd.10

9Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 442, Theorem 12.14.

10Ward Cheney and Will Light, A Course in Approximation Theory, p. 91, chapter 13,
Lemma 6.
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Lemma 3. Let x1, . . . , xn be distinct points in Rd, let u ∈ Cn not be the zero
vector, and define

g(y) =

n∑
j=1

uje
−2πixj ·y, y ∈ Rd.

For λd-almost all y ∈ Rd, g(y) ̸= 0.

The following theorem gives conditions under which the Fourier transform
of a Borel measure on Rd is strictly positive definite.11

Theorem 4. If µ is a finite Borel measure on Rd and λd(suppµ) > 0, then
µ̂ : Rd → C is strictly positive definite.

Proof. For distinct x1, . . . , xn ∈ Rd and for nonzero u ∈ Cn,

n∑
j=1

n∑
k=1

ujukµ̂(xj − xk) =

n∑
j=1

n∑
k=1

ujuk

∫
Rd

e−2πi(xj−xk)·ydµ(y)

=

∫
Rd

 n∑
j=1

uje
−2πixj ·y

( n∑
k=1

uke−2πixk·y

)
dµ(y)

=

∫
Rd

∣∣∣∣∣∣
n∑

j=1

uje
−2πixj ·y

∣∣∣∣∣∣
2

dµ(y)

=

∫
Rd

|g(y)|2dµ(y).

It is apparent that this is nonnegative. If it is equal to 0 then because g is
continuous we obtain from Lemma 2 that |g(y)|2 = 0 for all y ∈ suppµ, i.e.
g(y) = 0 for all y ∈ suppµ. In other words,

suppµ ⊂ {y ∈ Rd : g(y) = 0}.

But by Lemma 3, λd({y ∈ Rd : g(y) = 0}) = 0, so λd(suppµ) = 0, contradicting
the hypothesis λd(suppµ) > 0. Therefore∫

Rd

|g(y)|2dµ(y) > 0,

which shows that µ̂ is strictly positive definite.

5 Schoenberg’s theorem

Let (X, ⟨·, ·⟩) be a real inner product space. We call a function F : X → R
radial when ∥x∥ = ∥y∥ implies that F (x) = F (y).

11Ward Cheney and Will Light, A Course in Approximation Theory, p. 92, chapter 13,
Theorem 3.
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An identity that is worth memorizing is that for y ∈ R,∫
R
e−πx2

e−2πixydx = e−πy2

.

Using this and Fubini’s theorem yields, y ∈ Rd,∫
Rd

e−π|x|2e−2π⟨x,y⟩ = e−π|y|2 .

Lemma 5. For α > 0 and y ∈ Rd,∫
Rd

(π
α

)d/2
exp

(
−π2

α
|x|2
)
e−2πi⟨x,y⟩dx = e−α|y|2 .

Proof. Define T : Rd → Rd by

T (x) =

√
π

α
x, x ∈ Rd.

T ′(x) =
√

π
αI ∈ L (Rd) and JT (x) = detT ′(x) =

(
π
α

)d/2
. Let u ∈ Rd and

define f(x) = e−π|x|2e−2πi⟨x,u⟩. By the change of variables formula,12∫
Rd

(f ◦ T ) · |JT |dλd =

∫
T (Rd)

fdλd,

and because T is self-adjoint this is∫
Rd

e−π|T (x)|2e−2πi⟨x,Tu⟩
(π
α

)d/2
dx =

∫
Rd

e−π|x|2e−2πi⟨x,u⟩dx,

and therefore∫
Rd

(π
α

)d/2
exp

(
−π2

α
|x|2
)
e−2πi⟨x,Tu⟩dx = e−π|u|2 .

For u = T−1(y) =
√

α
π y this is∫

Rd

(π
α

)d/2
exp

(
−π2

α
|x|2
)
e−2πi⟨x,y⟩dx = e−α|y|2 ,

proving the claim.

We now prove that on a real inner product space, x 7→ e−α∥x∥2

is strictly
positive definite whenever α > 0.13

12Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
p. 393, Theorem 40.7.

13Ward Cheney and Will Light, A Course in Approximation Theory, p. 104, chapter 15,
Theorem 2.
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Theorem 6. Let (X, ⟨·, ·⟩) be a real inner product space. If α > 0, then

x 7→ e−α∥x∥2

, x ∈ X,

is radial and strictly positive definite.

Proof. Let x1, . . . , xn be distinct points in X. There is an n-dimensional linear
subspace V of X that contains x1, . . . , xn. By the Gram-Schmidt process, V
has an orthonormal basis {v1, . . . , vn}. Define T : V → Rn by Tvj = ej , where
{e1, . . . , en} is the standard basis for Rn, which is an orthogonal transformation,
and define

f(u) = e−α|u|2 , u ∈ Rd.

For u ∈ Cn, u ̸= 0,

n∑
j=1

n∑
k=1

ujuke
−α∥xj−xk∥2

=

n∑
j=1

n∑
k=1

ujuk exp
(
−α|T (xj − xk)|2

)
=

n∑
j=1

n∑
k=1

ujukf(Txj − Txk).

Now, let µ be the Borel measure on Rd whose density with respect to λd is

y 7→
(π
α

)d/2
exp

(
−π2

α
|y|2
)
.

Because µ is absolutely continuous with respect to λd, λd(suppµ) > 0, so Theo-
rem 4 states that the Fourier transform µ̂ : Rd → C is strictly positive definite.
Applying Lemma 5, the Fourier transform of µ is

µ̂(u) =

∫
Rd

(π
α

)d/2
exp

(
−π2

α
|y|2
)
e−2πi⟨y,u⟩dy = e−α|u|2 = f(u),

so f is strictly positive definite. Because T is an orthogonal transformation it
is in particular one-to-one, so Tx1, . . . , Txn are distinct points in Rd. Thus the
fact that f is strictly positive definite means that

n∑
j=1

n∑
k=1

ujuke
−α∥xj−xk∥2

=

n∑
j=1

n∑
k=1

ujukf(Txj − Txk) > 0,

which establishes that x 7→ e−α∥x∥2

is strictly positive definite.

The following is Schoenberg’s theorem.14

14Ward Cheney and Will Light, A Course in Approximation Theory, p. 101, chapter 15,
Theorem 1; René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein Functions:
Theory and Applications, p. 142, Theorem 12.14; William F. Donoghue Jr., Distributions and
Fourier Transforms, p. 205, §41.
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Theorem 7 (Schoenberg’s theorem). Let (X, ⟨·, ·⟩) be a real inner product
space. If f : [0,∞) → R is completely monotone, f(0) = 1, and f is not
constant, then

x 7→ f(∥x∥2), X → [0,∞),

is radial and strictly positive definite.

Proof. Because f is completely monotone, the Bernstein-Widder theorem (The-
orem 1) tells us that there is a Borel probability measure µ on [0,∞) such that

f(t) =

∫ ∞

0

e−stdµ(s), t ∈ [0,∞),

that is, f is the Laplace transform of µ. Now, the Laplace transform of δ0
is t 7→ 1, and because f is not constant, the Laplace transform of µ is not
equal to the Laplace transform of δ0, which implies that µ ̸= δ0.

15 Therefore
µ((0,∞)) > 0.

Let x1, . . . , xn be distinct points in X and let u ∈ Cn, u ̸= 0. Then, because∑n
j=1

∑n
k=1 ujuk ≥ 0,

n∑
j=1

n∑
k=1

ujukf(∥xj − xk∥2) =
n∑

j=1

n∑
k=1

ujuk

∫ ∞

0

exp
(
−s ∥xj − xk∥2

)
dµ(s)

=

∫ ∞

0

n∑
j=1

n∑
k=1

ujuk exp
(
−s ∥xj − xk∥2

)
dµ(s)

=

n∑
j=1

n∑
k=1

ujukµ({0})

+

∫ ∞

0

1(0,∞)(s)

n∑
j=1

n∑
k=1

ujuk exp
(
−s ∥xj − xk∥2

)
dµ(s)

≥
∫ ∞

0

1(0,∞)(s)

n∑
j=1

n∑
k=1

ujuk exp
(
−s ∥xj − xk∥2

)
dµ(s)

=

∫ ∞

0

g(s)dµ(s).

Assume by contradiction that
∫∞
0

g(s)dµ(s) = 0. Because g ≥ 0, this implies
that µ({s ∈ [0,∞) : g(s) > 0}) = 0.16 By Theorem 6, for each s > 0,

n∑
j=1

n∑
k=1

ujuk exp
(
−s ∥xj − xk∥2

)
> 0,

15Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 218,
§13.5, Theorem 6.

16Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 411, Theorem 11.16.
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so g(s) > 0 when s > 0. Thus µ((0,∞)) = 0, a contradiction. Therefore,

n∑
j=1

n∑
k=1

ujukf(∥xj − xk∥2) =
∫ ∞

0

g(s)dµ(s) > 0,

which shows that x 7→ f(∥x∥2) is strictly positive definite.
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