Positive definite functions, completely monotone functions, the Bernstein-Widder theorem, and Schoenberg's theorem

Jordan Bell

June 26, 2015

1 Linear operators

For a complex Hilbert space H let $\mathscr{L}(H)$ be the bounded linear operators $H \rightarrow$ H. It is a fact that $A \in \mathscr{L}(H)$ is self-adjoint if and only if $\langle A h, h\rangle \in \mathbb{R}$ for all $h \in H .{ }^{1}$ For a bounded self-adjoint operator A it is a fact that ${ }^{2}$

$$
\|A\|=\sup _{\|h\|=1}|\langle A h, h\rangle| .
$$

$A \in \mathscr{L}(H)$ is called positive if it is self-adjoint and

$$
\langle A h, h\rangle \geq 0, \quad h \in H
$$

because we have taken H to be a complex Hilbert space, for A to be positive it suffices that the inequality is satisfied.

For $A, B \in \mathscr{L}\left(\mathbb{C}^{n}\right)$, we define their Hadamard product $A * B \in \mathscr{L}(H)$ by

$$
(A * B) e_{i}=\sum_{j=1}^{n}\left\langle A e_{i}, e_{j}\right\rangle\left\langle B e_{i}, e_{j}\right\rangle e_{j} .
$$

So,

$$
\left\langle(A * B) e_{i}, e_{j}\right\rangle=\left\langle A e_{i}, e_{j}\right\rangle\left\langle B e_{i}, e_{j}\right\rangle .
$$

The Schur product theorem states that if $A, B \in \mathscr{L}\left(\mathbb{C}^{n}\right)$ are positive then their Hadamard product $A * B$ is positive. ${ }^{3}$

[^0]
2 Positive definite functions

Let X be a real or complex linear space, let $f: X \rightarrow \mathbb{C}$ be a function, and for $x_{1}, \ldots, x_{n} \in X$, define $F_{f ; x_{1}, \ldots, x_{n}} \in \mathscr{L}\left(\mathbb{C}^{n}\right)$ by

$$
F_{f ; x_{1}, \ldots, x_{n}} e_{i}=\sum_{j=1}^{n} f\left(x_{i}-x_{j}\right) e_{j},
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for \mathbb{C}^{n}. Thus for $u=\sum_{i=1}^{n} u_{i} e_{i} \in \mathbb{C}^{n}$,

$$
\begin{aligned}
\left\langle F_{f ; x_{1}, \ldots, x_{n}} u, u\right\rangle & =\left\langle\sum_{i=1}^{n} u_{i} \sum_{j=1}^{n} f\left(x_{i}-x_{j}\right) e_{j}, \sum_{k=1}^{n} u_{k} e_{k}\right\rangle \\
& =\sum_{i=1}^{n} u_{i} \sum_{j=1}^{n} f\left(x_{i}-x_{j}\right)\left\langle e_{j}, \sum_{k=1}^{n} u_{k} e_{k}\right\rangle \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \overline{u_{j}} f\left(x_{i}-x_{j}\right) .
\end{aligned}
$$

We call f positive definite if for all $x_{1}, \ldots, x_{n} \in X, F_{f ; x_{1}, \ldots, x_{n}}$ is a positive operator, i.e. for $u \in \mathbb{C}^{n}$,

$$
\left\langle F_{f ; x_{1}, \ldots, x_{n}} u, u\right\rangle \geq 0
$$

We call f strictly positive definite for all distinct $x_{1}, \ldots, x_{n} \in X$ and nonzero $u \in \mathbb{C}^{n}$,

$$
\left\langle F_{f ; x_{1}, \ldots, x_{n}} u, u\right\rangle>0 .
$$

3 Completely monotone functions

A function $f:[0, \infty) \rightarrow \mathbb{R}$ is called completely monotone if

1. $f \in C[0, \infty)$
2. $f \in C^{\infty}(0, \infty)$
3. $(-1)^{k} f^{(k)}(x) \geq 0$ for $k \geq 0$ and $x \in(0, \infty)$

Because a completely monotone function is continuous, $f(x)$ tends to $f(0)$ as $x \downarrow 0$. Because a completely monotone function is nonincreasing and convex, $f(x)$ has a limit, which we call $f(\infty)$, as $x \uparrow \infty$.

The Bernstein-Widder theorem states that a function f satisfying $f(0)=$ 1 is completely monotone if and only if it is the Laplace transform of a Borel probability measure on $[0, \infty) .{ }^{4}$

Theorem 1 (Bernstein-Widder theorem). A function $f:[0, \infty) \rightarrow \mathbb{R}$ satisfies $f(0)=1$ and is completely monotone if and only if there is a Borel probability measure μ on $[0, \infty)$ such that

$$
f(x)=\int_{0}^{\infty} e^{-x t} d \mu(t), \quad x \in[0, \infty)
$$

Proof. If f is the Laplace transform of some probability measure μ on $\mathscr{B}_{[0, \infty)}$, then using the dominated convergence theorem yields that f is continuous and by induction that $f \in C^{\infty}(0, \infty)$. For $k \geq 0$ and for $x \in(0, \infty)$,

$$
f^{(k)}(x)=\int_{0}^{\infty}(-t)^{k} e^{-x t} d \mu(t)
$$

as $\int_{0}^{\infty} t^{k} e^{-x t} d \mu(t) \geq 0$ so $(-1)^{k} f^{(k)}(x) \geq 0$. Hence f is completely monotone, and $f(0)=\int_{0}^{\infty} d \mu(t)=1$.

If f satisfies $f(0)=1$ and is completely monotone, then for each $k \geq 0$, the function $(-1)^{k} f^{(k)}:(0, \infty) \rightarrow \mathbb{R}$ is nonnegative and is nonincreasing, so for $k \geq 1$ and $t \in(0, \infty)$, using that $(-1)^{k} f^{(k)}$ is nondecreasing and that $(-1)^{k-1} f^{(k-1)}$ is nonnegative,

$$
\begin{aligned}
(-1)^{k} f^{(k)}(t) & \leq \frac{2}{t} \int_{t / 2}^{t}(-1)^{k} f^{(k)}(u) d u \\
& =\frac{2}{t}(-1)^{k}\left(f^{(k-1)}(t)-f^{(k-1)}(t / 2)\right) \\
& \leq \frac{2}{t}(-1)^{k-1} f^{(k-1)}(t / 2)
\end{aligned}
$$

Doing induction, for any $k \geq 1$,

$$
\begin{aligned}
(-1)^{k} f^{(k)}(t) & \leq \prod_{j=1}^{k-1}\left(\frac{2^{j}}{t}\right) \cdot f^{\prime}\left(\frac{t}{2^{k-1}}\right) \\
& \leq \prod_{j=1}^{k-1}\left(\frac{2^{j}}{t}\right) \cdot \frac{2^{k}}{t}\left(f\left(\frac{t}{2^{k-1}}\right)-f\left(\frac{t}{2^{k}}\right)\right) \\
& =t^{-k} 2^{k(k-1) / 2}\left(f\left(\frac{t}{2^{k-1}}\right)-f\left(\frac{t}{2^{k}}\right)\right)
\end{aligned}
$$

Because $f(x) \rightarrow f(0)$ as $x \downarrow 0$,

$$
f\left(\frac{t}{2^{k-1}}\right)-f\left(\frac{t}{2^{k}}\right) \rightarrow 0, \quad t \downarrow 0
$$

and because $f(x) \rightarrow f(\infty)$ as $x \uparrow \infty$,

$$
f\left(\frac{t}{2^{k-1}}\right)-f\left(\frac{t}{2^{k}}\right) \rightarrow 0, \quad t \uparrow \infty
$$

Hence for each $k \geq 1$,

$$
\begin{equation*}
|f(t)|=o_{k}\left(t^{-k}\right), \quad t \downarrow 0, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(t)|=o_{k}\left(t^{-k}\right), \quad t \uparrow \infty \tag{2}
\end{equation*}
$$

Furthermore, for any $x \in(0, \infty), f^{(k)}(t) \rightarrow f^{(k)}(x)$ as $t \rightarrow x$, so it is immediate that

$$
\begin{equation*}
(t-x)^{k} f^{(k)}(t) \rightarrow 0, \quad t \rightarrow x \tag{3}
\end{equation*}
$$

For $x \geq 0$ and $k \geq 1$, integrating by parts, using (2) and (1) or (3) respectively as $x=0$ or $x>0$,

$$
\begin{aligned}
f(x)-f(\infty) & =-\int_{x}^{\infty} f^{\prime}(t) d t \\
& =-\left.(t-x) f^{\prime}(t)\right|_{x} ^{\infty}+\int_{x}^{\infty} f^{\prime \prime}(t)(t-x) d t \\
& =\int_{x}^{\infty} f^{\prime \prime}(t)(t-x) d t \\
& =\left.\frac{(t-x)^{2}}{2} f^{\prime \prime}(t)\right|_{x} ^{\infty}-\int_{x}^{\infty} f^{\prime \prime \prime}(t) \frac{(t-x)^{2}}{2} d t \\
& =-\int_{x}^{\infty} f^{\prime \prime \prime}(t) \frac{(t-x)^{2}}{2} d t \\
& =(-1)^{k} \int_{x}^{\infty} f^{(k)}(t) \frac{(t-x)^{k-1}}{(k-1)!} d t
\end{aligned}
$$

Hence for $x \geq 0$ and $n \geq 0$,

$$
f(x)-f(\infty)=\frac{(-1)^{n+1}}{n!} \int_{x}^{\infty} f^{(n+1)}(t)(t-x)^{n} d t
$$

Define

$$
\phi_{n}(y)=(1-y / n)^{n} 1_{[0, n]}(y)
$$

For $n \geq 1$, by change of variables,

$$
\begin{aligned}
f(x)-f(\infty) & =\frac{(-1)^{n+1}}{n!} \int_{x / n}^{\infty} f^{(n+1)}(n u)(n u-x)^{n} n d u \\
& =\frac{(-1)^{n+1}}{(n-1)!} \int_{x / n}^{\infty} f^{(n+1)}(n u)(n u)^{n}\left(1-\frac{x}{n u}\right)^{n} d u \\
& =\frac{(-1)^{n+1}}{(n-1)!} \int_{0}^{\infty}(n u)^{n} \phi_{n}(x / u) f^{(n+1)}(n u) d u \\
& =\frac{(-1)^{n+1}}{(n-1)!} \int_{0}^{\infty}(n / t)^{n} \phi_{n}(x t) f^{(n+1)}(n / t) t^{-2} d t
\end{aligned}
$$

For $t \geq 0$, define

$$
s_{n}(t)=\frac{(-1)^{n+1}}{(n-1)!} \int_{1 / t}^{\infty}(n u)^{n} f^{(n+1)}(n u) d u
$$

where $s_{n}(0)=0$, and for $t<0$ let $s_{n}(t)=0 . s_{n}$ is continuous and because f is completely monotone, s_{n} is nondecreasing, so there is a unique positive measure σ_{n} on $\mathscr{B}_{\mathbb{R}}$ such that ${ }^{5}$

$$
\sigma_{n}((a, b])=s_{n}(b)-s_{n}(a), \quad a \leq b .
$$

On the other hand, s_{n} is absolutely continuous, so σ_{n} is absolutely continuous with respect to Lebesgue measure λ_{1}, and for λ_{1}-almost all $t \in \mathbb{R},{ }^{6}$

$$
\frac{d \sigma_{n}}{d \lambda_{1}}(t)=s_{n}^{\prime}(t)
$$

Now for $t>0$, by the fundamental theorem of calculus and the chain rule,

$$
s_{n}^{\prime}(t)=\frac{(-1)^{n+1}}{(n-1)!}(n / t)^{n} f^{(n+1)}(n / t) \cdot t^{-2}
$$

and therefore

$$
\begin{aligned}
f(x)-f(\infty) & =\int_{0}^{\infty} \phi_{n}(x t) s_{n}^{\prime}(t) d \lambda_{1}(t) \\
& =\int_{0}^{\infty} \phi_{n}(x t) \frac{d \sigma_{n}}{d \lambda_{1}}(t) d \lambda_{1}(t) \\
& =\int_{0}^{\infty} \phi_{n}(x t) d \sigma_{n}(t)
\end{aligned}
$$

The total variation of σ_{n} is equal to the total variation of s_{n}, and because s_{n} is nondecreasing,

$$
\left\|\sigma_{n}\right\|=\int_{0}^{\infty}\left|s_{n}^{\prime}(t)\right| d t=\int_{0}^{\infty} s_{n}^{\prime}(t) d t=s_{n}(\infty)-s_{n}(0)=s_{n}(\infty)
$$

which is

$$
\left\|\sigma_{n}\right\|=\frac{(-1)^{n+1}}{(n-1)!} \int_{0}^{\infty}(n u)^{n} f^{(n+1)}(n u) d u=f(0)-f(\infty)
$$

showing that $\left\{\sigma_{n}: n \geq 1\right\}$ is bounded for the total variation norm. We claim that $\left\{\sigma_{n}: n \geq 1\right\}$ is tight: for each $\epsilon>0$ there is a compact subset K_{ϵ} of \mathbb{R} such that $\sigma_{n}\left(K_{\epsilon}^{c}\right)<\epsilon$ for all n. Taking this for granted, Prokhorov's theorem ${ }^{7}$ states that there is a subsequence $\sigma_{k_{n}}$ of σ_{n} that converges narrowly to some positive measure σ on $\mathscr{B}_{\mathbb{R}}$. Finally, the sequence $t \mapsto \phi_{n}(x t)$ tends in $C_{b}([0, \infty))$ to $t \mapsto e^{-x t}$, and it thus follows that ${ }^{8}$

$$
\int_{0}^{\infty} \phi_{n}(x t) d \sigma_{n}(t) \rightarrow \int_{0}^{\infty} e^{-x t} d \sigma(t)
$$

[^1]SO

$$
f(x)-f(\infty)=\int_{0}^{\infty} e^{-x t} d \sigma(t)
$$

Let

$$
\mu=\sigma+f(\infty) \delta_{0}
$$

with which

$$
\int_{0}^{\infty} e^{-x t} d \mu(t)=\int_{0}^{\infty} e^{-x t} d \sigma(t)+f(\infty)
$$

hence

$$
f(x)=\int_{0}^{\infty} e^{-x t} d \mu(t)
$$

Because $f(0)=1, \int_{0}^{\infty} d \mu(t)=1$, showing that μ is a probability measure.

4 Fourier transforms

For a topological space X and a positive Borel measure μ on $X, F \subset X$ is called a support of μ if (i) F is closed, (ii) $\mu\left(F^{c}\right)=0$, and (iii) if G is open and $G \cap F \neq \emptyset$ then $\mu(G \cap F)>0$. If F_{1} and F_{2} are supports of μ, it is straightforward that $F_{1}=F_{2}$. It is a fact that if X is second-countable then μ has a support, which we denote by $\operatorname{supp} \mu .{ }^{9}$

Lemma 2. If μ is a Borel measure on a topological space X and μ has a support $\operatorname{supp} \mu$, if $f: X \rightarrow[0, \infty)$ is continuous and $\int_{X} f d \mu=0$ then $f(x)=0$ for all $x \in \operatorname{supp} \mu$.

Proof. Let $F=\operatorname{supp} \mu$ and let $E=\{x \in X: f(x) \neq 0\} . E$ is an open subset of X. Suppose by contradiction that there is some $x \in E \cap F$, i.e. that $E \cap F \neq \emptyset$. Because f is continuous and $f(x)>0$, there is some open neighborhood G of x for which $f(y)>f(x) / 2$ for $y \in U$. Then $x \in G \cap F$, so $G \cap F \neq \emptyset$ and because F is the support of $\mu, \mu(G \cap F)>0$ and a fortiori $\mu(G)>0$. Then

$$
0=\int_{X} f d \mu \geq \int_{G} f(y) d \mu(y) \geq \int_{G} \frac{f(x)}{2} d \mu(y)=\frac{f(x)}{2} \mu(G)>0
$$

a contradiction. Therefore $E \cap F=\emptyset$, i.e. for all $x \in F, f(x)=0$.
The following lemma asserts that a certain function is nonzero λ_{d}-almost everywhere, where λ_{d} is Lebesgue measure on $\mathbb{R}^{d} .{ }^{10}$

[^2]Lemma 3. Let x_{1}, \ldots, x_{n} be distinct points in \mathbb{R}^{d}, let $u \in \mathbb{C}^{n}$ not be the zero vector, and define

$$
g(y)=\sum_{j=1}^{n} u_{j} e^{-2 \pi i x_{j} \cdot y}, \quad y \in \mathbb{R}^{d}
$$

For $\lambda_{d^{-}}$-almost all $y \in \mathbb{R}^{d}, g(y) \neq 0$.
The following theorem gives conditions under which the Fourier transform of a Borel measure on \mathbb{R}^{d} is strictly positive definite. ${ }^{11}$
Theorem 4. If μ is a finite Borel measure on \mathbb{R}^{d} and $\lambda_{d}(\operatorname{supp} \mu)>0$, then $\hat{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is strictly positive definite.

Proof. For distinct $x_{1}, \ldots, x_{n} \in \mathbb{R}^{d}$ and for nonzero $u \in \mathbb{C}^{n}$,

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \hat{\mu}\left(x_{j}-x_{k}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \int_{\mathbb{R}^{d}} e^{-2 \pi i\left(x_{j}-x_{k}\right) \cdot y} d \mu(y) \\
& =\int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{n} u_{j} e^{-2 \pi i x_{j} \cdot y}\right) \overline{\left(\sum_{k=1}^{n} u_{k} e^{-2 \pi i x_{k} \cdot y}\right)} d \mu(y) \\
& =\int_{\mathbb{R}^{d}}\left|\sum_{j=1}^{n} u_{j} e^{-2 \pi i x_{j} \cdot y}\right|^{2} d \mu(y) \\
& =\int_{\mathbb{R}^{d}}|g(y)|^{2} d \mu(y)
\end{aligned}
$$

It is apparent that this is nonnegative. If it is equal to 0 then because g is continuous we obtain from Lemma 2 that $|g(y)|^{2}=0$ for all $y \in \operatorname{supp} \mu$, i.e. $g(y)=0$ for all $y \in \operatorname{supp} \mu$. In other words,

$$
\operatorname{supp} \mu \subset\left\{y \in \mathbb{R}^{d}: g(y)=0\right\}
$$

But by Lemma $3, \lambda_{d}\left(\left\{y \in \mathbb{R}^{d}: g(y)=0\right\}\right)=0$, so $\lambda_{d}(\operatorname{supp} \mu)=0$, contradicting the hypothesis $\lambda_{d}(\operatorname{supp} \mu)>0$. Therefore

$$
\int_{\mathbb{R}^{d}}|g(y)|^{2} d \mu(y)>0
$$

which shows that $\hat{\mu}$ is strictly positive definite.

5 Schoenberg's theorem

Let $(X,\langle\cdot, \cdot\rangle)$ be a real inner product space. We call a function $F: X \rightarrow \mathbb{R}$ radial when $\|x\|=\|y\|$ implies that $F(x)=F(y)$.

[^3]An identity that is worth memorizing is that for $y \in \mathbb{R}$,

$$
\int_{\mathbb{R}} e^{-\pi x^{2}} e^{-2 \pi i x y} d x=e^{-\pi y^{2}}
$$

Using this and Fubini's theorem yields, $y \in \mathbb{R}^{d}$,

$$
\int_{\mathbb{R}^{d}} e^{-\pi|x|^{2}} e^{-2 \pi\langle x, y\rangle}=e^{-\pi|y|^{2}}
$$

Lemma 5. For $\alpha>0$ and $y \in \mathbb{R}^{d}$,

$$
\int_{\mathbb{R}^{d}}\left(\frac{\pi}{\alpha}\right)^{d / 2} \exp \left(-\frac{\pi^{2}}{\alpha}|x|^{2}\right) e^{-2 \pi i\langle x, y\rangle} d x=e^{-\alpha|y|^{2}}
$$

Proof. Define $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by

$$
T(x)=\sqrt{\frac{\pi}{\alpha}} x, \quad x \in \mathbb{R}^{d}
$$

$T^{\prime}(x)=\sqrt{\frac{\pi}{\alpha}} I \in \mathscr{L}\left(\mathbb{R}^{d}\right)$ and $J_{T}(x)=\operatorname{det} T^{\prime}(x)=\left(\frac{\pi}{\alpha}\right)^{d / 2}$. Let $u \in \mathbb{R}^{d}$ and define $f(x)=e^{-\pi|x|^{2}} e^{-2 \pi i\langle x, u\rangle}$. By the change of variables formula, ${ }^{12}$

$$
\int_{\mathbb{R}^{d}}(f \circ T) \cdot\left|J_{T}\right| d \lambda_{d}=\int_{T\left(\mathbb{R}^{d}\right)} f d \lambda_{d}
$$

and because T is self-adjoint this is

$$
\int_{\mathbb{R}^{d}} e^{-\pi|T(x)|^{2}} e^{-2 \pi i\langle x, T u\rangle}\left(\frac{\pi}{\alpha}\right)^{d / 2} d x=\int_{\mathbb{R}^{d}} e^{-\pi|x|^{2}} e^{-2 \pi i\langle x, u\rangle} d x
$$

and therefore

$$
\int_{\mathbb{R}^{d}}\left(\frac{\pi}{\alpha}\right)^{d / 2} \exp \left(-\frac{\pi^{2}}{\alpha}|x|^{2}\right) e^{-2 \pi i\langle x, T u\rangle} d x=e^{-\pi|u|^{2}}
$$

For $u=T^{-1}(y)=\sqrt{\frac{\alpha}{\pi}} y$ this is

$$
\int_{\mathbb{R}^{d}}\left(\frac{\pi}{\alpha}\right)^{d / 2} \exp \left(-\frac{\pi^{2}}{\alpha}|x|^{2}\right) e^{-2 \pi i\langle x, y\rangle} d x=e^{-\alpha|y|^{2}}
$$

proving the claim.
We now prove that on a real inner product space, $x \mapsto e^{-\alpha\|x\|^{2}}$ is strictly positive definite whenever $\alpha>0 .{ }^{13}$

[^4]Theorem 6. Let $(X,\langle\cdot, \cdot\rangle)$ be a real inner product space. If $\alpha>0$, then

$$
x \mapsto e^{-\alpha\|x\|^{2}}, \quad x \in X
$$

is radial and strictly positive definite.
Proof. Let x_{1}, \ldots, x_{n} be distinct points in X. There is an n-dimensional linear subspace V of X that contains x_{1}, \ldots, x_{n}. By the Gram-Schmidt process, V has an orthonormal basis $\left\{v_{1}, \ldots, v_{n}\right\}$. Define $T: V \rightarrow \mathbb{R}^{n}$ by $T v_{j}=e_{j}$, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standard basis for \mathbb{R}^{n}, which is an orthogonal transformation, and define

$$
f(u)=e^{-\alpha|u|^{2}}, \quad u \in \mathbb{R}^{d}
$$

For $u \in \mathbb{C}^{n}, u \neq 0$,

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} e^{-\alpha\left\|x_{j}-x_{k}\right\|^{2}} & =\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp \left(-\alpha\left|T\left(x_{j}-x_{k}\right)\right|^{2}\right) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f\left(T x_{j}-T x_{k}\right)
\end{aligned}
$$

Now, let μ be the Borel measure on \mathbb{R}^{d} whose density with respect to λ_{d} is

$$
y \mapsto\left(\frac{\pi}{\alpha}\right)^{d / 2} \exp \left(-\frac{\pi^{2}}{\alpha}|y|^{2}\right) .
$$

Because μ is absolutely continuous with respect to $\lambda_{d}, \lambda_{d}(\operatorname{supp} \mu)>0$, so Theorem 4 states that the Fourier transform $\hat{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is strictly positive definite. Applying Lemma 5, the Fourier transform of μ is

$$
\hat{\mu}(u)=\int_{\mathbb{R}^{d}}\left(\frac{\pi}{\alpha}\right)^{d / 2} \exp \left(-\frac{\pi^{2}}{\alpha}|y|^{2}\right) e^{-2 \pi i\langle y, u\rangle} d y=e^{-\alpha|u|^{2}}=f(u)
$$

so f is strictly positive definite. Because T is an orthogonal transformation it is in particular one-to-one, so $T x_{1}, \ldots, T x_{n}$ are distinct points in \mathbb{R}^{d}. Thus the fact that f is strictly positive definite means that

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} e^{-\alpha\left\|x_{j}-x_{k}\right\|^{2}}=\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f\left(T x_{j}-T x_{k}\right)>0
$$

which establishes that $x \mapsto e^{-\alpha\|x\|^{2}}$ is strictly positive definite.
The following is Schoenberg's theorem. ${ }^{14}$

[^5]Theorem 7 (Schoenberg's theorem). Let $(X,\langle\cdot, \cdot\rangle)$ be a real inner product space. If $f:[0, \infty) \rightarrow \mathbb{R}$ is completely monotone, $f(0)=1$, and f is not constant, then

$$
x \mapsto f\left(\|x\|^{2}\right), \quad X \rightarrow[0, \infty)
$$

is radial and strictly positive definite.
Proof. Because f is completely monotone, the Bernstein-Widder theorem (Theorem 1) tells us that there is a Borel probability measure μ on $[0, \infty)$ such that

$$
f(t)=\int_{0}^{\infty} e^{-s t} d \mu(s), \quad t \in[0, \infty)
$$

that is, f is the Laplace transform of μ. Now, the Laplace transform of δ_{0} is $t \mapsto 1$, and because f is not constant, the Laplace transform of μ is not equal to the Laplace transform of δ_{0}, which implies that $\mu \neq \delta_{0} .{ }^{15}$ Therefore $\mu((0, \infty))>0$.

Let x_{1}, \ldots, x_{n} be distinct points in X and let $u \in \mathbb{C}^{n}, u \neq 0$. Then, because $\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \geq 0$,

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f\left(\left\|x_{j}-x_{k}\right\|^{2}\right) & =\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \int_{0}^{\infty} \exp \left(-s\left\|x_{j}-x_{k}\right\|^{2}\right) d \mu(s) \\
& =\int_{0}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp \left(-s\left\|x_{j}-x_{k}\right\|^{2}\right) d \mu(s) \\
& =\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \mu(\{0\}) \\
& +\int_{0}^{\infty} 1_{(0, \infty)}(s) \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp \left(-s\left\|x_{j}-x_{k}\right\|^{2}\right) d \mu(s) \\
& \geq \int_{0}^{\infty} 1_{(0, \infty)}(s) \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp \left(-s\left\|x_{j}-x_{k}\right\|^{2}\right) d \mu(s) \\
& =\int_{0}^{\infty} g(s) d \mu(s)
\end{aligned}
$$

Assume by contradiction that $\int_{0}^{\infty} g(s) d \mu(s)=0$. Because $g \geq 0$, this implies that $\mu(\{s \in[0, \infty): g(s)>0\})=0 .{ }^{16}$ By Theorem 6, for each $s>0$,

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp \left(-s\left\|x_{j}-x_{k}\right\|^{2}\right)>0
$$

[^6]so $g(s)>0$ when $s>0$. Thus $\mu((0, \infty))=0$, a contradiction. Therefore,
$$
\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f\left(\left\|x_{j}-x_{k}\right\|^{2}\right)=\int_{0}^{\infty} g(s) d \mu(s)>0
$$
which shows that $x \mapsto f\left(\|x\|^{2}\right)$ is strictly positive definite.

[^0]: ${ }^{1}$ John B. Conway, A Course in Functional Analysis, second ed., p. 33, Proposition 2.12.
 ${ }^{2}$ John B. Conway, A Course in Functional Analysis, second ed., p. 34, Proposition 2.13.
 ${ }^{3}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 81, chapter 12.

[^1]: ${ }^{5}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 393, Theorem 10.48.
 ${ }^{6}$ H. L. Royden, Real Analysis, third ed., p. 303, Exercise 16.
 ${ }^{7}$ V. I. Bogachev, Measure Theory, volume II, p. 202, Theorem 8.6.2.
 ${ }^{8}$ cf. Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 511, Corollary 15.7.

[^2]: ${ }^{9}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 442, Theorem 12.14.
 ${ }^{10}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 91, chapter 13, Lemma 6.

[^3]: ${ }^{11}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 92, chapter 13, Theorem 3.

[^4]: ${ }^{12}$ Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed., p. 393, Theorem 40.7.
 ${ }^{13}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 104, chapter 15, Theorem 2.

[^5]: ${ }^{14}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 101, chapter 15, Theorem 1; René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein Functions: Theory and Applications, p. 142, Theorem 12.14; William F. Donoghue Jr., Distributions and Fourier Transforms, p. 205, §41.

[^6]: ${ }^{15}$ Bert Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 218, §13.5, Theorem 6.
 ${ }^{16}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 411, Theorem 11.16.

