Positive definite functions, completely monotone functions, the Bernstein-Widder theorem, and Schoenberg's theorem

Jordan Bell

June 26, 2015

1 Linear operators

For a complex Hilbert space H let $\mathscr{L}(H)$ be the bounded linear operators $H \to H$. It is a fact that $A \in \mathscr{L}(H)$ is self-adjoint if and only if $\langle Ah, h \rangle \in \mathbb{R}$ for all $h \in H$.¹ For a bounded self-adjoint operator A it is a fact that²

$$\|A\| = \sup_{\|h\|=1} |\langle Ah, h\rangle|.$$

 $A \in \mathscr{L}(H)$ is called **positive** if it is self-adjoint and

$$\langle Ah, h \rangle \ge 0, \qquad h \in H;$$

because we have taken H to be a complex Hilbert space, for A to be positive it suffices that the inequality is satisfied.

For $A, B \in \mathscr{L}(\mathbb{C}^n)$, we define their **Hadamard product** $A * B \in \mathscr{L}(H)$ by

$$(A * B)e_i = \sum_{j=1}^n \langle Ae_i, e_j \rangle \langle Be_i, e_j \rangle e_j.$$

So,

$$\langle (A * B)e_i, e_j \rangle = \langle Ae_i, e_j \rangle \langle Be_i, e_j \rangle.$$

The Schur product theorem states that if $A, B \in \mathscr{L}(\mathbb{C}^n)$ are positive then their Hadamard product A * B is positive.³

¹John B. Conway, A Course in Functional Analysis, second ed., p. 33, Proposition 2.12.

²John B. Conway, A Course in Functional Analysis, second ed., p. 34, Proposition 2.13.

³Ward Cheney and Will Light, A Course in Approximation Theory, p. 81, chapter 12.

2 Positive definite functions

Let X be a real or complex linear space, let $f: X \to \mathbb{C}$ be a function, and for $x_1, \ldots, x_n \in X$, define $F_{f;x_1,\ldots,x_n} \in \mathscr{L}(\mathbb{C}^n)$ by

$$F_{f;x_1,...,x_n}e_i = \sum_{j=1}^n f(x_i - x_j)e_j,$$

where $\{e_1, \ldots, e_n\}$ is the standard basis for \mathbb{C}^n . Thus for $u = \sum_{i=1}^n u_i e_i \in \mathbb{C}^n$,

$$\langle F_{f;x_1,\dots,x_n}u,u\rangle = \left\langle \sum_{i=1}^n u_i \sum_{j=1}^n f(x_i - x_j)e_j, \sum_{k=1}^n u_k e_k \right\rangle$$
$$= \sum_{i=1}^n u_i \sum_{j=1}^n f(x_i - x_j) \left\langle e_j, \sum_{k=1}^n u_k e_k \right\rangle$$
$$= \sum_{i=1}^n \sum_{j=1}^n u_i \overline{u_j} f(x_i - x_j).$$

We call f **positive definite** if for all $x_1, \ldots, x_n \in X$, $F_{f;x_1,\ldots,x_n}$ is a positive operator, i.e. for $u \in \mathbb{C}^n$,

$$\langle F_{f;x_1,\ldots,x_n}u,u\rangle \ge 0.$$

We call f strictly positive definite for all distinct $x_1, \ldots, x_n \in X$ and nonzero $u \in \mathbb{C}^n$,

$$\langle F_{f;x_1,\ldots,x_n}u,u\rangle > 0.$$

3 Completely monotone functions

A function $f:[0,\infty)\to\mathbb{R}$ is called **completely monotone** if

1. $f \in C[0, \infty)$ 2. $f \in C^{\infty}(0, \infty)$ 3. $(-1)^k f^{(k)}(x) \ge 0$ for $k \ge 0$ and $x \in (0, \infty)$

Because a completely monotone function is continuous, f(x) tends to f(0) as $x \downarrow 0$. Because a completely monotone function is nonincreasing and convex, f(x) has a limit, which we call $f(\infty)$, as $x \uparrow \infty$.

The **Bernstein-Widder theorem** states that a function f satisfying f(0) = 1 is completely monotone if and only if it is the Laplace transform of a Borel probability measure on $[0, \infty)$.⁴

⁴Peter D. Lax, *Functional Analysis*, p. 138, chapter 14, Theorem 3; http://djalil.chafai.net/blog/2013/03/23/ the-bernstein-theorem-on-completely-monotone-functions/

Theorem 1 (Bernstein-Widder theorem). A function $f : [0, \infty) \to \mathbb{R}$ satisfies f(0) = 1 and is completely monotone if and only if there is a Borel probability measure μ on $[0,\infty)$ such that

$$f(x) = \int_0^\infty e^{-xt} d\mu(t), \qquad x \in [0,\infty).$$

Proof. If f is the Laplace transform of some probability measure μ on $\mathscr{B}_{[0,\infty)}$, then using the dominated convergence theorem yields that f is continuous and by induction that $f \in C^{\infty}(0, \infty)$. For $k \ge 0$ and for $x \in (0, \infty)$,

$$f^{(k)}(x) = \int_0^\infty (-t)^k e^{-xt} d\mu(t),$$

as $\int_0^\infty t^k e^{-xt} d\mu(t) \ge 0$ so $(-1)^k f^{(k)}(x) \ge 0$. Hence f is completely monotone, and $f(0) = \int_0^\infty d\mu(t) = 1$. If f satisfies f(0) = 1 and is completely monotone, then for each $k \ge 0$, the function $(-1)^k f^{(k)} : (0, \infty) \to \mathbb{R}$ is nonnegative and is nonincreasing, so for $k \ge 1$ and $t \in (0, \infty)$, using that $(-1)^k f^{(k)}$ is nondecreasing and that $(-1)^{k-1} f^{(k-1)}$ is nonnegative,

$$(-1)^{k} f^{(k)}(t) \leq \frac{2}{t} \int_{t/2}^{t} (-1)^{k} f^{(k)}(u) du$$

= $\frac{2}{t} (-1)^{k} \left(f^{(k-1)}(t) - f^{(k-1)}(t/2) \right)$
 $\leq \frac{2}{t} (-1)^{k-1} f^{(k-1)}(t/2).$

Doing induction, for any $k \ge 1$,

$$\begin{split} (-1)^k f^{(k)}(t) &\leq \prod_{j=1}^{k-1} \left(\frac{2^j}{t}\right) \cdot f'\left(\frac{t}{2^{k-1}}\right) \\ &\leq \prod_{j=1}^{k-1} \left(\frac{2^j}{t}\right) \cdot \frac{2^k}{t} \left(f\left(\frac{t}{2^{k-1}}\right) - f\left(\frac{t}{2^k}\right)\right) \\ &= t^{-k} 2^{k(k-1)/2} \left(f\left(\frac{t}{2^{k-1}}\right) - f\left(\frac{t}{2^k}\right)\right). \end{split}$$

Because $f(x) \to f(0)$ as $x \downarrow 0$,

$$f\left(\frac{t}{2^{k-1}}\right) - f\left(\frac{t}{2^k}\right) \to 0, \qquad t \downarrow 0,$$

and because $f(x) \to f(\infty)$ as $x \uparrow \infty$,

$$f\left(\frac{t}{2^{k-1}}\right) - f\left(\frac{t}{2^k}\right) \to 0, \qquad t \uparrow \infty.$$

Hence for each $k \ge 1$,

$$|f(t)| = o_k(t^{-k}), \qquad t \downarrow 0, \tag{1}$$

and

$$|f(t)| = o_k(t^{-k}), \qquad t \uparrow \infty.$$
(2)

Furthermore, for any $x \in (0, \infty)$, $f^{(k)}(t) \to f^{(k)}(x)$ as $t \to x$, so it is immediate that

$$(t-x)^k f^{(k)}(t) \to 0, \qquad t \to x.$$
(3)

For $x \ge 0$ and $k \ge 1$, integrating by parts, using (2) and (1) or (3) respectively as x = 0 or x > 0,

$$\begin{split} f(x) - f(\infty) &= -\int_x^\infty f'(t)dt \\ &= -(t-x)f'(t)\Big|_x^\infty + \int_x^\infty f''(t)(t-x)dt \\ &= \int_x^\infty f''(t)(t-x)dt \\ &= \frac{(t-x)^2}{2}f''(t)\Big|_x^\infty - \int_x^\infty f'''(t)\frac{(t-x)^2}{2}dt \\ &= -\int_x^\infty f'''(t)\frac{(t-x)^2}{2}dt \\ &= (-1)^k \int_x^\infty f^{(k)}(t)\frac{(t-x)^{k-1}}{(k-1)!}dt. \end{split}$$

Hence for $x \ge 0$ and $n \ge 0$,

$$f(x) - f(\infty) = \frac{(-1)^{n+1}}{n!} \int_x^\infty f^{(n+1)}(t)(t-x)^n dt.$$

Define

$$\phi_n(y) = (1 - y/n)^n \mathbf{1}_{[0,n]}(y).$$

For $n \ge 1$, by change of variables,

$$\begin{split} f(x) - f(\infty) &= \frac{(-1)^{n+1}}{n!} \int_{x/n}^{\infty} f^{(n+1)}(nu)(nu-x)^n ndu \\ &= \frac{(-1)^{n+1}}{(n-1)!} \int_{x/n}^{\infty} f^{(n+1)}(nu)(nu)^n \left(1 - \frac{x}{nu}\right)^n du \\ &= \frac{(-1)^{n+1}}{(n-1)!} \int_0^{\infty} (nu)^n \phi_n(x/u) f^{(n+1)}(nu) du \\ &= \frac{(-1)^{n+1}}{(n-1)!} \int_0^{\infty} (n/t)^n \phi_n(xt) f^{(n+1)}(n/t) t^{-2} dt. \end{split}$$

For $t \geq 0$, define

$$s_n(t) = \frac{(-1)^{n+1}}{(n-1)!} \int_{1/t}^{\infty} (nu)^n f^{(n+1)}(nu) du,$$

where $s_n(0) = 0$, and for t < 0 let $s_n(t) = 0$. s_n is continuous and because f is completely monotone, s_n is nondecreasing, so there is a unique positive measure σ_n on $\mathscr{B}_{\mathbb{R}}$ such that⁵

$$\sigma_n((a,b]) = s_n(b) - s_n(a), \qquad a \le b.$$

On the other hand, s_n is absolutely continuous, so σ_n is absolutely continuous with respect to Lebesgue measure λ_1 , and for λ_1 -almost all $t \in \mathbb{R}$,⁶

$$\frac{d\sigma_n}{d\lambda_1}(t) = s'_n(t)$$

Now for t > 0, by the fundamental theorem of calculus and the chain rule,

$$s'_{n}(t) = \frac{(-1)^{n+1}}{(n-1)!} (n/t)^{n} f^{(n+1)}(n/t) \cdot t^{-2},$$

and therefore

$$f(x) - f(\infty) = \int_0^\infty \phi_n(xt) s'_n(t) d\lambda_1(t)$$

=
$$\int_0^\infty \phi_n(xt) \frac{d\sigma_n}{d\lambda_1}(t) d\lambda_1(t)$$

=
$$\int_0^\infty \phi_n(xt) d\sigma_n(t).$$

The **total variation** of σ_n is equal to the total variation of s_n , and because s_n is nondecreasing,

$$\|\sigma_n\| = \int_0^\infty |s'_n(t)| dt = \int_0^\infty s'_n(t) dt = s_n(\infty) - s_n(0) = s_n(\infty),$$

which is

$$\|\sigma_n\| = \frac{(-1)^{n+1}}{(n-1)!} \int_0^\infty (nu)^n f^{(n+1)}(nu) du = f(0) - f(\infty),$$

showing that $\{\sigma_n : n \geq 1\}$ is bounded for the total variation norm. We claim that $\{\sigma_n : n \geq 1\}$ is **tight**: for each $\epsilon > 0$ there is a compact subset K_{ϵ} of \mathbb{R} such that $\sigma_n(K_{\epsilon}^c) < \epsilon$ for all n. Taking this for granted, **Prokhorov's theorem**⁷ states that there is a subsequence σ_{k_n} of σ_n that converges **narrowly** to some positive measure σ on $\mathscr{B}_{\mathbb{R}}$. Finally, the sequence $t \mapsto \phi_n(xt)$ tends in $C_b([0,\infty))$ to $t \mapsto e^{-xt}$, and it thus follows that⁸

$$\int_0^\infty \phi_n(xt) d\sigma_n(t) \to \int_0^\infty e^{-xt} d\sigma(t),$$

⁵Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 393, Theorem 10.48.

⁶H. L. Royden, *Real Analysis*, third ed., p. 303, Exercise 16.

⁷V. I. Bogachev, *Measure Theory*, volume II, p. 202, Theorem 8.6.2.

⁸cf. Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 511, Corollary 15.7.

$$f(x) - f(\infty) = \int_0^\infty e^{-xt} d\sigma(t).$$

Let

 \mathbf{SO}

$$\mu = \sigma + f(\infty)\delta_0,$$

with which

$$\int_0^\infty e^{-xt} d\mu(t) = \int_0^\infty e^{-xt} d\sigma(t) + f(\infty),$$

hence

$$f(x) = \int_0^\infty e^{-xt} d\mu(t).$$

Because f(0) = 1, $\int_0^\infty d\mu(t) = 1$, showing that μ is a probability measure. \Box

4 Fourier transforms

For a topological space X and a positive Borel measure μ on X, $F \subset X$ is called a support of μ if (i) F is closed, (ii) $\mu(F^c) = 0$, and (iii) if G is open and $G \cap F \neq \emptyset$ then $\mu(G \cap F) > 0$. If F_1 and F_2 are supports of μ , it is straightforward that $F_1 = F_2$. It is a fact that if X is second-countable then μ has a support, which we denote by $\sup \mu$.⁹

Lemma 2. If μ is a Borel measure on a topological space X and μ has a support supp μ , if $f: X \to [0, \infty)$ is continuous and $\int_X f d\mu = 0$ then f(x) = 0 for all $x \in \text{supp } \mu$.

Proof. Let $F = \text{supp } \mu$ and let $E = \{x \in X : f(x) \neq 0\}$. E is an open subset of X. Suppose by contradiction that there is some $x \in E \cap F$, i.e. that $E \cap F \neq \emptyset$. Because f is continuous and f(x) > 0, there is some open neighborhood G of x for which f(y) > f(x)/2 for $y \in U$. Then $x \in G \cap F$, so $G \cap F \neq \emptyset$ and because F is the support of μ , $\mu(G \cap F) > 0$ and a fortiori $\mu(G) > 0$. Then

$$0 = \int_X f d\mu \ge \int_G f(y) d\mu(y) \ge \int_G \frac{f(x)}{2} d\mu(y) = \frac{f(x)}{2} \mu(G) > 0,$$

a contradiction. Therefore $E \cap F = \emptyset$, i.e. for all $x \in F$, f(x) = 0.

The following lemma asserts that a certain function is nonzero λ_d -almost everywhere, where λ_d is Lebesgue measure on $\mathbb{R}^{d,10}$

6

⁹Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 442, Theorem 12.14.

 $^{^{10}\}mathrm{Ward}$ Cheney and Will Light, A Course in Approximation Theory, p. 91, chapter 13, Lemma 6.

Lemma 3. Let x_1, \ldots, x_n be distinct points in \mathbb{R}^d , let $u \in \mathbb{C}^n$ not be the zero vector, and define

$$g(y) = \sum_{j=1}^{n} u_j e^{-2\pi i x_j \cdot y}, \qquad y \in \mathbb{R}^d.$$

For λ_d -almost all $y \in \mathbb{R}^d$, $g(y) \neq 0$.

The following theorem gives conditions under which the Fourier transform of a Borel measure on \mathbb{R}^d is strictly positive definite.¹¹

Theorem 4. If μ is a finite Borel measure on \mathbb{R}^d and $\lambda_d(\operatorname{supp} \mu) > 0$, then $\hat{\mu} : \mathbb{R}^d \to \mathbb{C}$ is strictly positive definite.

Proof. For distinct $x_1, \ldots, x_n \in \mathbb{R}^d$ and for nonzero $u \in \mathbb{C}^n$,

$$\begin{split} \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \hat{\mu}(x_{j} - x_{k}) &= \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \int_{\mathbb{R}^{d}} e^{-2\pi i (x_{j} - x_{k}) \cdot y} d\mu(y) \\ &= \int_{\mathbb{R}^{d}} \left(\sum_{j=1}^{n} u_{j} e^{-2\pi i x_{j} \cdot y} \right) \overline{\left(\sum_{k=1}^{n} u_{k} e^{-2\pi i x_{k} \cdot y} \right)} d\mu(y) \\ &= \int_{\mathbb{R}^{d}} \left| \sum_{j=1}^{n} u_{j} e^{-2\pi i x_{j} \cdot y} \right|^{2} d\mu(y) \\ &= \int_{\mathbb{R}^{d}} |g(y)|^{2} d\mu(y). \end{split}$$

It is apparent that this is nonnegative. If it is equal to 0 then because g is continuous we obtain from Lemma 2 that $|g(y)|^2 = 0$ for all $y \in \operatorname{supp} \mu$, i.e. g(y) = 0 for all $y \in \operatorname{supp} \mu$. In other words,

$$\operatorname{supp} \mu \subset \{ y \in \mathbb{R}^d : g(y) = 0 \}$$

But by Lemma 3, $\lambda_d(\{y \in \mathbb{R}^d : g(y) = 0\}) = 0$, so $\lambda_d(\operatorname{supp} \mu) = 0$, contradicting the hypothesis $\lambda_d(\operatorname{supp} \mu) > 0$. Therefore

$$\int_{\mathbb{R}^d} |g(y)|^2 d\mu(y) > 0.$$

which shows that $\hat{\mu}$ is strictly positive definite.

5 Schoenberg's theorem

Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. We call a function $F : X \to \mathbb{R}$ radial when ||x|| = ||y|| implies that F(x) = F(y).

 $^{^{-11}}$ Ward Cheney and Will Light, A Course in Approximation Theory, p. 92, chapter 13, Theorem 3.

An identity that is worth memorizing is that for $y \in \mathbb{R}$,

$$\int_{\mathbb{R}} e^{-\pi x^2} e^{-2\pi i x y} dx = e^{-\pi y^2}.$$

Using this and Fubini's theorem yields, $y \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} e^{-\pi |x|^2} e^{-2\pi \langle x,y\rangle} = e^{-\pi |y|^2}$$

Lemma 5. For $\alpha > 0$ and $y \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} \left(\frac{\pi}{\alpha}\right)^{d/2} \exp\left(-\frac{\pi^2}{\alpha}|x|^2\right) e^{-2\pi i \langle x,y \rangle} dx = e^{-\alpha |y|^2}.$$

Proof. Define $T : \mathbb{R}^d \to \mathbb{R}^d$ by

$$T(x) = \sqrt{\frac{\pi}{\alpha}}x, \qquad x \in \mathbb{R}^d.$$

 $T'(x) = \sqrt{\frac{\pi}{\alpha}} I \in \mathscr{L}(\mathbb{R}^d)$ and $J_T(x) = \det T'(x) = \left(\frac{\pi}{\alpha}\right)^{d/2}$. Let $u \in \mathbb{R}^d$ and define $f(x) = e^{-\pi |x|^2} e^{-2\pi i \langle x, u \rangle}$. By the change of variables formula,¹²

$$\int_{\mathbb{R}^d} (f \circ T) \cdot |J_T| d\lambda_d = \int_{T(\mathbb{R}^d)} f d\lambda_d,$$

and because T is self-adjoint this is

$$\int_{\mathbb{R}^d} e^{-\pi |T(x)|^2} e^{-2\pi i \langle x, Tu \rangle} \left(\frac{\pi}{\alpha}\right)^{d/2} dx = \int_{\mathbb{R}^d} e^{-\pi |x|^2} e^{-2\pi i \langle x, u \rangle} dx,$$

and therefore

$$\int_{\mathbb{R}^d} \left(\frac{\pi}{\alpha}\right)^{d/2} \exp\left(-\frac{\pi^2}{\alpha} |x|^2\right) e^{-2\pi i \langle x, Tu \rangle} dx = e^{-\pi |u|^2}.$$

For $u = T^{-1}(y) = \sqrt{\frac{\alpha}{\pi}}y$ this is

$$\int_{\mathbb{R}^d} \left(\frac{\pi}{\alpha}\right)^{d/2} \exp\left(-\frac{\pi^2}{\alpha}|x|^2\right) e^{-2\pi i \langle x,y \rangle} dx = e^{-\alpha |y|^2},$$

proving the claim.

We now prove that on a real inner product space, $x \mapsto e^{-\alpha \|x\|^2}$ is strictly positive definite whenever $\alpha > 0.^{13}$

 ¹²Charalambos D. Aliprantis and Owen Burkinshaw, Principles of Real Analysis, third ed.,
 p. 393, Theorem 40.7.
 ¹³Ward Cheney and Will Light, A Course in Approximation Theory, p. 104, chapter 15,

¹³Ward Cheney and Will Light, A Course in Approximation Theory, p. 104, chapter 15, Theorem 2.

Theorem 6. Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. If $\alpha > 0$, then

$$x \mapsto e^{-\alpha \|x\|^2}, \qquad x \in X,$$

is radial and strictly positive definite.

Proof. Let x_1, \ldots, x_n be distinct points in X. There is an n-dimensional linear subspace V of X that contains x_1, \ldots, x_n . By the Gram-Schmidt process, V has an orthonormal basis $\{v_1, \ldots, v_n\}$. Define $T: V \to \mathbb{R}^n$ by $Tv_j = e_j$, where $\{e_1, \ldots, e_n\}$ is the standard basis for \mathbb{R}^n , which is an orthogonal transformation, and define

$$f(u) = e^{-\alpha |u|^2}, \qquad u \in \mathbb{R}^d.$$

For $u \in \mathbb{C}^n$, $u \neq 0$,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} e^{-\alpha ||x_{j} - x_{k}||^{2}} = \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp\left(-\alpha |T(x_{j} - x_{k})|^{2}\right)$$
$$= \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f(Tx_{j} - Tx_{k}).$$

Now, let μ be the Borel measure on \mathbb{R}^d whose density with respect to λ_d is

$$y \mapsto \left(\frac{\pi}{\alpha}\right)^{d/2} \exp\left(-\frac{\pi^2}{\alpha}|y|^2\right)$$

Because μ is absolutely continuous with respect to λ_d , $\lambda_d(\operatorname{supp} \mu) > 0$, so Theorem 4 states that the Fourier transform $\hat{\mu} : \mathbb{R}^d \to \mathbb{C}$ is strictly positive definite. Applying Lemma 5, the Fourier transform of μ is

$$\hat{\mu}(u) = \int_{\mathbb{R}^d} \left(\frac{\pi}{\alpha}\right)^{d/2} \exp\left(-\frac{\pi^2}{\alpha}|y|^2\right) e^{-2\pi i \langle y, u \rangle} dy = e^{-\alpha |u|^2} = f(u),$$

so f is strictly positive definite. Because T is an orthogonal transformation it is in particular one-to-one, so Tx_1, \ldots, Tx_n are distinct points in \mathbb{R}^d . Thus the fact that f is strictly positive definite means that

$$\sum_{j=1}^{n} \sum_{k=1}^{n} u_j \overline{u_k} e^{-\alpha \|x_j - x_k\|^2} = \sum_{j=1}^{n} \sum_{k=1}^{n} u_j \overline{u_k} f(Tx_j - Tx_k) > 0,$$

which establishes that $x \mapsto e^{-\alpha ||x||^2}$ is strictly positive definite.

The following is **Schoenberg's theorem**.¹⁴

¹⁴Ward Cheney and Will Light, A Course in Approximation Theory, p. 101, chapter 15, Theorem 1; René L. Schilling, Renming Song, and Zoran Vondraček, Bernstein Functions: Theory and Applications, p. 142, Theorem 12.14; William F. Donoghue Jr., Distributions and Fourier Transforms, p. 205, §41.

Theorem 7 (Schoenberg's theorem). Let $(X, \langle \cdot, \cdot \rangle)$ be a real inner product space. If $f : [0, \infty) \to \mathbb{R}$ is completely monotone, f(0) = 1, and f is not constant, then

$$x \mapsto f(\|x\|^2), \qquad X \to [0,\infty),$$

is radial and strictly positive definite.

Proof. Because f is completely monotone, the Bernstein-Widder theorem (Theorem 1) tells us that there is a Borel probability measure μ on $[0, \infty)$ such that

$$f(t) = \int_0^\infty e^{-st} d\mu(s), \qquad t \in [0,\infty),$$

that is, f is the Laplace transform of μ . Now, the Laplace transform of δ_0 is $t \mapsto 1$, and because f is not constant, the Laplace transform of μ is not equal to the Laplace transform of δ_0 , which implies that $\mu \neq \delta_0$.¹⁵ Therefore $\mu((0,\infty)) > 0$.

Let x_1, \ldots, x_n be distinct points in X and let $u \in \mathbb{C}^n$, $u \neq 0$. Then, because $\sum_{j=1}^n \sum_{k=1}^n u_j \overline{u_k} \ge 0$,

$$\begin{split} \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} f(\|x_{j} - x_{k}\|^{2}) &= \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \int_{0}^{\infty} \exp\left(-s \|x_{j} - x_{k}\|^{2}\right) d\mu(s) \\ &= \int_{0}^{\infty} \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp\left(-s \|x_{j} - x_{k}\|^{2}\right) d\mu(s) \\ &= \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \mu(\{0\}) \\ &+ \int_{0}^{\infty} 1_{(0,\infty)}(s) \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp\left(-s \|x_{j} - x_{k}\|^{2}\right) d\mu(s) \\ &\geq \int_{0}^{\infty} 1_{(0,\infty)}(s) \sum_{j=1}^{n} \sum_{k=1}^{n} u_{j} \overline{u_{k}} \exp\left(-s \|x_{j} - x_{k}\|^{2}\right) d\mu(s) \\ &= \int_{0}^{\infty} g(s) d\mu(s). \end{split}$$

Assume by contradiction that $\int_0^\infty g(s)d\mu(s) = 0$. Because $g \ge 0$, this implies that $\mu(\{s \in [0,\infty) : g(s) > 0\}) = 0$.¹⁶ By Theorem 6, for each s > 0,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} u_j \overline{u_k} \exp\left(-s \|x_j - x_k\|^2\right) > 0,$$

 $^{^{15}\}mathrm{Bert}$ Fristedt and Lawrence Gray, A Modern Approach to Probability Theory, p. 218, §13.5, Theorem 6.

¹⁶Charalambos D. Aliprantis and Kim C. Border, *Infinite Dimensional Analysis: A Hitchhiker's Guide*, third ed., p. 411, Theorem 11.16.

so g(s) > 0 when s > 0. Thus $\mu((0, \infty)) = 0$, a contradiction. Therefore,

$$\sum_{j=1}^{n} \sum_{k=1}^{n} u_j \overline{u_k} f(\|x_j - x_k\|^2) = \int_0^\infty g(s) d\mu(s) > 0,$$

which shows that $x \mapsto f(||x||^2)$ is strictly positive definite.