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1 Introduction

In this note I prove several things about compact linear operators from one
Banach space to another, especially from a Banach space to itself. Some of
these may things be simpler to prove for compact operators on a Hilbert space,
but since often in analysis we deal with compact operators from one Banach
space to another, such as from a Sobolev space to an Lp space, and since the
proofs here are not absurdly long, I think it’s worth the extra time to prove all
of this for Banach spaces. The proofs that I give are completely detailed, and
one should be able to read them without using a pencil and paper. When I
want to use a fact that is not obvious but that I do not wish to prove, I give a
precise statement of it, and I verify that its hypotheses are satisfied.

2 Preliminaries

If X and Y are normed spaces, let B(X,Y ) be the set of bounded linear maps
X → Y . It is straightforward to check that B(X,Y ) is a normed space with
the operator norm

∥T∥ = sup
∥x∥≤1

∥Tx∥.

If X is a normed space and Y is a Banach space, one proves that B(X,Y ) is
a Banach space.1 Let B(X) = B(X,X). If X is a Banach space then so is
B(X), and it is straightforward to verify that B(X) is a Banach algebra.

To say T ∈ B(X) is invertible means that there is some S ∈ B(X) such
that ST = idX and TS = idX , and we write T−1 = S. It follows from the open
mapping theorem that if T ∈ B(X), kerT = {0}, and T (X) = X, then T
is invertible (i.e. if a bounded linear map is bijective then its inverse is also a
bounded linear map, where we use the open mapping theorem to show that the
inverse is continuous).

The spectrum σ(T ) of T ∈ B(X) is the set of all λ ∈ C such that T −λidX
is not invertible. If T − λidX is not injective, we say that λ is an eigenvalue
of T , and then there is some nonzero x ∈ ker(T − λidX), which thus satisfies

1Walter Rudin, Functional Analysis, second ed., p. 92, Theorem 4.1.
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Tx = λx; we call any nonzero element of ker(T − λidX) an eigenvector of T .
The point spectrum of T is the set of eigenvalues of T .

We say that a subset of a topological space is precompact if its closure
is compact. The Heine-Borel theorem states that a subset S of a complete
metric spaceM is precompact if and only if it is totally bounded: to be totally
bounded means that for every ϵ > 0 there are finitely many points x1, . . . , xr ∈ S
such that S ⊆

⋃r
k=1Bϵ(xi), where Bϵ(x) is the open ball of radius ϵ and center

x.
If X and Y are Banach spaces and B1(0) is the open unit ball in X, a linear

map T : X → Y is said to be compact if T (B1(0)) is precompact; equivalently,
if T (B1(0)) is totally bounded. Check that a linear map T : X → Y is compact
if and only if the image of every bounded set is precompact. Thus, if we want
to prove that a linear map is compact we can show that the image of the open
unit ball is precompact, while if we know that a linear map is compact we can
use that the image of every bounded set is precompact. It is straightforward to
prove that a compact linear map is bounded. Let B0(X,Y ) denote the set of
compact linear maps X → Y . It does not take long to prove that B0(X) is an
ideal in the algebra B(X).

3 Basic facts about compact operators

Theorem 1. Let X and Y be Banach spaces. If T : X → Y is linear, then T
is compact if and only if xn ∈ X being a bounded sequence implies that there
is a subsequence xa(n) such that Txa(n) converges in Y .

Proof. Suppose that T is compact and let xn ∈ X be bounded, with

M = sup
n

∥xn∥ <∞.

Let V be the closed ball in X of radius M and center 0. V is bounded in X, so
N = T (V ) is compact in Y . As Txn ∈ N , there is some convergent subsequence
Txa(n) that converges to some y ∈ N .

Suppose that if xn is a bounded sequence in X then there is a subsequence
such that Txa(n) is convergent, let U be the open unit ball in X, and let yn ∈
T (U) be a sequence. It is a fact that a subset of a metric space is precompact
if and only if every sequence has a subsequence that converges to some element
in the space; this is not obvious, but at least we are only taking as given a fact
about metric spaces. (What we have asserted is that a set in a metric space is
precompact if and only if it is sequentially precompact.) As yn are in the
image of T , there is a subsequence such that ya(n) is convergent and this implies
that T (U) is precompact, and so T is a compact operator.

Theorem 2. Let X and Y be Banach spaces. If T ∈ B0(X,Y ), then T (X) is
separable.
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Proof. Let Un be the closed ball of radius n in X. As T (Un) is a compact metric
space it is separable, and hence T (Un), a subset of it, is separable too, say with
dense subset Ln. We have

T (X) =

∞⋃
n=1

T (Un),

and one checks that
⋃∞

n=1 Ln is a dense subset of the right-hand side, showing
that T (X) is separable.

The following theorem gathers some important results about compact oper-
ators.2

Theorem 3. Let X and Y be Banach spaces.

• If T ∈ B(X,Y ), T is compact, and T (X) is a closed subset of Y , then
dimT (X) <∞.

• B0(X,Y ) is a closed subspace of B(X,Y ).

• If T ∈ B(X), T is compact, and λ ̸= 0, then dimker(T − λidX) <∞.

• If dimX = ∞, T ∈ B(X), and T is compact, then 0 ∈ σ(T ).

Proof. If T ∈ B(X,Y ) is compact and T (X) is closed then as a closed subspace
of a Banach space, T (X) is itself a Banach space. Of course T : X → T (X) is
surjective, and X is a Banach space so by the open mapping theorem T : X →
T (X) is an open map. Let Tx ∈ T (X). As T is an open map, T (B1(x)) is
open, and hence T (B1(x)) is a neighborhood of Tx. But because T is compact
and B1(x) is bounded, T (B1(x)) is compact. Hence T (B1(x)) is a compact
neighborhood of Tx. As every element of T (X) has a compact neighborhood,
T (X) is locally compact. But a locally compact topological vector space is finite
dimensional, so dimT (X) <∞.

It is straightforward to check that B0(X,Y ) is linear subspace of B(X,Y ).
Let T be in the closure of B0(X,Y ) and let U be the open unit ball in X. We
wish to show that T (U) is totally bounded. Let ϵ > 0. As T is in the closure of
B0(X,Y ), there is some S ∈ B0(X,Y ) with ∥S − T∥ < ϵ. As S is compact, its
image S(U) is totally bounded, so there are finitely many Sx1, . . . , Sxr ∈ S(U),
with x1, . . . , xr ∈ U , such that S(U) ⊆

⋃r
k=1Bϵ(Sxk). If x ∈ U , then

∥Sx− Tx∥ = ∥(S − T )x∥ ≤ ∥S − T∥∥x∥ < ∥S − T∥ < ϵ.

Let x ∈ U . Then there is some k such that Sx ∈ Bϵ(Sxk), and

∥Tx− Txk∥ ≤ ∥Tx− Sx∥+ ∥Sx− Sxk∥+ ∥Sxk − Txk∥ < 3ϵ,

so T (U) ⊆
⋃r

k=1B3ϵ(Txk), showing that T (U) is totally bounded and hence
that T is a compact operator.

2Walter Rudin, Functional Analysis, second ed., p. 104, Theorem 4.18.
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If T ∈ B(X) is compact and λ ̸= 0, let Y = ker(T − λidX). (If λ is not
an eigenvalue of T , then Y = {0}.) Y is a closed subspace of X, and hence
is itself a Banach space. If y ∈ Y then Ty = λy ∈ Y . Define S : Y → Y by
Sy = Ty = λy, and as T is compact so is S. Now we use the hypothesis that
λ ̸= 0: if y ∈ Y , then S( 1λy) = y, so S : Y → Y is surjective. We have shown
that S : Y → Y is compact and that S(Y ) is a closed subset of Y (as it is equal
to Y ), and as a closed image of a compact operator is finite dimensional, we
obtain dimS(Y ) <∞, i.e. dimY <∞.

If dimX = ∞ and T ∈ B(X) is compact, suppose by contradiction that
0 ̸∈ σ(T ). So T is invertible, with TT−1 = idX . As B0(X) is an ideal in the
algebra B(X), idX is compact. Of course idX(X) = X is a closed subset of X.
But we proved that if the image of a compact linear operator is closed then that
image is finite dimensional, contradicting dimX = ∞.

4 Dual spaces

If X is a normed space, let X∗ = B(X,C), the set of bounded linear maps
X → C. X∗ is called the dual space of X, and is a Banach space since C is a
Banach space. Define ⟨·, ·⟩ : X ×X∗ → C by

⟨x, λ⟩ = λ(x), x ∈ X,λ ∈ X∗.

This is called the dual pairing of X and X∗.
The following theorem gives an expression for the norm of an element of the

dual space.3

Theorem 4. If X is a normed space and V is the closed unit ball in X∗, then

∥x∥ = sup
λ∈V

|⟨x, λ⟩|, x ∈ X.

Proof. It follows from the Hahn-Banach extension theorem that if x0 ∈ X, then
there is some λ0 ∈ X∗ such that λ0(x0) = ∥x0∥ and such that if x ∈ X then
|λ0(x)| ≤ ∥x∥.4 That is, that there is some λ0 ∈ V such that λ0(x0) = ∥x0∥.
Hence

sup
λ∈V

|⟨x0, λ⟩| ≥ |⟨x0, λ0⟩| = |λ0(x0)| = ∥x0∥.

If λ ∈ V , then
|⟨x0, λ⟩| = |λ(x0)| ≤ ∥λ∥∥x0∥ ≤ ∥x0∥,

so
sup
λ∈V

|⟨x0, λ⟩| ≤ ∥x0∥.

3Walter Rudin, Functional Analysis, second ed., p. 94, Theorem 4.3 (b).
4Walter Rudin, Functional Analysis, second ed., p. 58, Theorem 3.3.
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Let X be a Banach space. For x ∈ X, it is apparent that λ 7→ λ(x) is a
linear map X∗ → C. From Theorem 4, it is bounded, with norm ∥x∥. Define
ϕ : X → X∗∗ by

(ϕx)(λ) = ⟨x, λ⟩, x ∈ X,λ ∈ X∗.

It is apparent that ϕ is a linear map. By Theorem 4, if x ∈ X then ∥ϕx∥ = ∥x∥,
so ϕ is an isometry. Let ϕxn ∈ ϕ(X) be a Cauchy sequence. ϕ−1 : ϕ(X) → X is
an isometry, so ϕ−1ϕxn is a Cauchy sequence, i.e. xn is a Cauchy sequence, and
so, as X is a Banach space, xn converges to some x. Then ϕxn converges to ϕx,
and thus ϕ(X) is a complete metric space. But a subset of a complete metric
space is closed if and only if it is complete, so ϕ(X) is a closed subspace of X∗∗.
Hence, ϕ(X) is a Banach space and ϕ : X → ϕ(X) is an isometric isomorphism.
A Banach space is said to be reflexive if ϕ(X) = X∗∗, i.e. if every bounded
linear map X∗ → C is of the form ϕ(x) for some x ∈ X.

5 Adjoints

If X and Y are normed spaces and T ∈ B(X,Y ), define T ∗ : Y ∗ → X∗ by
T ∗λ = λ ◦ T ; as T ∗λ is the composition of two bounded linear maps it is
indeed a bounded linear map X → C. T ∗ is called the adjoint of T . It is
straightforward to check that T ∗ is linear and that it satisfies, for S = T ∗,

⟨Tx, λ⟩ = ⟨x, Sλ⟩, x ∈ X,λ ∈ Y ∗. (1)

On the other hand, suppose that S : Y ∗ → X∗ is a function that satisfies (1).
Let λ ∈ Y ∗, and let x ∈ X. Then

(Sλ)(x) = λ(Tx) = (T ∗λ)(x).

This is true for all x, so Sλ = T ∗λ, and that is true for all λ, so S = T ∗.
Thus T ∗λ = λ ◦ T is the unique function Y ∗ → X∗ that satisfies (1), not just
the unique bounded linear map that does. (That is, satisfying (1) completely
determines a function.)

Using Theorem 4,

∥T∥ = sup
∥x∥≤1

∥Tx∥

= sup
∥x∥≤1

sup
∥λ∥≤1

|⟨Tx, λ⟩|

= sup
∥x∥≤1

sup
∥λ∥≤1

|⟨x, T ∗λ⟩|

= sup
∥λ∥≤1

sup
∥x∥≤1

|T ∗λ(x)|

= sup
∥λ∥≤1

∥T ∗λ∥

= ∥T ∗∥.

In particular, T ∗ ∈ B(Y ∗, X∗).
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In the following we prove that the adjoint T ∗ of a compact operator T is
itself a compact operator, and that if the adjoint of a bounded linear operator
is compact then the original operator is compact.5 In the proof we only show
that if we take any sequence λn in the closed unit ball then it has a subsequence
such that Tλa(n) converges. Check that it suffices merely to do this rather than
showing that this happens for any bounded sequence.

Theorem 5. If X and Y are Banach spaces and T ∈ B(X,Y ), then T is
compact if and only if T ∗ is compact.

Proof. Suppose that T ∈ B(X,Y ) is compact, and let λn ∈ Y ∗, n ≥ 1, be a
sequence in the closed unit ball in Y ∗.

If M is a metric space with metric ρ and F is a set of functions M → C, we
say that F is equicontinuous if for every ϵ > 0 there exists a δ > 0 such that
if f ∈ F and ρ(x, y) < δ then |f(x) − f(y)| < ϵ. We say that F is pointwise
bounded if for every x ∈ M there is some m(x) < ∞ such that if f ∈ F
and x ∈ M then |f(x)| ≤ m(x). The Arzelà-Ascoli theorem6 states that if
(M,ρ) is a separable metric space and F is a set of functions M → C that is
equicontinuous and pointwise bounded, then for every sequence fn ∈ F there is
a subsequence that converges uniformly on every compact subset of M .

Let V be the closed unit ball in X. As T is a compact operator, T (V ) is
compact and therefore separable, because any compact metric space is separable.
Define fn : T (V ) → C by

fn(y) = ⟨y, λn⟩ = λn(y).

For y1, y2 ∈ T (V ) we have

|fn(y1)− fn(y2)| = |λn(y1 − y2)| ≤ ∥λn∥∥y1 − y2∥ ≤ ∥y1 − y2∥.

Hence for ϵ > 0, if n ≥ 1 and ∥y1 − y2∥ < ϵ then |fn(y1) − fn(y2)| < ϵ. This
shows that {fn} is equicontinuous. If y ∈ T (V ), then, for any n ≥ 1,

|fn(y)| = |λn(y)| ≤ ∥λn∥∥y∥ ≤ ∥y∥,

showing that {fn} is pointwise bounded. Therefore we can apply the Arzelà-
Ascoli theorem: there is a subsequence fa(n) such that fa(n) converges uniformly

on every compact subset of T (V ), in particular on T (V ) itself and therefore
on any subset of it, in particular T (V ). We are done using the Arzelà-Ascoli
theorem: we used it to prove that there is a subsequence fa(n) that converges
uniformly on T (V ).

Let ϵ > 0. As fa(n) converges uniformly on T (V ), there is some N such that

5Walter Rudin, Functional Analysis, second ed., p. 105, Theorem 4.19.
6Walter Rudin, Real and Complex Analysis, third ed., p. 245, Theorem 11.28.
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if n,m ≥ N and y ∈ T (V ), then |fa(n)(y)− fa(m)(y)| < ϵ. Thus, if n,m ≥ N ,

∥T ∗λa(n) − T ∗λa(m)∥ = ∥λa(n) ◦ T − λa(m) ◦ T∥
= sup

x∈V
|λa(n)(Tx)− λa(m)(Tx)|

= sup
x∈V

|λa(n)(Tx)− λa(m)(Tx)|

= sup
x∈V

|fa(n)(Tx)− fa(m)(Tx)|

< ϵ.

This means that T ∗λa(n) ∈ X∗ is a Cauchy sequence. As X∗ is a Banach space,
this sequence converges, and therefore T ∗ is a compact operator.

Suppose that T ∗ ∈ B(Y ∗, X∗) is compact. Therefore, by what we showed
in the first half of the proof we have that T ∗∗ : X∗∗ → Y ∗∗ is compact. If V be
the closed unit ball in X∗∗, then T ∗∗(V ) is totally bounded.

We have seen that ϕ : X → X∗∗ defined by (ϕx)λ = λ(x), x ∈ X, λ ∈ X∗,
is an isometric isomorphism X → ϕ(X). Let ψ : Y → Y ∗∗ be the same for Y ,
and let U be the closed unit ball in X. If x ∈ X and λ ∈ Y ∗ then

⟨λ, ψTx⟩ = ⟨Tx, λ⟩ = ⟨x, T ∗λ⟩ = ⟨T ∗λ, ϕx⟩ = ⟨λ, T ∗∗ϕx⟩.

Therefore ψT = T ∗∗ϕ. If x ∈ U then ϕx ∈ V , as ϕ is an isometry. Hence if
x ∈ U then ψTx = T ∗∗ϕx ∈ T ∗∗(V ), thus

ψT (U) ⊆ T ∗∗(V ).

As ψT (U) is contained in a totally bounded set it is itself totally bounded,
and as ψ is an isometry, it follows that T (U) is totally bounded. Hence T is a
compact operator.

6 Complemented subspaces

If M is a closed subspace of a topological vector space X and there exists a
closed subspace N of X such that

X =M +N, M ∩N = {0},

we say that M is complemented in X and that X is the direct sum of M
and N , which we write as X =M ⊕N .

We are going to use the following lemma to prove the theorem that comes
after it.7

Lemma 6. IfX is a locally convex topological vector space andM is a subspace
of X with dimX <∞, then M is complemented in X.

7Walter Rudin, Functional Analysis, second ed., p. 106, Lemma 4.21.
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In particular, a normed space is locally convex so the lemma applies to
normed spaces. In the following theorem we prove that if T ∈ B(X) is compact
and λ ̸= 0 then T − λidX has closed image.8

Theorem 7. If X is a Banach space, T ∈ B(X) is compact, and λ ̸= 0, then
the image of T − λidX is closed.

Proof. According to Theorem 3, dimker(T − λidX) < ∞, and we can then use
Lemma 6: ker(T − λidX) is a finite dimensional subspace of the locally convex
space X, so there is a closed subspace N of X such that X = ker(T−λidX)⊕N .

Define S : N → X by Sx = Tx − λx, so S ∈ B(N,X). It is apparent that
T (X) = S(N) and that S is injective, and we shall prove that S(N) is closed.
To show that S(N) is closed, check that it suffices to prove that S is bounded
below: that there is some r > 0 such that if x ∈ N then ∥Sx∥ ≥ r∥x∥.9

Suppose by contradiction that for every r > 0 there is some x ∈ N such
that ∥Sx∥ < r∥x∥. So for each n ≥ 1, let xn ∈ N with ∥Sxn∥ < 1

n∥xn∥, and
put vn = xn

∥xn∥ , so that ∥vn∥ = 1 and ∥Svn∥ < 1
n . As T is compact, there is

some subsequence such that Tva(n) converges, say to v. Combining this with
Svn → 0 we get λva(n) → v. On the one hand, ∥λva(n)∥ = |λ|∥va(n)∥ = |λ|, so
∥v∥ = |λ|. On the other hand, since λva(n) ∈ N and N is closed, we get v ∈ N .
S is continuous and λva(n) → 0, so

Sv = lim
n→∞

S(λva(n)) = λ lim
n→∞

Sva(n) = 0.

Because S is injective and Sv = 0, we get v = 0, contradicting ∥v∥ = |λ| > 0.
Therefore S is bounded below, and hence has closed image, completing the
proof.

The following theorem states that the point spectrum of a compact operator
is countable and bounded, and that if there is a limit point of the point spectrum
it is 0.10 By countable we mean bijective with a subset of the integers.

Theorem 8. If X is a Banach space, T ∈ B(X) is compact, and r > 0, then
there are only finitely many eigenvalues λ of T such that |λ| > r.

The following theorem shows that if T ∈ B(X) is compact and λ ̸= 0, then
the operator T − λidX is injective if and only if it is surjective.11 This tells us
that if λ ̸= 0 is not an eigenvalue of T , then T − λidX is both injective and
surjective, and hence is invertible, which means that if λ ̸= 0 is not an eigenvalue
of T then λ ̸∈ σ(T ). This is an instance of the Fredholm alternative.

Theorem 9 (Fredholm alternative). Let X be a Banach space, T ∈ B(X) be
compact, and λ ̸= 0. T − λidX is injective if and only if it is surjective.

8Walter Rudin, Functional Analysis, second ed., p. 107, Theorem 4.23.
9A common way of proving that a linear operator is invertible is by proving that it has

dense image and that it is bounded below: bounded below implies injective and bounded
below and dense image imply surjective.

10Walter Rudin, Functional Analysis, second ed., p. 107, Theorem 4.24.
11Paul Garrett, Compact operators on Banach spaces: Fredholm-Riesz, http://www.math.

umn.edu/~garrett/m/fun/fredholm-riesz.pdf
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Proof. Suppose that T − λidX is injective and let Vn = (T − λidX)nX, n ≥ 1.
If (T − λidX)nx ∈ Vn, then, as (T − λidX)x ∈ X, we have

(T − λidX)n−1(T − λidX)x ∈ Vn−1,

so Vn ⊇ Vn−1. Thus
V1 ⊇ V2 ⊇ · · ·

Certainly Vn is a normed vector space. Define Tn ∈ B(Vn) by Tnx = Tx,
namely, Tn is the restriction of T to Vn.

As T is a compact operator, by Theorem 7 we get that V1 = (T−λidX)(X) is
closed. Hence V1 is a Banach space, being a closed subspace of a Banach space.
Assume as induction hypothesis that Vn is a closed subset of X. Thus Vn is a
Banach space, and Tn ∈ B(Vn) is a compact operator, as it is the restriction of
the compact operator T to Vn. Therefore by Theorem 7, the image of Tn−λidX
is closed, but this image is precisely Vn+1. Therefore, if n ≥ 1 then Vn is a closed
subspace of X.

Suppose by contradiction that there is some x ̸∈ (T − λidX)X = V1. If
y ∈ X then

(T − λidX)nx− (T − λidX)n+1y = (T − λidX)n(x− (T − λidX)y).

As x ̸∈ (T − λidX)X, we have x− (T − λidX)y ̸= 0. As we have supposed that
T − λidX is injective, any positive power of it is injective, and hence the right
hand side of the above equation is not 0. Thus (T −λidX)nx ̸= (T −λidX)n+1y,
and as y ∈ X was arbitrary,

(T − λidX)nx ̸∈ (T − λidX)n+1X.

However, of course (T − λidX)nx ∈ Vn, so if n ≥ 1 then Vn strictly contains
Vn+1.

Riesz’s lemma states that if M is a normed space, N is a proper closed
subspace of M , and 0 < r < 1, then there is some x ∈ M with ∥x∥ = 1 and
infy∈X ∥x − y∥ ≥ r.12 For each n ≥ 1, using Riesz’s lemma there is some
vn ∈ Vn, ∥vn∥ = 1, such that

inf
y∈Vn+1

∥vn − y∥ ≥ 1

2
;

we proved that each Vn is closed and that Vn is a strictly decreasing sequence
to allow us to use Riesz’s lemma.

If n,m ≥ 1, then (T − λidX)vm ∈ Vm+1 and check that Tvm+n ⊆ Vm+n, so

Tvm − Tvm+n = λvm + (T − λidX)vm − Tvm+n ∈ λvm + Vm+1.

12Paul Garrett, Riesz’s lemma, http://www.math.umn.edu/~garrett/m/fun/riesz_lemma.
pdf In this reference, Riesz’s lemma is stated for Banach spaces, but the proof in fact works
for normed spaces with no modifications.
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From this and the definition of the sequence vm, we get

∥Tvm − Tvm+n∥ ≥ |λ| · 1
2
.

That is, the distance between any two terms in Tvm is ≥ |λ|
2 , which is a fixed

positive constant, hence Tvm has no convergent subsequence. But ∥vm∥ = 1,
so vm is bounded and therefore, as T is compact, the sequence Tvm has a
convergent subsequence, a contradiction. Therefore T − λidX is surjective.

Suppose that T − λidX is surjective. One checks that if a bounded linear
operator is surjective then its adjoint is injective. For x ∈ X and µ ∈ X∗,
⟨λidXx, µ⟩ = µ(λx) = λµ(x) = ⟨x, λidX∗µ⟩, so (λidX)∗ = λidX∗ . Hence (T −
λidX)∗ = T ∗−λidX∗ . T is compact so T ∗ is compact. As T ∗−λidX∗ is injective
and T ∗ is compact, T ∗ − λidX∗ is surjective, whence its adjoint T ∗∗ − λidX∗∗ :
X∗∗ → X∗∗ is injective. One checks that if S ∈ B(X) and S∗∗ : X∗∗ → X∗∗

is injective then S is injective; this is proved using the fact that ϕ : X → X∗∗

defined by (ϕx)(λ) = λ(x) is an isometric isomorphism X → ϕ(X). Using this,
T − λidX is injective, completing the proof.

7 Compact metric spaces

In the proof of Theorem 5 we stated the Arzelà-Ascoli theorem. First we state
definitions again. IfM is a metric space with metric ρ and F is a set of functions
M → C, we say that F is equicontinuous if for all ϵ > 0 there is some δ > 0
such that f ∈ F and ρ(x, y) < δ imply that |f(x) − f(y)| < ϵ. We say that
F is pointwise bounded if for all x ∈ M there is some m(x) such that if
f ∈ F then |f(x)| ≤ m(x). The Arzelà-Ascoli theorem states that if M is
a separable metric space and F is equicontinuous and pointwise bounded, then
every sequence in F has a sequence that converges uniformly on every compact
subset of M .13

We are going to use a converse of the Arzelà-Ascoli theorem in the case of
a compact metric space.14 Let M be a compact metric space and let C(M) be
the set of continuous functions M → C. It does not take long to prove that
with the norm ∥f∥ = supx∈M |f(x)|, C(M) is a Banach space.

Theorem 10. Let (M,ρ) be a compact metric space and let F ⊆ C(M). F is
precompact in C(M) if and only if F is bounded and equicontinuous.

Proof. Suppose that F is bounded and equicontinuous. To say that F is
bounded is to say that there is some C such that if f ∈ F then ∥f∥ ≤ C,
and this implies that F is pointwise bounded. As M is compact it is separable,
so the Arzelà-Ascoli theorem tells us that every sequence in F has a subse-
quence that converges on every compact subset of M . To say that a sequence
of functions M → C converges uniformly on the compact subsets of M is to say

13Walter Rudin, Real and Complex Analysis, third ed., p. 245, Theorem 11.28.
14John B. Conway, A Course in Functional Analysis, second ed., p. 175, Theorem 3.8.
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that the sequence converges in the norm of the Banach space C(M), and thus if
F is a subset of C(M), then to say that every sequence in F has a subsequence
that converges uniformly on every compact subset of M is to say that F is
precompact in C(M).

In the other direction, suppose that F is precompact. Hence it is totally
bounded in C(M). It is straightforward to verify that F is bounded. We have
to show that F is equicontinuous. Let ϵ > 0. As F is totally bounded, there
are f1, . . . , fn ∈ F such that F ⊆

⋃n
k=1Bϵ/3(fk). As each fk : M → C is

continuous and M is compact, there is some δk > 0 such that if ρ(x, y) < δk
then |fk(x)− fk(y)| < ϵ

3 . Let δ = min1≤k≤n δk. If f ∈ F and ρ(x, y) < δ, then,
taking k such that ∥f − fk∥ < ϵ

3 ,

|f(x)− f(y)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(y)|+ |fk(y)− f(y)

< ∥f − fk∥+
ϵ

3
+ ∥fk − f∥

<
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ,

showing that F is equicontinuous.

We now show that if M is a compact metric space then the Banach space
C(M) has the approximation property: every compact linear operator C(M) →
C(M) is the limit of a sequence of bounded finite rank operators.15

Theorem 11. If (M,ρ) is a compact metric space, then B00(C(M)) is a dense
subset of B0(C(M)).

Proof. Let T ∈ B0(C(M)), let V be the closed unit ball in C(M), and let
ϵ > 0. Because T (V ) is precompact in C(M), by Theorem 10 it is bounded and
equicontinuous. Then there is some δ > 0 such that if Tf ∈ T (V ) and ρ(x, y) < δ
then |(Tf)(x)− (Tf)(y)| < ϵ. M is compact, so there are x1, . . . , xn ∈M such
that M =

⋃n
j=1Bδ(xj). It is a fact that there is a partition of unity that

is subordinate to this open covering of M : there are continuous functions
ϕ1, . . . , ϕn :M → [0, 1] such that if x ∈M then

∑n
j=1 ϕj(x) = 1, and ϕj(x) = 0

if x ̸∈ Bδ(xj).
16 Define Tϵ : C(M) → C(M) by

Tϵf =

n∑
j=1

(Tf)(xj)ϕj .

It is apparent that Tϵ is linear. ∥Tϵf∥ ≤
∑n

j=1 ∥T∥∥f∥ = n∥T∥∥f∥, so ∥Te∥ ≤
n∥T∥. And the image of Tϵ is contained in the span of {ϕ1, . . . , ϕn}. Therefore
Tϵ ∈ B00(C(M)).

15John B. Conway, A Course in Functional Analysis, second ed., p. 176, Theorem 3.11.
16John B. Conway, Functional Analysis, second ed., p. 139, Theorem 6.5.

11



If f ∈ V and x ∈ M , then for each j either x ∈ Bδ(xj), in which case
|(Tf)(x)− (Tf)(xj)| < ϵ, or x ̸∈ Bδ(xj), in which case ϕj(x) = 0. This gives us

|((Tf)(x)− (Tϵf)(x)| =

∣∣∣∣∣∣(Tf)(x) ·
n∑

j=1

ϕj(x)−
n∑

j=1

(Tf)(xj)ϕj(x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

((Tf)(x)− (Tf)(xj))ϕj(x)

∣∣∣∣∣∣
≤

n∑
j=1

|(Tf)(x)− (Tf)(xj)|ϕj(x)

<

n∑
j=1

ϵϕj(x)

= ϵ,

showing that ∥Tf−Tϵf∥ < ϵ, and as this is true for all f ∈ V we get ∥T −Tϵ∥ <
ϵ.
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