Convolution semigroups, canonical processes, and
Brownian motion

Jordan Bell
June 16, 2015

1 Convolution semigroups, projective families,
and canonical processes

Let
E =R?
and let & = %pa, the Borel g-algebra of R?, and let #(F) be the collection

of Borel probability measures on R%. With the narrow topology, #(FE) is a
Polish space. For a nonempty set J, we write

&' =&,

teJ

the product o-algebra.

Let A: Ex E — E be A(z1,22) = x1 + 2. For v1,v9 € P(F), the
convolution of v; and v; is the pushforward of the product measure vy X vy
by A:

V1 * Vg = A*(I/l X VQ).
The convolution v; * v is an element of Z(E).

Let
I =R5.

A convolution semigroup is a family (v4)icr of elements of &(F) such that
for s,t € I,
Vgyt = Vg * Vy.

From this, it turns out that ug = dg. A convolution semigroup is called con-
tinuous when the map t — 14 is continuous I — Z(FE).
For v € Z(F) and x € E, and for B € &,

(vxd,)(B) = /E (/E 1p(x1 + xg)d51($1)> dv(zo) = v(B — ),

and we define v* € Z(E) by

V¥ =v*0,.



For v € Z(F) and for a Borel measurable function f : E — [0, o], write

Vf:/Efdu.

For x € E, using the change of variables formula! and Fubini’s theorem,
Vo f = / fd(v = 6y)
E
= / f o Ad(V X 69{;)
ExXE

:/E(/E f(x1+x2)d5x(9€2)> dv(z1)

- /E flar + 2)dv(a).

That is, for v € Z(E), for f : E — [0, 00] Borel measurable, and for = € F,

vii= [ far = [ gt piviy). 1)
E E
For nonempty subsets J and K of I with J C K, let
TK,J : EK — EJ

be the projection map. Let £ = £ (I) be the collection of finite nonempty
subsets of I. Let (Q, %, P, (X¢)ier) be a stochastic process with state space E.
For J € J¢', with elements t; < ... < t,, we define

X=Xy, @ 0 Xy,

which is measurable # — &7. The joint distribution P; of the family of
random variables (X¢):cs is the distribution of X, i.e.

P;=X;,.P.

The family of finite-dimensional distributions of X is the family (Py) je .
For J,K € # with J C K,

Xy =mk,jo Xk,

from which
(7x,7)«Px = Pj. (2)

Forgetting the stochastic process X, a family of probability measures Py on &,
for J € J, is called a projective family when (2) is true. The Kolmogorov

LCharalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 484, Theorem 13.46.



extension theorem tells us that if (Py)jec.x is a projective family, then there
is a unique probability measure P; on &’ such that for any J € %,

(7T]”])*PI :PJ. (3)
Then for Q = B and .F = &1, (Q,.%, P) is a probability space, and for t € I
we define X; : Q — FE by

Xi(w) = 71,13 (w) = w(1), (4)

which is measurable % — &, and thus the family (X;):cs is a stochastic process
with state space E. For J € JZ it is immediate that

Xy =717
For B € &7, applying (3) gives
(Xy.Pr)(B) = ((71,0)«Pr)(B) = P;(B),

which means that X;,P; = Pj, namely, (Pj)jex is the family of finite-
dimensional distributions of the stochastic process (X;):er. We call the stochas-
tic process (4) the canonical process associated with the projective fam-
ily (Py)yex-

Let (v4¢)ter be a convolution semigroup and let u € £ (E). For J € ¢, with
elements t; < ... < t,, and for B € &, define

:/E/E“‘/ElB(xl"‘"x”)dyfnttln—l(xn)"‘delo(xl)du(xo). (5)

We say that (Py)jc.r is the family of measures induced by the convo-
lution semigroup (vt)icr. It is proved that (Py)jex is a projective family.
Therefore, from the Kolmogorov extension theorem it follows that there is a
unique probability measure P* on &7 such that

(7TI7J)*PH = PJ. (6)

For Q = Ef and .7 = &7, (Q,.%#, P*) is a probability space. For t € I define
X;:Q— E by

Xi(w) = 770 (w) = w(t).
(X4t)ter is a stochastic processes whose family of finite-dimensional distributions
is (Pj)jex, ie. for J € J# with elements t; < --- < t,, and for B € &7,

(X, @@ Xy ) P*)(B)

/ / (@1, @)V () v (@) dulo).

Applying this with p = 6, yields

(X, ® - ®Xy,) / /13 T1,y.., X )dufn”_zn (xp) - dvf (1),



and thus, for any p € Z(E),

/ / . / 1p(z1,. .. 7xn)d1/f:jt1n_1(xn) dvf (z1)dp(x)
EJE E
:/ (X1, ® -+ @ Xy, ). P*) (B)dp(x).
E
That is, for y € Z(E), for J € #, and B € &7,

(X,.PH)(B) = /E (X7, P™)(B)du(z). (7)

For Je ', Ayc &fort € J,and A= [[,.; A theI\(,EeﬁZ@M, namely
Ais a cylinder set, let B =m; j(A) =[[,c, At € &7,

X7 (B) =7;5(B) = 4,
s0 by (7),
Pra) = [ P (o) (®)

Because this is true for all cylinder sets in the product o-algebra &7 and &7 is
generated by the collection of cylinder sets, (8) is true for all A € Z.
Let J € %, with elements t; < --- < t,,, and let g, : E"t1 — E™ be

on(To, 1, 2n) = (o + 21,20 + 21 + T2, ..., To + 21+ T2+ -+ Tp).

For B € &™ using (1) we obtain by induction

/// 1B(Jc1,...,mn_l,xn)dyi:‘jtlnil(xn)...d,/ir)(xl)dﬂ(xo)

EJE E

/// 1p(T1, . 1, T+ Tp1)dve, ¢, (Tn) - - - dVE° (1) dp(0)
EJE E

/ / - / 1 oopdvy, —¢, ,(xn) - dvy (z1)dp(zo).
EJE E
Thus, with P; the probability measure on &7 defined in (5),
/ 1pdP; = P;(B) = / / - / 1 oondyy, —¢, _,(Xy) - dvg (z1)dp(zo).
EJ EJE E

For f : E™ — [0,00] a Borel measurable function, there is a sequence of mea-
surable simple functions pointwise increasing to f, and applying the monotone
convergence theorem yields

/E" fdPJ=/E/E.../Efoo'ndytn_tnil(xn)...dytl(xl)d'u(ino). ©
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2 Increments

Let (92,.%, P,(X¢t)tcr) be a stochastic process with state space E. X is said to
have stationary increments if there is a family (4):cr of probability measures
on & such that for all s,t € I with s <t,

P(X,— X)) =v_s.

In particular, for s = ¢ this implies that P, (0) = vy, hence vy = Jp.
A stochastic process is said to have independent increments if for any
J € &, with elements 0 = tg < t; < --- < t,,, the random variables

Xtov th _Xto7 "'ath _th_l

are independent.

We now prove that the canonical process associated with the projective
family of probability measures induced by a convolution semigroup and any
initial distribution has stationary and independent increments.?

Theorem 1. Let (4):cr be a convolution semigroup, let (Py) jc.# be the family
of measures induced by this convolution semigroup, let u € Z(E), and let
(Q,.7,P" (X¢)ier), @ = ET and .# = &1, be the associated canonical process.
X has stationary increments,

(Xt—Xs)*P# = Vt—s, Sgt, (10)
and has independent increments.

Proof. vy = b, so (10) is immediate when s = ¢t. When s < t, let
Y=X,0X;= X{s,t} =TI {s,t}s

which is measurable .# — &® &, and let ¢ : E x E — E be (z1,22) — z3 — 271,
which is continuous and hence Borel measurable. Then ¢ o Y is measurable
F — &, and for B € &,
(qoY) " (B)={weQ:(¢goY)w) € B}

={weN: X;(w) — X;(w) € B}

= (X: — X)7H(B),
and thus

(qoY).P" = (X, — X,). P". (11)

Now, according to (6),

YiP* = (71 45,00)+P" = Pty

2Heinz Bauer, Probability Theory, p. 321, Theorem 37.2.



Therefore, using that zo — xz1 € B if and only if zo € x1 + B and also using
Vfis(xl + B) = Vt,S(B),

(Xt — XS)*P”(B) = (q o Y)*P”(B)
=Y.P"(q 71(3))
Py, (a H(B))

/ / / iy (1, @) A () dv? (@1 ) ()
- /E /E /E Lot p(@2)dvi (w2)dv? (1) dp ()
() [ [ avranauta)

= vu(B) [ v2(E)du(a)

= v(B) [ duta)
= Vt—s(B)a

which shows that
(Xt - Xs)*P“ = Vt—s,

and thus that X has stationary increments.
Let 0 =tp < t1 < -+ < tp, let J = {to,t1,...,tn} € A, write X;_, = 0,
and let

YOZXto_thu Yl:th_Xtm R YTL:th_th—l'

For the random variables Yj,...,Y,, to be independent means for their joint
distribution to be equal to the product of the distributions of each, i.e. to prove
that X has independent increments, writing

Z=Yy® - @Y,=7,0(X, ®---®Xy,) =Tn0Xj=Tp0myJ,
with 7, : E»*! — E™ defined by
Tn(Zo, X1y oy Tn) = (To, T1 — T0y -+, Ty — Tp—1),

we have to prove that
n
o H Y; P
j=0

To prove this, it suffices (because the collection of cylinder sets generates the
product o-algebra) to prove that for any Aqg, ..., A, € & and for A = H?:o Aj e
é«m-&-l

3
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i.e. that

n

(Z.P)(4) = [[(¥;. P*)(A).

=0

We now prove this. Using the change of variables theorem and (6),

(Z.P")(A) = / 14d(Z, P")

En+1

:/ 1AOZdP“
Q

:/1AOTnO(XtO®"'®th)dPH
Q
:/ lAOTnd(XJ*P#)

EJ

:/ lA OTndPJ.
EJ

Then applying (9) with f =14 o7,
/ 1A o TndPJ
EJ
[ [ [ 1aomo g, i, w) - dv o))
EJE E
:/ / cee / la(z—y +xo, 21, ..y Tp)dvy, —t, o (Tn) « - - dvgy (zo)dp(z—1)
EJE E

:/E/E---/EIAU(J:_l+170)1A1($1)"'1An($n)

dvi, —t,_, (Tn) -+ dvgy (zo)dp(w 1)

~TTms)) [ [ Laglos + ao)ivn ao)duo-)
i EJE
and because tg = 0 and vy = dy,

[ tastoms + snddvgeorduta—) = [ [ 1ay(os + mo)dSo(an)duto—)
EJE

EJE

and therefore

(Z.P")(A) = (o) - T 1,0, (A)).

But we have already proved that (10), which tells us that for each j,
SG*P# = (th - th—l)*P# =Vtj—t; 1



and thus
(Z,P*)(A) = pu(Ao) - H (Y5, P*)(

But Yy, P* = X, P* and from (7) we have
(X0, P)(Ao) = [ (o, P)(Ao)due) = [ (mo. %) (o)),
E E
and, from (5),

(0. PP=)(Ao) = [E /E 14, (20)d (o) b (1)

_ /E [E 14, (20)d8, (0) A, ()

E
= 1A0 (1‘)7
thus
(¥0.P)do) = [ Lay(@)dn(a) = (o).
Therefore

n

(2.P")(A) = (X0.P")(Ao) - [ [ (V5. P")(4;) = [T (V5 P")(A;)
j=0

j=1

which completes the proof that X has independent increments. O

3 The Brownian convolution semigroup and Brow-
nian motion

For a € Rand o > 0, let v, ,2 be the Gaussian measure on R, the probability
measure on R whose density with respect to Lebesgue measure is

V2mo? 202
For o =0, let
Ya,0 = 611
Define for t € I,
d
vy = H Y0,t5
k=1



which is an element of Z(E). For s,t € I, we calculate

d d d d
Vs * [t = (H ’Yo,s> * <H ’Yo,t) = H(’Yo,s *Y0,t) = H V0,54t = Vs+ts
k=1 k=1 k=1

k=1

showing that (1¢)icr is a convolution semigroup. It is proved using Lévy’s
continuity theorem that ¢ — v; is continuous I — Z(FE), showing that (v¢)iecr
is a continuous convolution semigroup.

We first prove a lemma (which is made explicit in Isserlis’s theorem) about
the moments of random variables with Gaussian distributions.?

Lemma 2. If Z : Q) — FE is a random variable with Gaussian distribution v,
7 > 0, then for each n there is some C,, > 0 such that

E(|Z]") = Cp1™.
In particular, Co = d and Cy = d(d + 2).

Proof. That Z has distribution v, means that

d
Z.P=v, = nyO)T.
j=1

Write Z = Z; ® --- ® Z4, each of which has distribution vy, and Z,P =
H?Zl Z;, P, which means that Zi,...,Z; independent. Let U; = 7*1/2Z]— for
J=1,...,d, and then Uy,...,U; are independent random variables each with
distribution vp;. Then using the multinomial formula,

E(ZP")=E(Z; +---+ Z3)")
=7"-BE((U+---+UH")

d d
2 X
2 2%k, 2 2 2 2
. E u>|=r- EU:) =71°- 1=d
T . Z_kl!-"kd! H i T Z U5) =7 Z T
1+t ha=2 1<i<d j=1 i=1
showing that Cy = d. O

3Heinz Bauer, Probability Theory, p. 341, Lemma 40.2.



A stochastic process (Q2,.%, P, (X¢)ier) with state space F is called a d-
dimensional Brownian motion when:

1. For s <,
(Xt - Xs)*P = Vi—s,

and thus X has stationary increments.
2. X has independent increments.
3. For almost all w € Q, the path ¢ — X;(w) is continuous I — E.

We call Xg, P the initial distribution of the Brownian motion. When Xy, P =
0, for some z € E, we say that x is the starting point of the Brownian
motion. We now prove that for any Borel probability measure on &, in partic-
ular J,, there is a d-dimensional Brownian motion which has this as its initial
distribution.*

Theorem 3 (Brownian motion). For any p € Z(E), there is a d-dimensional
Brownian motion with initial distribution .

Proof. Let (Pj) e be the family of measures induced by the Brownian con-
volution semigroup

d
Vt:H707t7 tEI,
k=1

and let (0,7, P* (X})ier), Q = Ef and .7 = &1, be the associated canonical
process. Theorem 1 tells us that X has stationary increments,
(Xt — X))o PF = vy, s <t, (12)
and has independent increments. For 7 =t — s > 0, by (12) and Lemma 2,
E(|X; — X% = d(d+2)7% = d(d + 2)|t — s|*.
Because E(|X; — X;|*) = E(0) = 0, we have that for any s,t € I,
E(|X; — X" = d(d +2)|t — s|*.

The initial distribution of X is Xo,P* = p. For « = 4,8 = 1,¢ = d(d +
2), the Kolmogorov continuity theorem tells us that there is a continuous
modification B of X. That is, there is a stochastic process (B;)ies such that
for each w € Q, the path ¢t — B;(w) is continuous I — FE, namely, B is a
continuous stochastic process, and for each t € I,

P(Xt:Bt) :1,

namely, B is a modification of X. Because B is a modification of X, B has the
same finite-dimensional distributions as X, from which it follows that B satisfies

4Heinz Bauer, Probability Theory, p. 342, Theorem 40.3.
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(12) and has independent increments. For A € &, because B is a modification
of X,
(Bo.P")(A) = PH(By € A) = P*(Xg € A) = (Xo.P")(A),

thus By, P* = Xy, P* = p, namely, B has initial distribution pu. Therefore, B
is a Brownian motion (indeed, all the paths of B are continuous, not merely
almost all of them) that has initial distribution u, proving the claim. O

For u € Z#(E), let (Q, %, P*,(By)er) be the d-dimensional Brownian mo-
tion with initial distribution g constructed in Theorem 3; we are not merely
speaking about some d-dimensional Brownian motion but about this construc-
tion, for which Q = E’, all whose paths are continuous rather than merely
almost all whose paths are continuous. For a measurable space (A, «7) and topo-
logical spaces X and Y, a function f : X x A — Y is called a Carathéodory
function if for each € X, the map a — f(x,a) is measurable & — By,
and for each a € A, the map x — f(z,a) is continuous X — Y. It is a fact®
that if X is a separable metrizable space and Y is a metrizable space, then any
Carathéodory function f : X x A — Y is measurable Bx ® &/ — Ay, namely it
is jointly measurable. B : [ x ) — E is a Carathéodory function. I = R>,
with the subspace topology inherited from R, is a separable metrizable space,
and E = R¢ is a metrizable space, and therefore the d-dimensional Brownian
motion B is jointly measurable.

The Kolmogorov-Chentsov theorem says that if a stochastic process
(X4)ter with state space E satisfies, for «, 8,¢ > 0,

E(|Xs — Xs|%) < ¢t —s|'P,  stel,

and almost every path of X is continuous, then for almost every w € €, for
every 0 < v < g the map ¢ — X;(w) is locally v-Hélder continuous: for
each ty € I there is some 0 < ¢, < 1 and some C}, such that

| Xt (w) — Xs(w)] < Cy, |t — s]7, |s —to| < €1y, |t — to] < €4q-

For p € Z(E), let (Q,.F, P*,(Bt)iecr) be the d-dimensional Brownian motion
with initial distribution p formed in Theorem 3. For s < t, (B;— Bs). P* = v4_s,
and thus Lemma 2 tells us that for each n > 1 there is some C,, with which
E(|B; — B|*™) = C,,(t — s)" for all s < t. Then E(|B; — Bs|*") < Cy|t — s|®
for all s,t € I. For n > 1 and for a,, = 2n and 3, = n — 1,

By n—1 1 1

an 2n 2 2n’
and for n > 2, take some 5”—: <Y < g—" Let N,, be the set of those w € () for
which ¢ — Byi(w) is not locally 7,-Hélder continuous. Then the Kolmogorov-

Chentsov theorem yields P#(N,) = 0. Let N = |, <, Ny, which is a P*-null

n>2

5Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 153, Lemma 4.51.
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set. For w € Q\N and for any 0 < v < %, there is some 7, satisfying v < ~,, < %,
and hence the map t — Bi(w) is locally v,-Holder continuous, which implies
that this map is locally y-Holder continuous. We summarize what we have just
said in the following theorem.

Theorem 4. Let p € Z(E) and let (Q,.#, P*,(Bt)ter) be the d-dimensional
Brownian motion with initial distribution p formed in Theorem 3. For almost
all w e Q, for all 0 < v < %, the map t — By(w) is locally v-Holder continuous.

4 Lévy processes

A stochastic process (X;)ses with state space E is called a Lévy processS if (i)
Xo = 0 almost surely, (ii) X has stationary and independent increments, and
(iii) for any a > 0,

lim P(|X¢| > €) = 0.

L0

Because Xy = 0 almost surely and X has stationary increments, (iii) yields for
any t € I,
lin%P(\Xsts| >¢€) =0. (13)
s—

In any case, (13) is sufficient for (iii) to be true. Moreover, (iii) means that X, —
X; in the topology of convergence in probability as s — ¢, and if Xy — X,
almost surely then X, — X; in the topology of convergence in probability; this
is proved using Egorov’s theorem. Thus, a d-dimensioan]l Brownian motion with
starting point 0 is a Lévy process; we do not merely assert that the Brownian
motion formed in Theorem 3 is a Lévy process. There is much that can be
said generally about Lévy processes, and thus the fact that any d-dimensional
Brownian motion with starting point 0 is a Lévy process lets us work in a more
general setting in which some results may be more naturally proved: if we work
merely with a Lévy process we know less about the process and thus have less
open moves.

6See David Applebaum, Lévy Processes and Stochastic Calculus, p. 39, §1.3.
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