Convolution semigroups, canonical processes, and Brownian motion

Jordan Bell

June 16, 2015

1 Convolution semigroups, projective families, and canonical processes

Let

$$
E=\mathbb{R}^{d}
$$

and let $\mathscr{E}=\mathscr{B}_{\mathbb{R}^{d}}$, the Borel σ-algebra of \mathbb{R}^{d}, and let $\mathscr{P}(E)$ be the collection of Borel probability measures on \mathbb{R}^{d}. With the narrow topology, $\mathscr{P}(E)$ is a Polish space. For a nonempty set J, we write

$$
\mathscr{E}^{J}=\bigotimes_{t \in J} \mathscr{E}
$$

the product σ-algebra.
Let $A: E \times E \rightarrow E$ be $A\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$. For $\nu_{1}, \nu_{2} \in \mathscr{P}(E)$, the convolution of ν_{1} and ν_{2} is the pushforward of the product measure $\nu_{1} \times \nu_{2}$ by A :

$$
\nu_{1} * \nu_{2}=A_{*}\left(\nu_{1} \times \nu_{2}\right) .
$$

The convolution $\nu_{1} * \nu_{2}$ is an element of $\mathscr{P}(E)$.
Let

$$
I=\mathbb{R}_{\geq 0}
$$

A convolution semigroup is a family $\left(\nu_{t}\right)_{t \in I}$ of elements of $\mathscr{P}(E)$ such that for $s, t \in I$,

$$
\nu_{s+t}=\nu_{s} * \nu_{t}
$$

From this, it turns out that $\mu_{0}=\delta_{0}$. A convolution semigroup is called continuous when the map $t \mapsto \nu_{t}$ is continuous $I \rightarrow \mathscr{P}(E)$.

For $\nu \in \mathscr{P}(E)$ and $x \in E$, and for $B \in \mathscr{E}$,

$$
\left(\nu * \delta_{x}\right)(B)=\int_{E}\left(\int_{E} 1_{B}\left(x_{1}+x_{2}\right) d \delta_{x}\left(x_{1}\right)\right) d \nu\left(x_{2}\right)=\nu(B-x),
$$

and we define $\nu^{x} \in \mathscr{P}(E)$ by

$$
\nu^{x}=\nu * \delta_{x} .
$$

For $\nu \in \mathscr{P}(E)$ and for a Borel measurable function $f: E \rightarrow[0, \infty]$, write

$$
\nu f=\int_{E} f d \mu .
$$

For $x \in E$, using the change of variables formula ${ }^{1}$ and Fubini's theorem,

$$
\begin{aligned}
\nu^{x} f & =\int_{E} f d\left(\nu * \delta_{x}\right) \\
& =\int_{E \times E} f \circ \operatorname{Ad}\left(\nu \times \delta_{x}\right) \\
& =\int_{E}\left(\int_{E} f\left(x_{1}+x_{2}\right) d \delta_{x}\left(x_{2}\right)\right) d \nu\left(x_{1}\right) \\
& =\int_{E} f\left(x_{1}+x\right) d \nu\left(x_{1}\right) .
\end{aligned}
$$

That is, for $\nu \in \mathscr{P}(E)$, for $f: E \rightarrow[0, \infty]$ Borel measurable, and for $x \in E$,

$$
\begin{equation*}
\nu^{x} f=\int_{E} f d \nu^{x}=\int_{E} f(x+y) d \nu(y) \tag{1}
\end{equation*}
$$

For nonempty subsets J and K of I with $J \subset K$, let

$$
\pi_{K, J}: E^{K} \rightarrow E^{J}
$$

be the projection map. Let $\mathscr{K}=\mathscr{K}(I)$ be the collection of finite nonempty subsets of I. Let $\left(\Omega, \mathscr{F}, P,\left(X_{t}\right)_{t \in I}\right)$ be a stochastic process with state space E. For $J \in \mathscr{K}$, with elements $t_{1}<\ldots<t_{n}$, we define

$$
X_{J}=X_{t_{1}} \otimes \cdots \otimes X_{t_{n}}
$$

which is measurable $\mathscr{F} \rightarrow \mathscr{E}^{J}$. The joint distribution P_{J} of the family of random variables $\left(X_{t}\right)_{t \in J}$ is the distribution of X_{J}, i.e.

$$
P_{J}=X_{J *} P
$$

The family of finite-dimensional distributions of X is the family $\left(P_{J}\right)_{J \in \mathscr{K}}$. For $J, K \in \mathscr{K}$ with $J \subset K$,

$$
X_{J}=\pi_{K, J} \circ X_{K}
$$

from which

$$
\begin{equation*}
\left(\pi_{K, J}\right)_{*} P_{K}=P_{J} . \tag{2}
\end{equation*}
$$

Forgetting the stochastic process X, a family of probability measures P_{J} on \mathscr{E}^{J}, for $J \in \mathscr{K}$, is called a projective family when (2) is true. The Kolmogorov

[^0]extension theorem tells us that if $\left(P_{J}\right)_{J \in \mathscr{K}}$ is a projective family, then there is a unique probability measure P_{I} on \mathscr{E}^{I} such that for any $J \in \mathscr{K}$,
\[

$$
\begin{equation*}
\left(\pi_{I, J}\right)_{*} P_{I}=P_{J} \tag{3}
\end{equation*}
$$

\]

Then for $\Omega=E^{I}$ and $\mathscr{F}=\mathscr{E}^{I},\left(\Omega, \mathscr{F}, P_{I}\right)$ is a probability space, and for $t \in I$ we define $X_{t}: \Omega \rightarrow E$ by

$$
\begin{equation*}
X_{t}(\omega)=\pi_{I,\{t\}}(\omega)=\omega(t), \tag{4}
\end{equation*}
$$

which is measurable $\mathscr{F} \rightarrow \mathscr{E}$, and thus the family $\left(X_{t}\right)_{t \in I}$ is a stochastic process with state space E. For $J \in \mathscr{K}$ it is immediate that

$$
X_{J}=\pi_{I, J}
$$

For $B \in \mathscr{E}^{J}$, applying (3) gives

$$
\left(X_{J *} P_{I}\right)(B)=\left(\left(\pi_{I, J}\right)_{*} P_{I}\right)(B)=P_{J}(B),
$$

which means that $X_{J *} P_{I}=P_{J}$, namely, $\left(P_{J}\right)_{J \in \mathscr{K}}$ is the family of finitedimensional distributions of the stochastic process $\left(X_{t}\right)_{t \in I}$. We call the stochastic process (4) the canonical process associated with the projective family $\left(P_{J}\right)_{J \in \mathscr{K}}$.

Let $\left(\nu_{t}\right)_{t \in I}$ be a convolution semigroup and let $\mu \in \mathscr{P}(E)$. For $J \in \mathscr{K}$, with elements $t_{1}<\ldots<t_{n}$, and for $B \in \mathscr{E}^{J}$, define

$$
\begin{align*}
& P_{J}(B) \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n}\right) d \nu_{t_{n}-t_{n-1}}^{x_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) . \tag{5}
\end{align*}
$$

We say that $\left(P_{J}\right)_{J \in \mathscr{K}}$ is the family of measures induced by the convolution semigroup $\left(\nu_{t}\right)_{t \in I}$. It is proved that $\left(P_{J}\right)_{J \in \mathscr{K}}$ is a projective family. Therefore, from the Kolmogorov extension theorem it follows that there is a unique probability measure P^{μ} on \mathscr{E}^{I} such that

$$
\begin{equation*}
\left(\pi_{I, J}\right)_{*} P^{\mu}=P_{J} . \tag{6}
\end{equation*}
$$

For $\Omega=E^{I}$ and $\mathscr{F}=\mathscr{E}^{I},\left(\Omega, \mathscr{F}, P^{\mu}\right)$ is a probability space. For $t \in I$ define $X_{t}: \Omega \rightarrow E$ by

$$
X_{t}(\omega)=\pi_{I,\{t\}}(\omega)=\omega(t)
$$

$\left(X_{t}\right)_{t \in I}$ is a stochastic processes whose family of finite-dimensional distributions is $\left(P_{J}\right)_{J \in \mathscr{K}}$, i.e. for $J \in \mathscr{K}$ with elements $t_{1}<\cdots<t_{n}$ and for $B \in \mathscr{E} J$,

$$
\begin{aligned}
& \left(\left(X_{t_{1}} \otimes \cdots \otimes X_{t_{n}}\right)_{*} P^{\mu}\right)(B) \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n}\right) d \nu_{t_{n}-t_{n-1}}^{x_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) .
\end{aligned}
$$

Applying this with $\mu=\delta_{x}$ yields
$\left(\left(X_{t_{1}} \otimes \cdots \otimes X_{t_{n}}\right)_{*} P^{\delta_{x}}\right)(B)=\int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n}\right) d \nu_{t_{n}-t_{n-1}}^{x_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x}\left(x_{1}\right)$,
and thus, for any $\mu \in \mathscr{P}(E)$,

$$
\begin{aligned}
& \int_{E} \int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n}\right) d \nu_{t_{n}-t_{n-1}}^{x_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x}\left(x_{1}\right) d \mu(x) \\
= & \int_{E}\left(\left(X_{t_{1}} \otimes \cdots \otimes X_{t_{n}}\right)_{*} P^{\delta_{x}}\right)(B) d \mu(x) .
\end{aligned}
$$

That is, for $\mu \in \mathscr{P}(E)$, for $J \in \mathscr{K}$, and $B \in \mathscr{E}^{J}$,

$$
\begin{equation*}
\left(X_{J_{*}} P^{\mu}\right)(B)=\int_{E}\left(X_{J_{*}} P^{\delta_{x}}\right)(B) d \mu(x) \tag{7}
\end{equation*}
$$

For $J \in \mathscr{K}, A_{t} \in \mathscr{E}$ for $t \in J$, and $A=\prod_{t \in J} A_{t} \times \prod_{t \in I \backslash J} E \in \mathscr{F}=\mathscr{E}^{I}$, namely A is a cylinder set, let $B=\pi_{I, J}(A)=\prod_{t \in J} A_{t} \in \mathscr{E}^{J}$,

$$
X_{J}^{-1}(B)=\pi_{I, J}^{-1}(B)=A
$$

so by (7),

$$
\begin{equation*}
P^{\mu}(A)=\int_{E} P^{\delta_{x}}(A) d \mu(x) \tag{8}
\end{equation*}
$$

Because this is true for all cylinder sets in the product σ-algebra \mathscr{E}^{I} and \mathscr{E}^{I} is generated by the collection of cylinder sets, (8) is true for all $A \in \mathscr{F}$.

Let $J \in \mathscr{K}$, with elements $t_{1}<\cdots<t_{n}$, and let $\sigma_{n}: E^{n+1} \rightarrow E^{n}$ be

$$
\sigma_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(x_{0}+x_{1}, x_{0}+x_{1}+x_{2}, \ldots, x_{0}+x_{1}+x_{2}+\cdots+x_{n}\right)
$$

For $B \in \mathscr{E}^{n}$ using (1) we obtain by induction

$$
\begin{aligned}
& \int_{E} \int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) d \nu_{t_{n}-t_{n-1}}^{x_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{B}\left(x_{1}, \ldots, x_{n-1}, x_{n}+x_{n-1}\right) d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}^{x_{0}}\left(x_{1}\right) d \mu\left(x_{0}\right) \\
= & \cdots \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{B} \circ \sigma_{n} d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}\left(x_{1}\right) d \mu\left(x_{0}\right) .
\end{aligned}
$$

Thus, with P_{J} the probability measure on \mathscr{E}^{J} defined in (5),

$$
\int_{E^{J}} 1_{B} d P_{J}=P_{J}(B)=\int_{E} \int_{E} \cdots \int_{E} 1_{B} \circ \sigma_{n} d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}\left(x_{1}\right) d \mu\left(x_{0}\right) .
$$

For $f: E^{n} \rightarrow[0, \infty]$ a Borel measurable function, there is a sequence of measurable simple functions pointwise increasing to f, and applying the monotone convergence theorem yields

$$
\begin{equation*}
\int_{E^{n}} f d P_{J}=\int_{E} \int_{E} \cdots \int_{E} f \circ \sigma_{n} d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{1}}\left(x_{1}\right) d \mu\left(x_{0}\right) . \tag{9}
\end{equation*}
$$

2 Increments

Let $\left(\Omega, \mathscr{F}, P,\left(X_{t}\right)_{t \in I}\right)$ be a stochastic process with state space $E . X$ is said to have stationary increments if there is a family $\left(\nu_{t}\right)_{t \in I}$ of probability measures on \mathscr{E} such that for all $s, t \in I$ with $s \leq t$,

$$
P_{*}\left(X_{t}-X_{s}\right)=\nu_{t-s} .
$$

In particular, for $s=t$ this implies that $P_{*}(0)=\nu_{0}$, hence $\nu_{0}=\delta_{0}$.
A stochastic process is said to have independent increments if for any $J \in \mathscr{K}$, with elements $0=t_{0}<t_{1}<\cdots<t_{n}$, the random variables

$$
X_{t_{0}}, \quad X_{t_{1}}-X_{t_{0}}, \quad \ldots, X_{t_{n}}-X_{t_{n-1}}
$$

are independent.
We now prove that the canonical process associated with the projective family of probability measures induced by a convolution semigroup and any initial distribution has stationary and independent increments. ${ }^{2}$

Theorem 1. Let $\left(\nu_{t}\right)_{t \in I}$ be a convolution semigroup, let $\left(P_{J}\right)_{J \in \mathscr{K}}$ be the family of measures induced by this convolution semigroup, let $\mu \in \mathscr{P}(E)$, and let $\left(\Omega, \mathscr{F}, P^{\mu},\left(X_{t}\right)_{t \in I}\right), \Omega=E^{I}$ and $\mathscr{F}=\mathscr{E}^{I}$, be the associated canonical process. X has stationary increments,

$$
\begin{equation*}
\left(X_{t}-X_{s}\right)_{*} P^{\mu}=\nu_{t-s}, \quad s \leq t, \tag{10}
\end{equation*}
$$

and has independent increments.
Proof. $\nu_{0}=\delta_{0}$, so (10) is immediate when $s=t$. When $s<t$, let

$$
Y=X_{s} \otimes X_{t}=X_{\{s, t\}}=\pi_{I,\{s, t\}},
$$

which is measurable $\mathscr{F} \rightarrow \mathscr{E} \otimes \mathscr{E}$, and let $q: E \times E \rightarrow E$ be $\left(x_{1}, x_{2}\right) \mapsto x_{2}-x_{1}$, which is continuous and hence Borel measurable. Then $q \circ Y$ is measurable $\mathscr{F} \rightarrow \mathscr{E}$, and for $B \in \mathscr{E}$,

$$
\begin{aligned}
(q \circ Y)^{-1}(B) & =\{\omega \in \Omega:(q \circ Y)(\omega) \in B\} \\
& =\left\{\omega \in \Omega: X_{t}(\omega)-X_{s}(\omega) \in B\right\} \\
& =\left(X_{t}-X_{s}\right)^{-1}(B),
\end{aligned}
$$

and thus

$$
\begin{equation*}
(q \circ Y)_{*} P^{\mu}=\left(X_{t}-X_{s}\right)_{*} P^{\mu} . \tag{11}
\end{equation*}
$$

Now, according to (6),

$$
Y_{*} P^{\mu}=\left(\pi_{I,\{s, t\}}\right)_{*} P^{\mu}=P_{\{s, t\}} .
$$

[^1]Therefore, using that $x_{2}-x_{1} \in B$ if and only if $x_{2} \in x_{1}+B$ and also using $\nu_{t-s}^{x_{1}}\left(x_{1}+B\right)=\nu_{t-s}(B)$,

$$
\begin{aligned}
\left(X_{t}-X_{s}\right)_{*} P^{\mu}(B) & =(q \circ Y)_{*} P^{\mu}(B) \\
& =Y_{*} P^{\mu}\left(q^{-1}(B)\right) \\
& =P_{\{s, t\}_{*}}\left(q^{-1}(B)\right) \\
& =\int_{E} \int_{E} \int_{E} 1_{q^{-1}(B)}\left(x_{1}, x_{2}\right) d \nu_{t-s}^{x_{1}}\left(x_{2}\right) d \nu_{s}^{x}\left(x_{1}\right) d \mu(x) \\
& =\int_{E} \int_{E} \int_{E} 1_{x_{1}+B}\left(x_{2}\right) d \nu_{t-s}^{x_{1}}\left(x_{2}\right) d \nu_{s}^{x}\left(x_{1}\right) d \mu(x) \\
& =\nu_{t-s}(B) \int_{E} \int_{E} d \nu_{s}^{x}\left(x_{1}\right) d \mu(x) \\
& =\nu_{t-s}(B) \int_{E} \nu_{s}^{x}(E) d \mu(x) \\
& =\nu_{t-s}(B) \int_{E} d \mu(x) \\
& =\nu_{t-s}(B)
\end{aligned}
$$

which shows that

$$
\left(X_{t}-X_{s}\right)_{*} P^{\mu}=\nu_{t-s}
$$

and thus that X has stationary increments.
Let $0=t_{0}<t_{1}<\cdots<t_{n}$, let $J=\left\{t_{0}, t_{1}, \ldots, t_{n}\right\} \in \mathscr{K}$, write $X_{t_{-1}}=0$, and let

$$
Y_{0}=X_{t_{0}}-X_{t_{-1}}, \quad Y_{1}=X_{t_{1}}-X_{t_{0}}, \quad \ldots, \quad Y_{n}=X_{t_{n}}-X_{t_{n-1}}
$$

For the random variables Y_{0}, \ldots, Y_{n} to be independent means for their joint distribution to be equal to the product of the distributions of each, i.e. to prove that X has independent increments, writing

$$
Z=Y_{0} \otimes \cdots \otimes Y_{n}=\tau_{n} \circ\left(X_{t_{0}} \otimes \cdots \otimes X_{t_{n}}\right)=\tau_{n} \circ X_{J}=\tau_{n} \circ \pi_{I, J}
$$

with $\tau_{n}: E^{n+1} \rightarrow E^{n}$ defined by

$$
\tau_{n}\left(x_{0}, x_{1}, \ldots, x_{n}\right)=\left(x_{0}, x_{1}-x_{0}, \ldots, x_{n}-x_{n-1}\right)
$$

we have to prove that

$$
Z_{*} P^{\mu}=\prod_{j=0}^{n} Y_{j_{*}} P^{\mu}
$$

To prove this, it suffices (because the collection of cylinder sets generates the product σ-algebra) to prove that for any $A_{0}, \ldots, A_{n} \in \mathscr{E}$ and for $A=\prod_{j=0}^{n} A_{j} \in$ \mathscr{E}^{n+1},

$$
\left(Z_{*} P^{\mu}\right)(A)=\left(\prod_{j=0}^{n} Y_{j_{*}} P^{\mu}\right)(A)
$$

i.e. that

$$
\left(Z_{*} P^{\mu}\right)(A)=\prod_{j=0}^{n}\left(Y_{j_{*}} P^{\mu}\right)\left(A_{j}\right)
$$

We now prove this. Using the change of variables theorem and (6),

$$
\begin{aligned}
\left(Z_{*} P^{\mu}\right)(A) & =\int_{E^{n+1}} 1_{A} d\left(Z_{*} P^{\mu}\right) \\
& =\int_{\Omega} 1_{A} \circ Z d P^{\mu} \\
& =\int_{\Omega} 1_{A} \circ \tau_{n} \circ\left(X_{t_{0}} \otimes \cdots \otimes X_{t_{n}}\right) d P^{\mu} \\
& =\int_{E^{J}} 1_{A} \circ \tau_{n} d\left(X_{J *} P^{\mu}\right) \\
& =\int_{E^{J}} 1_{A} \circ \tau_{n} d P_{J}
\end{aligned}
$$

Then applying (9) with $f=1_{A} \circ \tau_{n}$,

$$
\begin{aligned}
& \int_{E^{J}} 1_{A} \circ \tau_{n} d P_{J} \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{A} \circ \tau_{n} \circ \sigma_{n+1} d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{0}}\left(x_{0}\right) d \mu\left(x_{-1}\right) \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{A}\left(x_{-1}+x_{0}, x_{1}, \ldots, x_{n}\right) d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{0}}\left(x_{0}\right) d \mu\left(x_{-1}\right) \\
= & \int_{E} \int_{E} \cdots \int_{E} 1_{A_{0}}\left(x_{-1}+x_{0}\right) 1_{A_{1}}\left(x_{1}\right) \cdots 1_{A_{n}}\left(x_{n}\right) \\
& d \nu_{t_{n}-t_{n-1}}\left(x_{n}\right) \cdots d \nu_{t_{0}}\left(x_{0}\right) d \mu\left(x_{-1}\right) \\
= & \prod_{j=1}^{n} \nu_{t_{j}-t_{j-1}}\left(A_{j}\right) \int_{E} \int_{E} 1_{A_{0}}\left(x_{-1}+x_{0}\right) d \nu_{t_{0}}\left(x_{0}\right) d \mu\left(x_{-1}\right),
\end{aligned}
$$

and because $t_{0}=0$ and $\nu_{0}=\delta_{0}$,

$$
\begin{aligned}
\int_{E} \int_{E} 1_{A_{0}}\left(x_{-1}+x_{0}\right) d \nu_{t_{0}}\left(x_{0}\right) d \mu\left(x_{-1}\right) & =\int_{E} \int_{E} 1_{A_{0}}\left(x_{-1}+x_{0}\right) d \delta_{0}\left(x_{0}\right) d \mu\left(x_{-1}\right) \\
& =\int_{E} 1_{A_{0}}\left(x_{-1}\right) d \mu\left(x_{-1}\right) \\
& =\mu\left(A_{0}\right)
\end{aligned}
$$

and therefore

$$
\left(Z_{*} P^{\mu}\right)(A)=\mu\left(A_{0}\right) \cdot \prod_{j=1}^{n} \nu_{t_{j}-t_{j-1}}\left(A_{j}\right) .
$$

But we have already proved that (10), which tells us that for each j,

$$
Y_{j_{*}} P^{\mu}=\left(X_{t_{j}}-X_{t_{j-1}}\right)_{*} P^{\mu}=\nu_{t_{j}-t_{j-1}}
$$

and thus

$$
\left(Z_{*} P^{\mu}\right)(A)=\mu\left(A_{0}\right) \cdot \prod_{j=1}^{n}\left(Y_{j_{*}} P^{\mu}\right)\left(A_{j}\right) .
$$

But $Y_{0 *} P^{\mu}=X_{0 *} P^{\mu}$ and from (7) we have

$$
\left(X_{0 *} P^{\mu}\right)\left(A_{0}\right)=\int_{E}\left(X_{0 *} P^{\delta_{x}}\right)\left(A_{0}\right) d \mu(x)=\int_{E}\left(\pi_{0 *} P^{\delta_{x}}\right)\left(A_{0}\right) d \mu(x),
$$

and, from (5),

$$
\begin{aligned}
\left(\pi_{0 *} P^{\delta_{x}}\right)\left(A_{0}\right) & =\int_{E} \int_{E} 1_{A_{0}}\left(x_{0}\right) d \nu_{0}^{y}\left(x_{0}\right) d \delta_{x}(y) \\
& =\int_{E} \int_{E} 1_{A_{0}}\left(x_{0}\right) d \delta_{y}\left(x_{0}\right) d \delta_{x}(y) \\
& =\int_{E} 1_{A_{0}}(y) d \delta_{x}(y) \\
& =1_{A_{0}}(x),
\end{aligned}
$$

thus

$$
\left(X_{0 *} P^{\mu}\right)\left(A_{0}\right)=\int_{E} 1_{A_{0}}(x) d \mu(x)=\mu\left(A_{0}\right) .
$$

Therefore

$$
\left(Z_{*} P^{\mu}\right)(A)=\left(X_{0 *} P^{\mu}\right)\left(A_{0}\right) \cdot \prod_{j=1}^{n}\left(Y_{j_{*}} P^{\mu}\right)\left(A_{j}\right)=\prod_{j=0}^{n}\left(Y_{j_{*}} P^{\mu}\right)\left(A_{j}\right),
$$

which completes the proof that X has independent increments.

3 The Brownian convolution semigroup and Brownian motion

For $a \in \mathbb{R}$ and $\sigma>0$, let $\gamma_{a, \sigma^{2}}$ be the Gaussian measure on \mathbb{R}, the probability measure on \mathbb{R} whose density with respect to Lebesgue measure is

$$
p\left(x, a, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right) .
$$

For $\sigma=0$, let

$$
\gamma_{a, 0}=\delta_{a} .
$$

Define for $t \in I$,

$$
\nu_{t}=\prod_{k=1}^{d} \gamma_{0, t},
$$

which is an element of $\mathscr{P}(E)$. For $s, t \in I$, we calculate

$$
\nu_{s} * \mu_{t}=\left(\prod_{k=1}^{d} \gamma_{0, s}\right) *\left(\prod_{k=1}^{d} \gamma_{0, t}\right)=\prod_{k=1}^{d}\left(\gamma_{0, s} * \gamma_{0, t}\right)=\prod_{k=1}^{d} \gamma_{0, s+t}=\nu_{s+t},
$$

showing that $\left(\nu_{t}\right)_{t \in I}$ is a convolution semigroup. It is proved using Lévy's continuity theorem that $t \mapsto \nu_{t}$ is continuous $I \rightarrow \mathscr{P}(E)$, showing that $\left(\nu_{t}\right)_{t \in I}$ is a continuous convolution semigroup.

We first prove a lemma (which is made explicit in Isserlis's theorem) about the moments of random variables with Gaussian distributions. ${ }^{3}$

Lemma 2. If $Z: \Omega \rightarrow E$ is a random variable with Gaussian distribution ν_{τ}, $\tau>0$, then for each n there is some $C_{n}>0$ such that

$$
E\left(|Z|^{2 n}\right)=C_{n} \tau^{n}
$$

In particular, $C_{2}=d$ and $C_{4}=d(d+2)$.
Proof. That Z has distribution ν_{τ} means that

$$
Z_{*} P=\nu_{\tau}=\prod_{j=1}^{d} \gamma_{0, \tau}
$$

Write $Z=Z_{1} \otimes \cdots \otimes Z_{d}$, each of which has distribution $\gamma_{0, \tau}$, and $Z_{*} P=$ $\prod_{j=1}^{d} Z_{j_{*}} P$, which means that Z_{1}, \ldots, Z_{d} independent. Let $U_{j}=\tau^{-1 / 2} Z_{j}$ for $j=1, \ldots, d$, and then U_{1}, \ldots, U_{d} are independent random variables each with distribution $\gamma_{0,1}$. Then using the multinomial formula,

$$
\begin{aligned}
E\left(|Z|^{2 n}\right) & =E\left(\left(Z_{1}^{2}+\cdots+Z_{d}^{2}\right)^{n}\right) \\
& =\tau^{n} \cdot E\left(\left(U_{1}^{2}+\cdots+U_{d}^{2}\right)^{n}\right) \\
& =\tau^{n} \cdot E\left(\sum_{k_{1}+\cdots+k_{d}=n} \frac{n!}{k_{1}!\cdots k_{d}!} \prod_{1 \leq i \leq d} U_{j}^{2 k_{i}}\right) \\
& =\tau^{n} \cdot \sum_{k_{1}+\cdots+k_{d}=n} \frac{n!}{k_{1}!\cdots k_{d}!} E\left(\prod_{1 \leq i \leq d} U_{j}^{2 k_{i}}\right) .
\end{aligned}
$$

For $n=2$, since $E\left(U_{i} U_{j}\right)=E\left(U_{i}\right) E\left(U_{j}\right)=0$ for $i \neq j$,

$$
\tau^{2} \cdot \sum_{k_{1}+\cdots+k_{d}=2} \frac{2}{k_{1}!\cdots k_{d}!} E\left(\prod_{1 \leq i \leq d} U_{i}^{2 k_{i}}\right)=\tau^{2} \cdot \sum_{j=1}^{d} E\left(U_{j}^{2}\right)=\tau^{2} \cdot \sum_{j=1}^{d} 1=d \tau^{2}
$$

showing that $C_{2}=d$.

[^2]A stochastic process $\left(\Omega, \mathscr{F}, P,\left(X_{t}\right)_{t \in I}\right)$ with state space E is called a d dimensional Brownian motion when:

1. For $s \leq t$,

$$
\left(X_{t}-X_{s}\right)_{*} P=\nu_{t-s},
$$

and thus X has stationary increments.
2. X has independent increments.
3. For almost all $\omega \in \Omega$, the path $t \mapsto X_{t}(\omega)$ is continuous $I \rightarrow E$.

We call $X_{0 *} P$ the initial distribution of the Brownian motion. When $X_{0 *} P=$ δ_{x} for some $x \in E$, we say that x is the starting point of the Brownian motion. We now prove that for any Borel probability measure on \mathscr{E}, in particular δ_{x}, there is a d-dimensional Brownian motion which has this as its initial distribution. ${ }^{4}$

Theorem 3 (Brownian motion). For any $\mu \in \mathscr{P}(E)$, there is a d-dimensional Brownian motion with initial distribution μ.

Proof. Let $\left(P_{J}\right)_{J \in \mathscr{K}}$ be the family of measures induced by the Brownian convolution semigroup

$$
\nu_{t}=\prod_{k=1}^{d} \gamma_{0, t}, \quad t \in I
$$

and let $\left(\Omega, \mathscr{F}, P^{\mu},\left(X_{t}\right)_{t \in I}\right), \Omega=E^{I}$ and $\mathscr{F}=\mathscr{E} I$, be the associated canonical process. Theorem 1 tells us that X has stationary increments,

$$
\begin{equation*}
\left(X_{t}-X_{s}\right)_{*} P^{\mu}=\nu_{t-s}, \quad s \leq t \tag{12}
\end{equation*}
$$

and has independent increments. For $\tau=t-s>0$, by (12) and Lemma 2,

$$
E\left(\left|X_{t}-X_{s}\right|^{4}\right)=d(d+2) \tau^{2}=d(d+2)|t-s|^{2} .
$$

Because $E\left(\left|X_{t}-X_{t}\right|^{4}\right)=E(0)=0$, we have that for any $s, t \in I$,

$$
E\left(\left|X_{t}-X_{s}\right|^{4}\right)=d(d+2)|t-s|^{2}
$$

The initial distribution of X is $X_{0 *} P^{\mu}=\mu$. For $\alpha=4, \beta=1, c=d(d+$ 2), the Kolmogorov continuity theorem tells us that there is a continuous modification B of X. That is, there is a stochastic process $\left(B_{t}\right)_{t \in I}$ such that for each $\omega \in \Omega$, the path $t \mapsto B_{t}(\omega)$ is continuous $I \rightarrow E$, namely, B is a continuous stochastic process, and for each $t \in I$,

$$
P\left(X_{t}=B_{t}\right)=1,
$$

namely, B is a modification of X. Because B is a modification of X, B has the same finite-dimensional distributions as X, from which it follows that B satisfies

[^3](12) and has independent increments. For $A \in \mathscr{E}$, because B is a modification of X,
$$
\left(B_{0 *} P^{\mu}\right)(A)=P^{\mu}\left(B_{0} \in A\right)=P^{\mu}\left(X_{0} \in A\right)=\left(X_{0 *} P^{\mu}\right)(A),
$$
thus $B_{0 *} P^{\mu}=X_{0 *} P^{\mu}=\mu$, namely, B has initial distribution μ. Therefore, B is a Brownian motion (indeed, all the paths of B are continuous, not merely almost all of them) that has initial distribution μ, proving the claim.

For $\mu \in \mathscr{P}(E)$, let $\left(\Omega, \mathscr{F}, P^{\mu},\left(B_{t}\right)_{t \in I}\right)$ be the d-dimensional Brownian motion with initial distribution μ constructed in Theorem 3; we are not merely speaking about some d-dimensional Brownian motion but about this construction, for which $\Omega=E^{I}$, all whose paths are continuous rather than merely almost all whose paths are continuous. For a measurable space (A, \mathscr{A}) and topological spaces X and Y, a function $f: X \times A \rightarrow Y$ is called a Carathéodory function if for each $x \in X$, the map $a \mapsto f(x, a)$ is measurable $\mathscr{A} \rightarrow \mathscr{B}_{Y}$, and for each $a \in A$, the map $x \mapsto f(x, a)$ is continuous $X \rightarrow Y$. It is a fact ${ }^{5}$ that if X is a separable metrizable space and Y is a metrizable space, then any Carathéodory function $f: X \times A \rightarrow Y$ is measurable $\mathscr{B}_{X} \otimes \mathscr{A} \rightarrow \mathscr{B}_{Y}$, namely it is jointly measurable. $B: I \times \Omega \rightarrow E$ is a Carathéodory function. $I=\mathbb{R}_{\geq 0}$, with the subspace topology inherited from \mathbb{R}, is a separable metrizable space, and $E=\mathbb{R}^{d}$ is a metrizable space, and therefore the d-dimensional Brownian motion B is jointly measurable.

The Kolmogorov-Chentsov theorem says that if a stochastic process $\left(X_{t}\right)_{t \in I}$ with state space E satisfies, for $\alpha, \beta, c>0$,

$$
E\left(\left|X_{s}-X_{s}\right|^{\alpha}\right) \leq c|t-s|^{1+\beta}, \quad s, t \in I
$$

and almost every path of X is continuous, then for almost every $\omega \in \Omega$, for every $0<\gamma<\frac{\beta}{\alpha}$ the map $t \mapsto X_{t}(\omega)$ is locally γ-Hölder continuous: for each $t_{0} \in I$ there is some $0<\epsilon_{t_{0}}<1$ and some $C_{t_{0}}$ such that

$$
\left|X_{t}(\omega)-X_{s}(\omega)\right| \leq C_{t_{0}}|t-s|^{\gamma}, \quad\left|s-t_{0}\right|<\epsilon_{t_{0}},\left|t-t_{0}\right|<\epsilon_{t_{0}} .
$$

For $\mu \in \mathscr{P}(E)$, let $\left(\Omega, \mathscr{F}, P^{\mu},\left(B_{t}\right)_{t \in I}\right)$ be the d-dimensional Brownian motion with initial distribution μ formed in Theorem 3. For $s \leq t,\left(B_{t}-B_{s}\right)_{*} P^{\mu}=\nu_{t-s}$, and thus Lemma 2 tells us that for each $n \geq 1$ there is some C_{n} with which $E\left(\left|B_{t}-B_{s}\right|^{2 n}\right)=C_{n}(t-s)^{n}$ for all $s<t$. Then $E\left(\left|B_{t}-B_{s}\right|^{2 n}\right) \leq C_{n}|t-s|^{n}$ for all $s, t \in I$. For $n>1$ and for $\alpha_{n}=2 n$ and $\beta_{n}=n-1$,

$$
\frac{\beta_{n}}{\alpha_{n}}=\frac{n-1}{2 n}=\frac{1}{2}-\frac{1}{2 n},
$$

and for $n>2$, take some $\frac{\beta_{n-1}}{\alpha_{n-1}}<\gamma_{n}<\frac{\beta_{n}}{\alpha_{n}}$. Let N_{n} be the set of those $\omega \in \Omega$ for which $t \mapsto B_{t}(\omega)$ is not locally γ_{n}-Hölder continuous. Then the KolmogorovChentsov theorem yields $P^{\mu}\left(N_{n}\right)=0$. Let $N=\bigcup_{n>2} N_{n}$, which is a P^{μ}-null

[^4]set. For $\omega \in \Omega \backslash N$ and for any $0<\gamma<\frac{1}{2}$, there is some γ_{n} satisfying $\gamma \leq \gamma_{n}<\frac{1}{2}$, and hence the map $t \mapsto B_{t}(\omega)$ is locally γ_{n}-Hölder continuous, which implies that this map is locally γ-Hölder continuous. We summarize what we have just said in the following theorem.

Theorem 4. Let $\mu \in \mathscr{P}(E)$ and let $\left(\Omega, \mathscr{F}, P^{\mu},\left(B_{t}\right)_{t \in I}\right)$ be the d-dimensional Brownian motion with initial distribution μ formed in Theorem 3. For almost all $\omega \in \Omega$, for all $0<\gamma<\frac{1}{2}$, the map $t \mapsto B_{t}(\omega)$ is locally γ-Hölder continuous.

4 Lévy processes

A stochastic process $\left(X_{t}\right)_{t \in I}$ with state space E is called a Lévy process ${ }^{6}$ if (i) $X_{0}=0$ almost surely, (ii) X has stationary and independent increments, and (iii) for any $a>0$,

$$
\lim _{t \downarrow 0} P\left(\left|X_{t}\right| \geq \epsilon\right)=0
$$

Because $X_{0}=0$ almost surely and X has stationary increments, (iii) yields for any $t \in I$,

$$
\begin{equation*}
\lim _{s \rightarrow t} P\left(\left|X_{s}-X_{s}\right| \geq \epsilon\right)=0 \tag{13}
\end{equation*}
$$

In any case, (13) is sufficient for (iii) to be true. Moreover, (iii) means that $X_{s} \rightarrow$ X_{t} in the topology of convergence in probability as $s \rightarrow t$, and if $X_{s} \rightarrow X_{t}$ almost surely then $X_{s} \rightarrow X_{t}$ in the topology of convergence in probability; this is proved using Egorov's theorem. Thus, a d-dimensioanl Brownian motion with starting point 0 is a Lévy process; we do not merely assert that the Brownian motion formed in Theorem 3 is a Lévy process. There is much that can be said generally about Lévy processes, and thus the fact that any d-dimensional Brownian motion with starting point 0 is a Lévy process lets us work in a more general setting in which some results may be more naturally proved: if we work merely with a Lévy process we know less about the process and thus have less open moves.

[^5]
[^0]: ${ }^{1}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 484, Theorem 13.46.

[^1]: ${ }^{2}$ Heinz Bauer, Probability Theory, p. 321, Theorem 37.2.

[^2]: ${ }^{3}$ Heinz Bauer, Probability Theory, p. 341, Lemma 40.2.

[^3]: ${ }^{4}$ Heinz Bauer, Probability Theory, p. 342, Theorem 40.3.

[^4]: ${ }^{5}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 153, Lemma 4.51.

[^5]: ${ }^{6}$ See David Applebaum, Lévy Processes and Stochastic Calculus, p. 39, §1.3.

