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1 Fourier transforms of measures

Let m,, be normalized Lebesgue measure on R™: dm,,(z) = (2r)~"/?dx. If
1 is a finite positive Borel measure on R", the Fourier transform of p is the
function fi : R™ — C defined by

pe) = [ e nta), ger

One proves using the dominated convergence theorem that /i is continuous. If
f € LY(R"), the Fourier transform of f is the function f : R® — C defined by

fO = [ e iwim @, ¢er

Likewise, using the dominated convergence theorem, f is continuous. One proves
that if f € L'(R") and f € L*(R™) then, for almost all z € R",

f@) = [ e f(eamale).

As
i(0) = [ due) = (@)

& is a probability measure if and only if i(0) = 1. (By a probability measure
we mean a positive measure with mass 1.)
If € LY(R™) and ¢ € L'(R"), then, inverting the Fourier transform,

(@) = | ol@)du()
- / ( é(ﬁ)eif'fdmn(@) dp(x)
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Theorem 1. If ;4 and v are finite Borel measures on R™ and i = 7, then p = v.

Proof. To prove that u = v it suffices to prove that for any ball B in R™ we
have u(B) = v(B). Let ¢, € CX(R") — xp pointwise. On the one hand, by
the dominated convergence theorem, (¢,,u) — u(B) and (¢,,v) — v(B) as
n — 00. On the other hand, because i =  we have

(G i) = | Su(—E)a(©)dmn(€) = [ Gn(=)D()dm,(€) = (pn,v) .

R R

Therefore u(B) = v(B), and it follows that u = v. O

2 Gaussian measures

Let A,..., A, > 0,and let A : R™ — R" be the linear map defined by Ae; = A\;e;.
Define

1
du(z) = vdet Aexp <—2x . Ax) dmy,(x),
called a Gaussian measure.

Theorem 2.

A(E) = exp <;5 ~ Als) . EeR™

Proof. We have

. 1
ag) = / e~ %/det A exp (—295 . Ax) dmy,(x)
4 , 1 1
— / e—lflwl—-..—lgnwn /)\1 e )\n exp <_2)\1x% JE N — 2)\711-31) dmn(x)
R4
n
= H I,
j=1
where )
I = / e*iﬁjzj,//\j exp <2)\J:173> dmi (z;).
Using



we get, doing contour integration,

I, = /R\/)Tjexp <2j (z] + )\J> ) exp (;}i) dma (z;)
/ VA exp ( 3) exp <—2€i> dm (;)
/\fexp ) eXp< ;; > \/A?jdml(yj)

eXp< ) feXp (—y3)dma (y;)
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Therefore, as A~1¢ = Zj 1)\ ej and - AT = Z] 1)\’

e = JJew (—2;)
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and hence a Gaussian measure is a probability measure.
For h € R", define T}, : R* — R™ by Ty(z) =  — h. If E is a Borel subset
of R", because x7_, gy = XE © Th,

(T (B) = (T (B)) = WT-n(B) = [ oy = | oo Tudn



Then, because T}, o T_j, = idgn,

/n XeoThdy = / x& © Th(z)Vdet A exp <—;x . Aa:) dm,, ()
= [ eaVEE R exp (L) (AT42) ) (T )t 2)

_ / nx;;(x)x/Mexp( (Thx)~(AThm)> dimn ().

1
2
As A is self-adjoint Az - h = x - Ah,
(T_p2) - (AT-pz) = (x+h)- (Alw+h)
= (x+h) - (Az+ Ah)
= z-Ax+x-Ah+h-Azx+h-Ah
= x-Azx+2zx-Ah+h-Ah.

Therefore,

(Th)«p)(E) = /n XE(x)exp (; 2z -Ah+h- Ah)> du(x)

1
/ XEe(x)exp <—a: - Ah — ih . Ah> du(z).
This shows that the Radon-Nikodym derivative of (T},).u with respect to p is

d(Th)sp
dp

1
(x) = exp (—m~Ah— 2h~Ah> .

3 Positive-definite functions

We say that a function ¢ : R®™ — C is positive-definite if x1,..., 2, € R™ and
c1,...,¢ € Cimply that

S ezl — ;) > 0;

ij=1

in particular, the left-hand side is real.

Using » = 1, ¢; = 1, we have for any z; € R" that ¢(x; — 1) > 0, i.e.
¢(0) > 0. For x € R™, using r = 2, x1 = x,22 = 0 and choosing fitting
c1,c2 € C gives

¢(—$) = M,

and using this with ¢c; = 1 and for appropriate ¢; gives

[9(z)] < ¢(0).



For f,g € L*(R™), the convolution of f and g is the function fxg : R® — C
defined by

(fxg)(z) = - fWg(z —y)dmn(y), xeR",

and [[f* g0 < || fllz lgllL1, a case of Young’s inequality. For f: R™ — C,
we denote by supp f the essential support of f; if f is continuous, then supp f
is the closure of the set {x € R"™: f(x) # 0}. A fact that we will use later is

supp (f * g) C supp f + supp g.

We denote by f* the function defined by f*(z) = f(—x).

C.(R™) is the set of all f € C(R™) for which supp f is a compact set. The
set C.(R"™) is dense in the Banach space Cp(R™) and also in the Banach space
LY(R™); C.(R™) is not a Banach space or even a Fréchet space, and thus does
not have a robust structure itself, but is used because it is easier to prove things
for it which one then extends in some way to spaces in which the set is dense.
The proof of the following theorem follows Folland.?

Theorem 3. If ¢ : R” — C is positive-definite and continuous and f € C.(R"),
then

J
Proof. Write K = supp f, and define F' : R™ x R™ — C by

F(z,y) = f(2)f(y)¢(z —y).

F' is continuous, and supp F' C K x K, hence supp F' is compact. Thus F €
C.(R™ x R™); in particular F' is uniformly continuous on K x K, and it follows
that for each € > 0 there is some § > 0 such that if [r—a| < ¢§ and |y—b| < 6 then
|F(x,y) — F(a,b)| < e. The collection {Bs(z) : + € K} covers K and hence
there are finitely many distinct x; € K such that the collection {Bs(x;) : i}
covers K. Then {Bs(x;) x Bs(z;) : 4,5} covers K x K. Let E; be pairwise
disjoint, measurable, and satisfy z; € E; C Bs(z;). The collection {E; : i, }
covers K, so the collection {E; x E; : 4,7} covers K x K.
Define

R= Z /EixEj (F(z,y) — F(z;, zj))dmy(x)dmy, (y).

.3

LGerald B. Folland, Real Analysis: Modern Techniques and their Applications, second ed.,
p- 240, Proposition 8.6.
2Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 85, Proposition 3.35.



R satisfies

RIS X[ PG = Plaay)ldm, (adma )

< Z/EZXE edmo, (x)dm., (y)

- eimn<Ei>mn<Ej>
— k)
We obtain
| P, @)an,) - > /| |, Flashdnaoim )
- i:F(xz’xj)m"(E‘)mn(E])+R
- if(xnf(x]w(zi o mn(Eyma(E;) 4 R

Using ¢; = f(x;)mn(E;), the fact that ¢ is positive-definite means that the sum
is > 0. Therefore

| Fdme)dm, ) = ~IR) = —em,(K)*
KxK
This is true for all € > 0, hence

/ " /R F@)f (e = y)dma(@)dma(y) = / F(@,y)dm, (z)dmy (y) > 0.
But

KxK

/R (fxP@)g(@)dmn(z) = /R ) < /]R Wz - y)dmn(y)> ¢(x)dm, ()

|
T

/R T £ (= y)d(a)dma(z)dma (y)

n

3
T
~

/]R (—y) f(z)o(x + y)dmy (z)dm, (y)
/n /Rn @f(x)ﬁé(l’ — y)dmy, (x)dm,(y).

O

Corollary 4. If ¢ : R — C is positive-definite and continuous and f € L*(R"),
then

/(f* x f)o > 0.



Proof. Let f, € C.(R") converge to f in L*(R™) as n — oo; that there is such
a sequence is given to us by the fact that C.(R") is a dense subset of L'(R").
Using

faxfo—f"xf foxtn—foxf+faxf—f"*f
= farxUn=0+U0 =) f
f;*(f7z_f)+(fn_f)**fv

and [|g*[| . = [|gll .1, we get

[ * o= 5 flln 1o (o = D)l 1 = ) Fllia
Lfallpa 1 fn = Fllps + 10 = Pl (11 2

Lfall g 1 = Fllps + 11 =l 1l s

which converges to 0 because || f,, — f||,: — 0. Therefore, because ¢ is bounded,

IAINA

[ s todm, [ (55 pyodim,.

RW,
As fR” (fr« fn)pdm,, > 0 for each n, this implies that fRn(f* * f)odm, > 0. O

It is straightforward to prove that the Fourier transform of a finite positive
Borel measure is a positive-definite function; one ends up with the expression

2

/ Do e dula),

Jj=1

which is finite and nonnegative because p is finite and positive respectively. We
have established already that the Fourier transform of a finite positive Borel
measure p on R™ is continuous and satisfies f1(0) = 1. Bochner’s theorem is
the statement that a function with these three properties is indeed the Fourier
transform of a finite positive Borel measure. Our proof of the following theorem
follows Folland.?

Theorem 5 (Bochner). If ¢ : R — C is positive-definite, continuous, and
satisfies ¢(0) = 1, then there is some Borel probability measure g on R™ such
that ¢ = f.

Proof. Let {¢y} be an approximate identity. That is, for each neighborhood U
of 0, ¥y is a function such that supp ¢y is compact and contained in U, 1) > 0,
Yy (—z) =Yy (z), and [;, pudm, = 1. For every f € L'(R"), an approximate
identity satisfies ||f * ¢y — f||;. — 0 as U — {0}.4

We have 9f; = ¥_y, so

supp (Y7 * Yu) C supp _y + supp ¢y = supp¢_y + supp vy € —U + U,

3Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 95, Theorem 4.18.
4Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 53, Proposition 2.42.




and as always, [p. f* gdmn =[5, fdmy [, gdm,. Therefore {¢f; * ¢y} is an
approximate identity:
For f,g € L*(R"), define

(F9)y = [ (0" + f)odm,.

One checks that this is a positive Hermitian form; positive means that (f, f) 62
0 for all f € L*(R™), and this is given to us by Corollary 4. Using the Cauchy-
Schwarz inequality,’

[ (96 1P <(F, 5y (9:9)g -

We have laid out the tools that we will use. Let f € L'(R"). ¢y*f — fin L
as U — {0}, and as ¢ is bounded this gives [p, (¢ * f)pdmy, — [o. fodm,, as
U — {0}. Because {1{; ¥y} is an approximate identity, [p, (¢ * vy )pdm, —
¢(0) as U — {0}. That is, we have (f,vv), = [g. fodm, and (Yu,Yu), — 6(0
as U — {0}, and as ¢(0) = 1, the above statemtn of the Cauchy-Schwarz
inequality produces

2

Rn

< [ s poam,. (1)

With h = f*  f, the inequality (1) reads

2

< hodm,,.
RTL

fodm,

Rn

Defining () = h, h®) = hx h, h®) = hx h * h, etc., applying (1) to h gives,

because h* = h,
/ hédm,| < / 3 pdm,,.

Then applying (1) to h(®), which satisfies (h(?))* = h(?),

2
/ P gdm,,| < / ™Y pdm.,.

2

Thus, for any m > 0 we have

9= (m+1)
foédm,| < R pdm,,
Rn Rn
2= (m+41)
< ’ L™ ’
< .

Cm 172
- (b

5Jean Dieudonne, Foundations of Modern Analysis, 1969, p. 117, Theorem 6.2.1.




since [|¢]|, = #(0) = 1.

With convolution as multiplication, L!(R") is a commutative Banach alge-
bra, and the Gelfand transform is an algebra homomorphism L!(R") — Co(R™)
that satisfies®

1/k
19 = Jim [o®)| 7. ge '@

k—o0

for L*(R"), the Gelfand transform is the Fourier transform. Write the Fourier
transform as .# : L}(R") — Co(R"). Stating that the Gelfand transform is
a homomorphism means that % (g1 * g2) = F#(91)% (g2), because multiplica-
tion in the Banach algebra Cy(R"™) is pointwise multiplication. Then, since a
subsequence of a convergent sequence converges to the same limit,
L 1/2
Jim (Hhﬂ"‘)’ ) = (||p
m— 00 Lt

)1/2.
h=Z(f «f)=Z(f)Z()=FNHF)=|Z,

()" = (el )™ = 14

Putting things together, we have that for any f € L'(R"),

But

SO

|

oo

fodmay,
R

<|4..

Therefore f — Jan fodm,, is a bounded linear functional .# (L' (R™)) — C, of
norm < 1. Using ¢(0) = 1, one proves that this functional has norm 1. (If we
could apply this inequality to % (J) the two sides would be equal, thus to prove
that the operator norm is 1, one applies the inequality to a sequence of functions
that converge weakly to §.) We take as known that % (L'(R")) is dense in the
Banach space Cy(R™), so there is a bounded linear functional ® : Cy(R™) — C
whose restriction to .Z (L' (R™)) is equal to f — Jgn fédmy,, and || @ = 1.

Using the Riesz-Markov theorem,” there is a regular complex Borel measure
w1 on R™ such that

®(g) = /n gdp, g€ Co(R™),

and ||p|| = ||®||; ||| is the total variation norm of u, |u|| = |p|(R™). Then

6Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 15, Theorem 1.30.
Namely, this is the Gelfand-Naimark theorem.
"Walter Rudin, Real and Complex Analysis, third ed., p. 130, Theorem 6.19.



for f € L*(R™) we have
R”'L

= fdu
R’Vl

_ / (/ e—iﬁ'ﬂﬂf(x)dmn(x)) dp(€)
= [ s ([ ) dmaw

= | f(@)i(z)dmy, (x).

That this is true for all f € L'(R") implies that ¢ = fi. As u(R") = 4(0) =
@(0) =1 and ||| = ||®]] = 1 we have u(R™) = ||u||, and this implies that p is
positive measure, hence, as p(R™) = 1, a probability measure.
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