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1 Cumulative distribution functions

For a random variable X : (2, %, P) — R, we define its cumulative distribu-
tion function Fx : R — [0, 1] by

Fy(z) = P(X < 1) = / P — / A(X.P)(t) = (X, P)((—00,2]).
{X<z} t<z
A distribution function is a function ' : R — [0, 1] such that (i) F'(—o0) =
lim, oo F(x) =0, (ii) F(o0) = lim,; o F(x) = 1, (iil) F is nondecreasing, (iv)
F is right-continuous: for each x € R,

Flot) = im F(t) = F(z).

It is a fact that the cumulative distribution function of a random variable is a
distribution function and that for any distribution function F' there is a random
variable X for which F = Fx.

Let 1 be the standard Gaussian measure on R: 7, has density

1 _p
p(t,0,1) = Ee t7/2

with respect to Lebesgue measure on R. Let ® be the cumulative distribution
function of ~1:

x

q’(x):%((—oow])z/f d%(t):[ \/%e’tz/zdt.

We first prove the following lemma about distribution functions.?

Lemma 1. Suppose that F is a distribution function, that G : R — R satisfies

G(—) = lim G(z)=0, G(o) = lim G(z) =1,

T—r—00 T—r00

1Kai Lai Chung, A Course in Probability Theory, third ed., p. 236, Lemma 1; cf. Allan
Gut, Probability: A Graduate Course, second ed., p. 358, Lemma 6.1.



and that G is differentiable and its derivative satisfies
M = sup |G'(z)| < oo. (1)
z€R
Writing

1
A= milelgw(x) - G(x)],

there is some a € R such that for all T > 0,

TA
OMTA (3 / ﬂdm - 71')
0 X

/R w(F(m +a)— Gz +a))dx

<
2

Proof. Because G(—o0) = 0 and G(o0) = 1, there is some compact interval K
such that —1 < G(x) < 2 for x € R\ K. Then, because G is continuous it is
bounded on K, showing that G is bounded on R, and because M > 0 we get
A < oo.

Write H = F' — G. Because H(oo) =0 and H(—o0) = 0, there is a compact
interval K for which

2MA = sup |H(z)| = sup |H(z)|.
z€R zeK

By the Bolzano-Weierstrass theorem, either there is a sequence u,, € K increas-
ing to some u € K such that |H(u,)| T 2MA or there is a sequence u, € K
decreasing to some u € K such that |H(u,)| T 2MA.2 In the first case, either
there is a subsequence v,, of u, such that |H(v,)| = H(v,) or there is a sub-
sequence v, of u, such that |H(v,)| = —H(v,). In the first subcase we get
H(u—) =2MA, thus

F(u—) — G(u) = 2MA. (2)

In the second subcase we get H(u—) = —2MA, thus
F(u—) — G(u) = —2MA. (3)

In the second case, either there is a subsequence v,, of w, such that |H (v,)| =
H(v,) or there is a subsequence v,, of u,, such that |H(v,) = —H(v,). In the
first subcase we get H(u+) = 2MA, thus

F(u) — G(u) =2MA. (4)
In the second subcase we get H(u+) = 2M A, thus
F(u) — G(u) = —2MA. (5)

2In the proof in Chung there are merely two cases but it is not explained why those are
exhaustive.



We now deal with the subcase (3). Let a = v — A. For || < A, by (1) we have

utz—A
Gz +a) — Glu)| = / G (y)dy

<l|lzx—A|M=(A—-2)M,

whence
Gz +a) > Gu) + (zr — A)M.

Because  +a =z +u— A < wu and as F is nondecreasing and using (3),
Flz+a)—Gx+a) <Flu—)—G(z+a)
< F(u—) — (G(u) + (r — A)M)
=—M(z+ A).

Then, because = +— 1_2’75“95 is an odd function,

A A

1—cosT 1—cosT

/ #(F(x +a)— Gz +a))dr < —M/ %(m + A)dx
—A X —-A T

A
1—cosT
:—ZMA/ #dm.
0 x

On the other hand,

x2

1-— T
/ ﬂ(F(a:—l—a) — G(z +a))dx
(—00,—A)U(A,0)

SQMA/ 17C(;ST.Z‘d
(—o00,—A)U(A,00) €

1 —cosT
:4MA/ O e
A X

Thus

/]R ﬂ(F(z +a)— G(z+a))dr

22
A o]
1—cosT 1—cosT
§—2MA/ wdx—kélMA/ — 2 T
0 z A z

A _ e} _
=2MA (—3/ 71 C(;S Tx dr + 2/ 71 C(;S Tx dx)
0 T 0 T

A —
oA <_3/ H(gsTfdeg.WT)
0 x 2

N
—2MTA (3 / 18T et 7r> ,
0 xZ

which yields the claim of the lemma, for the subcase (3). O



We now prove a lemma that gives an inequality for characteristic functions.?

We remark that because F' is a distribution function, it makes sense to speak
about the measure induced by F', and because G is of bounded variation and
is continuous, its variation function Vg is continuous and the functions Vg — G
and Vg are nondecreasing, and it thus makes sense to speak about the signed
measure induced by G = Viz — (Vg — G), which is equal to the difference of the
measures induced by Vg and Vg — G.

Lemma 2. Suppose that F is a distribution function, that G : R — R satisfies

G(—0) = lim G(z) =0, G(o) = lim G(z) =1,

T——00 T—0o0

that G is differentiable and of bounded variation and that its derivative satisfies

M = sup |G'(z)| < o0,

x€ER
and that
/ |F — G|dz < 0.
R
Write )
A= Sup |F(x) — G(z)|
and

£(t) = / GAR(m),  g(t) = / ¢t 4G (z).
R R
Then for all T' > 0,

LT — 9 12
< — f 2 —
As 7TM/0 t di+ T

Proof. For any t € R, because (F' — G)(—o0) = 0 and (F — G)(o0) = 0 and
because [, |F — G|dx < oo, integrating by parts gives

£ - 9(t) = [ eiF@) - [ eac(a)
R R
- / e d(F — G) ()
R
= *it/(Ff G)(z)e"* dx.
R
Take a to be the real number that Lemma 1 yields. As

T =90 s — ) = (o) / (F(z +a) — G(z + a))ei**da,
R

3Kai Lai Chung, A Course in Probability Theory, third ed., p. 237, Lemma 2; Zhengyan
Lin and Zhidong Bai, Probability Inequalities, p. 29, Theorem 4.1.a.



we obtain, using Fubini’s theorem,

/T f(t) _ g(t) e—ita(T _ |t|)dt
-T —it
T

[ (=10 [+ a) - 6o+ apetas) a

T .
:/(F(:rJra) — Gz +a)) </ (T - |t|)emdt> dx
R -T

1—cosTx

:2/R(F(:E+a) - G(r+a))————du.

T

Therefore, because F' and G are real valued and thus |f(—t)—g(—t)| = | f(¢) — g(t)]
1£(t) = g(®)],

HOST””dm‘ <1 /T O =9@p _ 41y

2

/R (F(z +a) - G(z +a))

“2 ) It

_ /T HORCIP

t

OENI0]
< T/ ; dt.

0

Using this with Lemma 1,

N T B
2MTA (3/ 1?“%—77) < T/ L) = 9@l
0 T 0

t
But
TA oo oo
1-— 1 — cos 1 — cos
3/ 7C208zd3:—7r=3/ 70205xdz—3/ 76205xdm—7r
0 € 0 T TA T
1 —cosz *1
>3 72da:—6 —2dx—7r
0 T TA T
s 6
—3.-_ — _
2 TA "
o 6
2 TA’

with which we have

TA
1 _
IMTA (3/ —— w> > OMTA - (” - 6) — MTAx — 12M,

and hence

T
MTAx —12M < T/ Mdt,

0 t



i.e.

asl2y M/ 17 =90l ,

proving the claim. O

2 Berry-Esseen theorem

Let X, ;,n>1,1<75 <k, be L3 random variables, with k, — o0, such that
for each n, the random variables X, ;, 1 < j < kj,, are independent, and such
that for all n and j,

E(X, ;) =0.

Let F;, ; be the cumulative distribution function of X, ;:
Fpj(z) = P(Xn; < ).

Let fr ; be the characteristic function of X,, ; (equivalently, the characteristic
function of F), ;):

Fus®) = [ X5, P)@) = [ i (o)

R

Write, for n > 1,

and let F;, be the cumulative distribution function of S,:
F,(z) = P(S, <x)

Also, let f, be the characteristic function of S,, (equivalently, the characteristic
function of F,,). Because X,, ;, 1 < j < k,, are independent, we have S, P =
(Xn1,P) - % (Xyk, , P) and hence

fn(t) = / ’Ltajd Sn*P anj
R
Forn >1and 1< j <k,, write
Ui,j = E(Xrgz,j)’ Si = ZUTQL,J‘

and

Tn,j = E(‘Xn,j|3)a r, = ZP)’n,]W



We further assume that for each n,

sp=Y op, =1 (6)

We will use the following inequality which we state separately because it is
of general use.

Lemma 3. Forn > 1 and 2| < 1

log(1+ 2) — Z Sn(1—|z\)'

m=1

We now prove an inequality for f,, the characteristic function of S,,.4

Lemma 4. For n > 1, if |¢| <3 1/3 then

[falt) — e /2 < T, ftPe /2,

Proof. For 1 < j <k, andl >0 and v € R,

7O 0) = () B(X, o),

n,J

Thus

fng(0) =1, fr (0)=iE(X,;) =0, [f);0)=-EX],) =-0.,,

,

and .
' (v) = —iE(Xf;’jeWX“*j).

n,j
Then by Taylor’s theorem, there is some s between 0 and ¢ such that

2 ; 3 pisXn,;
fuit)=1- %ﬂ X em) *36 )t3.
Put
—iE(X%je”X"vj) =05,
for which

| E(XG i)
0] = <1
E(|Xn ;%)

Because the L? norm is upper bounded by the L? norm and because [¢| <3 1/3 ,

1/3

jongt] < Ity ¢l < 0324 <

4Kai Lai Chung, A Course in Probability Theory, third ed., p. 239, Lemma 3.



and hence

2 3
o 0~,, it
| fr,i(t) — 1] = | ;’J t2 + 77’83

1 .
< Slom gt + 478%

1

<z+
8 48
1

<

W

Lemma 3 and the inequality |a + b|? < 2(|al? 4 |b]?) then tell us that

|fn () — 17
‘Ingn,j(t) - (fn,j( ) - 1)| < 2(1 — |fn,j(t) . 1|)

glfn,j(t) - 1|2

/\

) 2
On,j 2 0vn,j 3
2 6

4 n,J ,4 |‘2’7n]6
< - | —=t —=1
_3< 4 + 36

2
3

Because 0, ; < 71/3 and |6] <1,

—~

log fn;(t) = (fu;(t) = 1)| <

ol

n,j In.g 44 12 46
( 4 + 36

— é <|0—n7J | + "yiby/ﬁg | ) |t|3
3\ 4 36 ) ™I
<4(1_|_ 1 )’y ’|t|3
—3\2-4 8.3/, "™
37
= %’Yn,ﬂ |

1 3
< g%,j|t|

2
Combining this with f, ;(t) = 1 — 2242 + M%tg’

ng‘ 2 1 3 _ 1 3,1 3 _ 1 3
logfn,j(t)—&—Tt < 6 +5’Yn,j|t| Sg%,j|t| +57n,j|t\ Si%,jw-

‘ orynvj t3

Because this is true for each 1 < j < k, and because, according to (6),



t2
2

k
t13% < t°
S5 D = = In-

j=1

log fn(t) +

For any z € C it is true that |e* — 1| < |z|el*!, so the above yields

|fa()er" 72 = 1] = |exp(log(fa(t)e’ /%)) — 1]

< [1og(fa(®e” /)] exp (|log(fn(®)e/2)))

tog (1) + | exp ([tom (£ (1)e*/2))

t3 t3
< %Fn exp (|2Fn> .

But [t|® < S0

1

8T,
t2/2 ‘t|3 1/16 3

fa(t)e 1| < 5 Tae/1% < JtPT,

which completes the proof. O

The next lemma gives a different bound on the characteristic function of
S,.5

Lemma 5. For n > 1, if [t| < 7 then

[fa(t)] < /3.

Proof. First, for a distribution function F' with characteristic function f,

[FOF = £()f(t)
:/Re”IdF(x)-/Re_’mdF(y)

- /R < /R eit(z—wdF(x)) dF (y)
— /R (/R cost(x —y) + isint(z — y)dF(w)) dF(y).

Because |f(t)|? is real it follows that

0 = [ ([ costle - par) ar).

5Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 4.




Using

cosu—(1-5)| < tasor <o+
we have
costto =) = (1= LI 2 (ap + ey = 2oLl + )
and then
sof < [ ([ 1= B o+ yyar (o) ) ar ).
Using this for f, ;, and using that E(X,_;) = 0,
st < [ ([ 1= S0 B o 1 yoyar ) dns(

202 . 22 2t3 EEEE
R

2 2 3 3
_ ., Pon; toq, L 2AtPmy | 20t
2 2 3 3
At
— 2 2 n,J
=110} + =5

Because 1 +u < ¢e* for all u € R,

4|t[3vn.4
gl < oxp (202, 4 1),

Then, by (6),
[fa®) H [ (1)
n AtPyn. 4
< exp( e 72”+||37’J)
j=1
k
4t3 n
= exp tZZ n]“’LZVnJ
j=1
41t
= exp (t2 + an) .
3
As |t| < 4F ,

2 2|t 3 2 2t2
ol <o (-5 + 200, ) <o (-5 + ALY o0

proving the claim.

10



We now combine Lemma 4 and Lemma 5.6

Lemma 6. For n > 1, if [t| < 7 then

|fult) — e /2] < 16T, |t3e " /3.

Proof. Either |t| < 21%/3 or ﬁ <t < ﬁ. In the first case, Lemma 4 tells
us /
[fn(t) — €72 S Do ftPe™/2 < Ty ftPe ™3 < 16D, [t e~ /2.

In the second case, Lemma 5 tells us
[Fa®)] <72,
and so, as in this case we have 1 < 8T, |t|3,
| frn(t) — e_t2/2| <|fu@®)]+ et /2 < e t/3 L t/2 < 2e~t"/3 < 16Fn\t|36_t2/3,

showing that the claim is true in both cases. O

We finally prove the Berry-Esseen theorem.”

Theorem 7 (Berry-Esseen theorem). There is some Ay < 36 such that for each
n>1,

sup | F(2) — ®(x)| < Agl,,.

z€R

Proof. Let Z be a random variable with Z,P = ~;, i.e. whose cumulative
distribution function is ®. By (6) and because X, j, 1 < j < k,,, are independent
and satisfy E(X, ;) =0,

kn kn

B(S2) =Y B(X2;)=) o2,=1

j=1 j=1
If x < 0 then by Chebyshev’s inequality
Fo(@) = P(Su < 2) = P(—Sy > —2) < = B(S) = >
x x
and

B(r) = P(Z<2) = P(-Z > ) < B(|7P) = .

6Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 5.

"Kai Lai Chung, A Course in Probability Theory, third ed., p. 235, Theorem 7.4.1; cf. Allan
Gut, Probability: A Graduate Course, second ed., p. 356, Theorem 6.2; John E. Kolassa, Series
Approximation Methods in Statistics, p. 25, Theorem 2.6.1; Alexandr A. Borovkov, Probability
Theory, p. 659, Theorem A5.1; Ivan Nourdin and Giovanni Peccati, Normal Approzimations
with Malliavin Calculus: From Stein’s Method to Universality, p. 71, Theorem 3.7.1.

11



If x > 0 then also by Chebyshev’s inequality
1—Fy(z) =1-P(S, <x)=P(S, > ) <

and
1-®(x)=1-P(Z<z)=P(Z>z)<

Therefore, because F,, and ® are nonnegative and 1 — F}, and 1 — ® are non-
negative, for all z € R we have

1
[Fue) - ()] < —.
Then, because |F,| <1 and |®| < 1,
1
/|F )|dx</ 2dx+/ —dr =6 < oo.
|z|<1 lz|>1 T
' (z) = \/%76_”2/2 < \/%7 We apply Lemma 2 with FF = F,,, G = ®, and
M = \/%7 and because the characteristic function of ® is ¢(t) = e~ *'/2, we
obtain for T = ﬁ,
g n(t) — 96 MT,,
z€R T Jo t s
i /“1" e, g,
T Jo t 2
Then applying Lemma 6,
2 [T 16T, t3 —t*/3 96T,
sup | F, (z | < — dt + ’
pir) o< [ e
96
2e " 3at + .
( 7r\/27r>
This proves the claim with
32 [ 96 32 3v3 96
AO:—/ 2e B dt + A L =35.64....
T Jo 2m ™ 4 ™27
O
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