# The Berry-Esseen theorem 

Jordan Bell

June 3, 2015

## 1 Cumulative distribution functions

For a random variable $X:(\Omega, \mathscr{F}, P) \rightarrow \mathbb{R}$, we define its cumulative distribution function $F_{X}: \mathbb{R} \rightarrow[0,1]$ by

$$
F_{X}(x)=P(X \leq x)=\int_{\{X \leq x\}} d P=\int_{t \leq x} d\left(X_{*} P\right)(t)=\left(X_{*} P\right)((-\infty, x])
$$

A distribution function is a function $F: \mathbb{R} \rightarrow[0,1]$ such that (i) $F(-\infty)=$ $\lim _{x \rightarrow-\infty} F(x)=0$, (ii) $F(\infty)=\lim _{x \rightarrow \infty} F(x)=1$, (iii) $F$ is nondecreasing, (iv) $F$ is right-continuous: for each $x \in \mathbb{R}$,

$$
F(x+)=\lim _{t \downarrow x} F(t)=F(x) .
$$

It is a fact that the cumulative distribution function of a random variable is a distribution function and that for any distribution function $F$ there is a random variable $X$ for which $F=F_{X}$.

Let $\gamma_{1}$ be the standard Gaussian measure on $\mathbb{R}$ : $\gamma_{1}$ has density

$$
p(t, 0,1)=\frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}
$$

with respect to Lebesgue measure on $\mathbb{R}$. Let $\Phi$ be the cumulative distribution function of $\gamma_{1}$ :

$$
\Phi(x)=\gamma_{1}((-\infty, x])=\int_{-\infty}^{x} d \gamma_{1}(t)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t
$$

We first prove the following lemma about distribution functions. ${ }^{1}$
Lemma 1. Suppose that $F$ is a distribution function, that $G: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
G(-\infty)=\lim _{x \rightarrow-\infty} G(x)=0, \quad G(\infty)=\lim _{x \rightarrow \infty} G(x)=1,
$$

[^0]and that $G$ is differentiable and its derivative satisfies
\[

$$
\begin{equation*}
M=\sup _{x \in \mathbb{R}}\left|G^{\prime}(x)\right|<\infty . \tag{1}
\end{equation*}
$$

\]

Writing

$$
\Delta=\frac{1}{2 M} \sup _{x \in \mathbb{R}}|F(x)-G(x)|
$$

there is some $a \in \mathbb{R}$ such that for all $T>0$,

$$
\begin{aligned}
& 2 M T \Delta\left(3 \int_{0}^{T \Delta} \frac{1-\cos x}{x^{2}} d x-\pi\right) \\
\leq & \left|\int_{\mathbb{R}} \frac{1-\cos T x}{x^{2}}(F(x+a)-G(x+a)) d x\right| .
\end{aligned}
$$

Proof. Because $G(-\infty)=0$ and $G(\infty)=1$, there is some compact interval $K$ such that $-1<G(x)<2$ for $x \in \mathbb{R} \backslash K$. Then, because $G$ is continuous it is bounded on $K$, showing that $G$ is bounded on $\mathbb{R}$, and because $M>0$ we get $\Delta<\infty$.

Write $H=F-G$. Because $H(\infty)=0$ and $H(-\infty)=0$, there is a compact interval $K$ for which

$$
2 M \Delta=\sup _{x \in \mathbb{R}}|H(x)|=\sup _{x \in K}|H(x)| .
$$

By the Bolzano-Weierstrass theorem, either there is a sequence $u_{n} \in K$ increasing to some $u \in K$ such that $\left|H\left(u_{n}\right)\right| \uparrow 2 M \Delta$ or there is a sequence $u_{n} \in K$ decreasing to some $u \in K$ such that $\left|H\left(u_{n}\right)\right| \uparrow 2 M \Delta .^{2}$ In the first case, either there is a subsequence $v_{n}$ of $u_{n}$ such that $\left|H\left(v_{n}\right)\right|=H\left(v_{n}\right)$ or there is a subsequence $v_{n}$ of $u_{n}$ such that $\left|H\left(v_{n}\right)\right|=-H\left(v_{n}\right)$. In the first subcase we get $H(u-)=2 M \Delta$, thus

$$
\begin{equation*}
F(u-)-G(u)=2 M \Delta \tag{2}
\end{equation*}
$$

In the second subcase we get $H(u-)=-2 M \Delta$, thus

$$
\begin{equation*}
F(u-)-G(u)=-2 M \Delta . \tag{3}
\end{equation*}
$$

In the second case, either there is a subsequence $v_{n}$ of $u_{n}$ such that $\left|H\left(v_{n}\right)\right|=$ $H\left(v_{n}\right)$ or there is a subsequence $v_{n}$ of $u_{n}$ such that $\mid H\left(v_{n}\right)=-H\left(v_{n}\right)$. In the first subcase we get $H(u+)=2 M \Delta$, thus

$$
\begin{equation*}
F(u)-G(u)=2 M \Delta \tag{4}
\end{equation*}
$$

In the second subcase we get $H(u+)=2 M \Delta$, thus

$$
\begin{equation*}
F(u)-G(u)=-2 M \Delta . \tag{5}
\end{equation*}
$$

[^1]We now deal with the subcase (3). Let $a=u-\Delta$. For $|x|<\Delta$, by (1) we have

$$
|G(x+a)-G(u)|=\left|\int_{u}^{u+x-\Delta} G^{\prime}(y) d y\right| \leq|x-\Delta| M=(\Delta-x) M
$$

whence

$$
G(x+a) \geq G(u)+(x-\Delta) M
$$

Because $x+a=x+u-\Delta<u$ and as $F$ is nondecreasing and using (3),

$$
\begin{aligned}
F(x+a)-G(x+a) & \leq F(u-)-G(x+a) \\
& \leq F(u-)-(G(u)+(x-\Delta) M) \\
& =-M(x+\Delta) .
\end{aligned}
$$

Then, because $x \mapsto \frac{1-\cos T x}{x^{2}} x$ is an odd function,

$$
\begin{aligned}
\int_{-\Delta}^{\Delta} \frac{1-\cos T x}{x^{2}}(F(x+a)-G(x+a)) d x & \leq-M \int_{-\Delta}^{\Delta} \frac{1-\cos T x}{x^{2}}(x+\Delta) d x \\
& =-2 M \Delta \int_{0}^{\Delta} \frac{1-\cos T x}{x^{2}} d x
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left|\int_{(-\infty,-\Delta) \cup(\Delta, \infty)} \frac{1-\cos T x}{x^{2}}(F(x+a)-G(x+a)) d x\right| \\
\leq & 2 M \Delta \int_{(-\infty,-\Delta) \cup(\Delta, \infty)} \frac{1-\cos T x}{x^{2}} d x \\
= & 4 M \Delta \int_{\Delta}^{\infty} \frac{1-\cos T x}{x^{2}} d x .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \int_{\mathbb{R}} \frac{1-\cos T x}{x^{2}}(F(x+a)-G(x+a)) d x \\
\leq & -2 M \Delta \int_{0}^{\Delta} \frac{1-\cos T x}{x^{2}} d x+4 M \Delta \int_{\Delta}^{\infty} \frac{1-\cos T x}{x^{2}} d x \\
= & 2 M \Delta\left(-3 \int_{0}^{\Delta} \frac{1-\cos T x}{x^{2}} d x+2 \int_{0}^{\infty} \frac{1-\cos T x}{x^{2}} d x\right) \\
= & 2 M \Delta\left(-3 \int_{0}^{\Delta} \frac{1-\cos T x}{x^{2}} d x+2 \cdot \frac{\pi T}{2}\right) \\
= & 2 M T \Delta\left(-3 \int_{0}^{T \Delta} \frac{1-\cos x}{x^{2}} d x+\pi\right),
\end{aligned}
$$

which yields the claim of the lemma, for the subcase (3).

We now prove a lemma that gives an inequality for characteristic functions. ${ }^{3}$ We remark that because $F$ is a distribution function, it makes sense to speak about the measure induced by $F$, and because $G$ is of bounded variation and is continuous, its variation function $V_{G}$ is continuous and the functions $V_{G}-G$ and $V_{G}$ are nondecreasing, and it thus makes sense to speak about the signed measure induced by $G=V_{G}-\left(V_{G}-G\right)$, which is equal to the difference of the measures induced by $V_{G}$ and $V_{G}-G$.

Lemma 2. Suppose that $F$ is a distribution function, that $G: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
G(-\infty)=\lim _{x \rightarrow-\infty} G(x)=0, \quad G(\infty)=\lim _{x \rightarrow \infty} G(x)=1,
$$

that $G$ is differentiable and of bounded variation and that its derivative satisfies

$$
M=\sup _{x \in \mathbb{R}}\left|G^{\prime}(x)\right|<\infty,
$$

and that

$$
\int_{\mathbb{R}}|F-G| d x<\infty
$$

Write

$$
\Delta=\frac{1}{2 M} \sup _{x \in \mathbb{R}}|F(x)-G(x)|
$$

and

$$
f(t)=\int_{\mathbb{R}} e^{i t x} d F(x), \quad g(t)=\int_{\mathbb{R}} e^{i t x} d G(x)
$$

Then for all $T>0$,

$$
\Delta \leq \frac{1}{\pi M} \int_{0}^{T} \frac{|f(t)-g(t)|}{t} d t+\frac{12}{\pi T}
$$

Proof. For any $t \in \mathbb{R}$, because $(F-G)(-\infty)=0$ and $(F-G)(\infty)=0$ and because $\int_{\mathbb{R}}|F-G| d x<\infty$, integrating by parts gives

$$
\begin{aligned}
f(t)-g(t) & =\int_{\mathbb{R}} e^{i t x} d F(x)-\int_{\mathbb{R}} e^{i t x} d G(x) \\
& =\int_{\mathbb{R}} e^{i t x} d(F-G)(x) \\
& =-i t \int_{\mathbb{R}}(F-G)(x) e^{i t x} d x .
\end{aligned}
$$

Take $a$ to be the real number that Lemma 1 yields. As

$$
\frac{f(t)-g(t)}{-i t} e^{-i t a}(T-|t|)=(T-|t|) \int_{\mathbb{R}}(F(x+a)-G(x+a)) e^{i t x} d x
$$

[^2]we obtain, using Fubini's theorem,
\[

$$
\begin{aligned}
& \int_{-T}^{T} \frac{f(t)-g(t)}{-i t} e^{-i t a}(T-|t|) d t \\
= & \int_{-T}^{T}\left((T-|t|) \int_{\mathbb{R}}(F(x+a)-G(x+a)) e^{i t x} d x\right) d t \\
= & \int_{\mathbb{R}}(F(x+a)-G(x+a))\left(\int_{-T}^{T}(T-|t|) e^{i t x} d t\right) d x \\
= & 2 \int_{\mathbb{R}}(F(x+a)-G(x+a)) \frac{1-\cos T x}{x^{2}} d x .
\end{aligned}
$$
\]

Therefore, because $F$ and $G$ are real valued and thus $|f(-t)-g(-t)|=|\overline{f(t)-g(t)}|=$ $|f(t)-g(t)|$,

$$
\begin{aligned}
\left|\int_{\mathbb{R}}(F(x+a)-G(x+a)) \frac{1-\cos T x}{x^{2}} d x\right| & \leq \frac{1}{2} \int_{-T}^{T} \frac{|f(t)-g(t)|}{|t|}(T-|t|) d t \\
& =\int_{0}^{T} \frac{|f(t)-g(t)|}{t}(T-t) d t \\
& \leq T \int_{0}^{T} \frac{|f(t)-g(t)|}{t} d t .
\end{aligned}
$$

Using this with Lemma 1,

$$
2 M T \Delta\left(3 \int_{0}^{T \Delta} \frac{1-\cos x}{x^{2}} d x-\pi\right) \leq T \int_{0}^{T} \frac{|f(t)-g(t)|}{t} d t .
$$

But

$$
\begin{aligned}
3 \int_{0}^{T \Delta} \frac{1-\cos x}{x^{2}} d x-\pi & =3 \int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x-3 \int_{T \Delta}^{\infty} \frac{1-\cos x}{x^{2}} d x-\pi \\
& \geq 3 \int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x-6 \int_{T \Delta}^{\infty} \frac{1}{x^{2}} d x-\pi \\
& =3 \cdot \frac{\pi}{2}-\frac{6}{T \Delta}-\pi \\
& =\frac{\pi}{2}-\frac{6}{T \Delta},
\end{aligned}
$$

with which we have

$$
2 M T \Delta\left(3 \int_{0}^{T \Delta} \frac{1-\cos x}{x^{2}} d x-\pi\right) \geq 2 M T \Delta \cdot\left(\frac{\pi}{2}-\frac{6}{T \Delta}\right)=M T \Delta \pi-12 M
$$

and hence

$$
M T \Delta \pi-12 M \leq T \int_{0}^{T} \frac{|f(t)-g(t)|}{t} d t
$$

i.e.

$$
\Delta \leq \frac{12}{\pi T}+\frac{1}{\pi M} \int_{0}^{T} \frac{|f(t)-g(t)|}{t} d t
$$

proving the claim.

## 2 Berry-Esseen theorem

Let $X_{n, j}, n \geq 1,1 \leq j \leq k_{n}$, be $L^{3}$ random variables, with $k_{n} \rightarrow \infty$, such that for each $n$, the random variables $X_{n, j}, 1 \leq j \leq k_{n}$, are independent, and such that for all $n$ and $j$,

$$
E\left(X_{n, j}\right)=0 .
$$

Let $F_{n, j}$ be the cumulative distribution function of $X_{n, j}$ :

$$
F_{n, j}(x)=P\left(X_{n, j} \leq x\right)
$$

Let $f_{n, j}$ be the characteristic function of $X_{n, j}$ (equivalently, the characteristic function of $F_{n, j}$ ):

$$
f_{n, j}(t)=\int_{\mathbb{R}} e^{i t x} d\left(X_{n, j_{*}} P\right)(x)=\int_{\mathbb{R}} e^{i t x} d F_{n, j}(x) .
$$

Write, for $n \geq 1$,

$$
S_{n}=\sum_{j=1}^{k_{n}} X_{n, j}
$$

and let $F_{n}$ be the cumulative distribution function of $S_{n}$ :

$$
F_{n}(x)=P\left(S_{n} \leq x\right)
$$

Also, let $f_{n}$ be the characteristic function of $S_{n}$ (equivalently, the characteristic function of $F_{n}$ ). Because $X_{n, j}, 1 \leq j \leq k_{n}$, are independent, we have $S_{n *} P=$ $\left(X_{n, 1_{*}} P\right) * \cdots *\left(X_{n, k_{n *}} P\right)$ and hence

$$
f_{n}(t)=\int_{\mathbb{R}} e^{i t x} d\left(S_{n *} P\right)(x)=\prod_{j=1}^{k_{n}} f_{n, j}(t)
$$

For $n \geq 1$ and $1 \leq j \leq k_{n}$, write

$$
\sigma_{n, j}^{2}=E\left(X_{n, j}^{2}\right), \quad s_{n}^{2}=\sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}
$$

and

$$
\gamma_{n, j}=E\left(\left|X_{n, j}\right|^{3}\right), \quad \Gamma_{n}=\sum_{j=1}^{k_{n}} \gamma_{n, j}
$$

We further assume that for each $n$,

$$
\begin{equation*}
s_{n}^{2}=\sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}=1 \tag{6}
\end{equation*}
$$

We will use the following inequality which we state separately because it is of general use.

Lemma 3. For $n \geq 1$ and $|z|<1$,

$$
\left|\log (1+z)-\sum_{m=1}^{n-1} \frac{(-1)^{m-1} z^{m}}{m}\right| \leq \frac{|z|^{n}}{n(1-|z|)}
$$

We now prove an inequality for $f_{n}$, the characteristic function of $S_{n} .{ }^{4}$
Lemma 4. For $n \geq 1$, if $|t|<\frac{1}{2 \Gamma_{n}^{1 / 3}}$ then

$$
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq \Gamma_{n}|t|^{3} e^{-t^{2} / 2}
$$

Proof. For $1 \leq j \leq k_{n}$ and $l \geq 0$ and $v \in \mathbb{R}$,

$$
f_{n, j}^{(l)}(v)=(i)^{l} E\left(X_{n, j}^{l} e^{i v X_{n, j}}\right) .
$$

Thus

$$
f_{n, j}(0)=1, \quad f_{n, j}^{\prime}(0)=i E\left(X_{n, j}\right)=0, \quad f_{n, j}^{\prime \prime}(0)=-E\left(X_{n, j}^{2}\right)=-\sigma_{n, j}^{2},
$$

and

$$
f_{n, j}^{\prime \prime \prime}(v)=-i E\left(X_{n, j}^{3} e^{i v X_{n, j}}\right)
$$

Then by Taylor's theorem, there is some $s$ between 0 and $t$ such that

$$
f_{n, j}(t)=1-\frac{\sigma_{n, j}^{2}}{2} t^{2}-\frac{i E\left(X_{n, j}^{3} e^{i s X_{n, j}}\right)}{6} t^{3} .
$$

Put

$$
-i E\left(X_{n, j}^{3} e^{i s X_{n, j}}\right)=\theta \gamma_{n, j},
$$

for which

$$
|\theta|=\frac{\left|E\left(X_{n, j}^{3} e^{i s X_{n, j}}\right)\right|}{E\left(\left|X_{n, j}\right|^{3}\right)} \leq 1
$$

Because the $L^{2}$ norm is upper bounded by the $L^{3}$ norm and because $|t|<\frac{1}{2 \Gamma_{n}^{1 / 3}}$,

$$
\left|\sigma_{n, j} t\right| \leq\left|\gamma_{n, j}^{1 / 3} t\right| \leq\left|\Gamma_{n}^{1 / 3} t\right|<\frac{1}{2}
$$

[^3]and hence
\[

$$
\begin{aligned}
\left|f_{n, j}(t)-1\right| & =\left|-\frac{\sigma_{n, j}^{2}}{2} t^{2}+\frac{\theta \gamma_{n, j} t^{3}}{6}\right| \\
& \leq \frac{1}{2}\left|\sigma_{n, j} t\right|^{2}+\frac{\gamma_{n, j}}{48 \Gamma_{n}} \\
& <\frac{1}{8}+\frac{1}{48} \\
& <\frac{1}{4}
\end{aligned}
$$
\]

Lemma 3 and the inequality $|a+b|^{2} \leq 2\left(|a|^{2}+|b|^{2}\right)$ then tell us that

$$
\begin{aligned}
\left|\log f_{n, j}(t)-\left(f_{n, j}(t)-1\right)\right| & \leq \frac{\left|f_{n, j}(t)-1\right|^{2}}{2\left(1-\left|f_{n, j}(t)-1\right|\right)} \\
& <\frac{2}{3}\left|f_{n, j}(t)-1\right|^{2} \\
& =\frac{2}{3}\left|-\frac{\sigma_{n, j}^{2}}{2} t^{2}+\frac{\theta \gamma_{n, j}}{6} t^{3}\right|^{2} \\
& \leq \frac{4}{3}\left(\frac{\sigma_{n, j}^{4}}{4} t^{4}+\frac{|\theta|^{2} \gamma_{n, j}^{2}}{36} t^{6}\right)
\end{aligned}
$$

Because $\sigma_{n, j} \leq \gamma_{n, j}^{1 / 3}$ and $|\theta| \leq 1$,

$$
\begin{aligned}
\left|\log f_{n, j}(t)-\left(f_{n, j}(t)-1\right)\right| & \leq \frac{4}{3}\left(\frac{\sigma_{n, j} \gamma_{n, j}}{4} t^{4}+\frac{\gamma_{n, j}^{2}}{36} t^{6}\right) \\
& =\frac{4}{3}\left(\frac{\left|\sigma_{n, j} t\right|}{4}+\frac{\left|\gamma_{n, j}^{1 / 3} t\right|^{3}}{36}\right) \gamma_{n, j}|t|^{3} \\
& \leq \frac{4}{3}\left(\frac{1}{2 \cdot 4}+\frac{1}{8 \cdot 36}\right) \gamma_{n, j}|t|^{3} \\
& =\frac{37}{216} \gamma_{n, j}|t|^{3} \\
& <\frac{1}{5} \gamma_{n, j}|t|^{3} .
\end{aligned}
$$

Combining this with $f_{n, j}(t)=1-\frac{\sigma_{n, j}^{2}}{2} t^{2}+\frac{\theta \gamma_{n, j}}{6} t^{3}$,
$\left|\log f_{n, j}(t)+\frac{\sigma_{n, j}^{2}}{2} t^{2}\right| \leq\left|\frac{\theta \gamma_{n, j}}{6} t^{3}\right|+\frac{1}{5} \gamma_{n, j}|t|^{3} \leq \frac{1}{6} \gamma_{n, j}|t|^{3}+\frac{1}{5} \gamma_{n, j}|t|^{3} \leq \frac{1}{2} \gamma_{n, j}|t|^{3}$.
Because this is true for each $1 \leq j \leq k_{n}$ and because, according to (6),
$\sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}=1$,

$$
\left|\log f_{n}(t)+\frac{t^{2}}{2}\right| \leq \frac{|t| 3^{2}}{2} \sum_{j=1}^{k_{n}} \gamma_{n, j}=\frac{|t|^{3}}{2} \Gamma_{n} .
$$

For any $z \in \mathbb{C}$ it is true that $\left|e^{z}-1\right| \leq|z| e^{|z|}$, so the above yields

$$
\begin{aligned}
\left|f_{n}(t) e^{t^{2} / 2}-1\right| & =\left|\exp \left(\log \left(f_{n}(t) e^{t^{2} / 2}\right)\right)-1\right| \\
& \leq\left|\log \left(f_{n}(t) e^{t^{2} / 2}\right)\right| \exp \left(\left|\log \left(f_{n}(t) e^{t^{2} / 2}\right)\right|\right) \\
& =\left|\log f_{n}(t)+\frac{t^{2}}{2}\right| \exp \left(\left|\log \left(f_{n}(t) e^{t^{2} / 2}\right)\right|\right) \\
& \leq \frac{|t|^{3}}{2} \Gamma_{n} \exp \left(\frac{|t|^{3}}{2} \Gamma_{n}\right) .
\end{aligned}
$$

But $|t|^{3}<\frac{1}{8 \Gamma_{n}}$, so

$$
\left|f_{n}(t) e^{t^{2} / 2}-1\right| \leq \frac{|t|^{3}}{2} \Gamma_{n} e^{1 / 16} \leq|t|^{3} \Gamma_{n}
$$

which completes the proof.
The next lemma gives a different bound on the characteristic function of $S_{n} .{ }^{5}$
Lemma 5. For $n \geq 1$, if $|t|<\frac{1}{4 \Gamma_{n}}$ then

$$
\left|f_{n}(t)\right| \leq e^{-t^{2} / 3}
$$

Proof. First, for a distribution function $F$ with characteristic function $f$,

$$
\begin{aligned}
|f(t)|^{2} & =f(t) \overline{f(t)} \\
& =\int_{\mathbb{R}} e^{i t x} d F(x) \cdot \int_{\mathbb{R}} e^{-i t x} d F(y) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} e^{i t(x-y)} d F(x)\right) d F(y) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \cos t(x-y)+i \sin t(x-y) d F(x)\right) d F(y) .
\end{aligned}
$$

Because $|f(t)|^{2}$ is real it follows that

$$
|f(t)|^{2}=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \cos t(x-y) d F(x)\right) d F(y)
$$

[^4]Using

$$
\left|\cos u-\left(1-\frac{u^{2}}{2}\right)\right| \leq \frac{|u|^{3}}{6}, \quad|a+b|^{p} \leq 2^{p-1}\left(|a|^{p}+|b|^{p}\right)
$$

we have

$$
\left|\cos t(x-y)-\left(1-\frac{(t(x-y))^{2}}{2}\right)\right| \leq \frac{2}{3}\left(|t x|^{3}+|t y|^{3}\right)=\frac{2|t|^{3}}{3}\left(|x|^{3}+|y|^{3}\right)
$$

and then

$$
|f(t)|^{2} \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}} 1-\frac{(t(x-y))^{2}}{2}+\frac{2|t|^{3}}{3}\left(|x|^{3}+|y|^{3}\right) d F(x)\right) d F(y) .
$$

Using this for $f_{n, j}$, and using that $E\left(X_{n, j}\right)=0$,

$$
\begin{aligned}
\left|f_{n, j}(t)\right|^{2} & \leq \int_{\mathbb{R}}\left(\int_{\mathbb{R}} 1-\frac{(t(x-y))^{2}}{2}+\frac{2|t|^{3}}{3}\left(|x|^{3}+|y|^{3}\right) d F_{n, j}(x)\right) d F_{n, j}(y) \\
& =\int_{\mathbb{R}} 1-\frac{t^{2} \sigma_{n, j}^{2}}{2}-\frac{t^{2} y^{2}}{2}+\frac{2|t|^{3} \gamma_{n, j}}{3}+\frac{2|t|^{3}|y|^{3}}{3} d F(y) \\
& =1-\frac{t^{2} \sigma_{n, j}^{2}}{2}-\frac{t^{2} \sigma_{n, j}^{2}}{2}+\frac{2|t|^{3} \gamma_{n, j}}{3}+\frac{2|t|^{3} \gamma_{n, j}}{3} \\
& =1-t^{2} \sigma_{n, j}^{2}+\frac{4|t|^{3} \gamma_{n, j}}{3} .
\end{aligned}
$$

Because $1+u \leq e^{u}$ for all $u \in \mathbb{R}$,

$$
\left|f_{n, j}(t)\right|^{2} \leq \exp \left(-t^{2} \sigma_{n, j}^{2}+\frac{4|t|^{3} \gamma_{n, j}}{3}\right)
$$

Then, by (6),

$$
\begin{aligned}
\left|f_{n}(t)\right|^{2} & =\prod_{j=1}^{k_{n}}\left|f_{n, j}(t)\right|^{2} \\
& \leq \prod_{j=1}^{k_{n}} \exp \left(-t^{2} \sigma_{n, j}^{2}+\frac{4|t|^{3} \gamma_{n, j}}{3}\right) \\
& =\exp \left(-t^{2} \sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}+\frac{4|t|^{3}}{3} \sum_{j=1}^{k_{n}} \gamma_{n, j}\right) \\
& =\exp \left(-t^{2}+\frac{4|t|^{3}}{3} \Gamma_{n}\right)
\end{aligned}
$$

As $|t|<\frac{1}{4 \Gamma_{n}}$,

$$
\left|f_{n}(t)\right| \leq \exp \left(-\frac{t^{2}}{2}+\frac{2|t|^{3}}{3} \Gamma_{n}\right) \leq \exp \left(-\frac{t^{2}}{2}+\frac{2|t|^{2}}{12}\right)=e^{-t^{2} / 3}
$$

proving the claim.

We now combine Lemma 4 and Lemma 5. ${ }^{6}$
Lemma 6. For $n \geq 1$, if $|t|<\frac{1}{4 \Gamma_{n}}$ then

$$
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq 16 \Gamma_{n}|t|^{3} e^{-t^{2} / 3} .
$$

Proof. Either $|t|<\frac{1}{2 \Gamma_{n}^{1 / 3}}$ or $\frac{1}{2 \Gamma_{n}^{1 / 3}} \leq|t|<\frac{1}{4 \Gamma_{n}}$. In the first case, Lemma 4 tells us

$$
\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq \Gamma_{n}|t|^{3} e^{-t^{2} / 2} \leq \Gamma_{n}|t|^{3} e^{-t^{2} / 3} \leq 16 \Gamma_{n}|t|^{3} e^{-t^{2} / 3} .
$$

In the second case, Lemma 5 tells us

$$
\left|f_{n}(t)\right| \leq e^{-t^{2} / 3},
$$

and so, as in this case we have $1 \leq 8 \Gamma_{n}|t|^{3}$,
$\left|f_{n}(t)-e^{-t^{2} / 2}\right| \leq\left|f_{n}(t)\right|+e^{-t^{2} / 2} \leq e^{-t^{2} / 3}+e^{-t^{2} / 2} \leq 2 e^{-t^{2} / 3} \leq 16 \Gamma_{n}|t|^{3} e^{-t^{2} / 3}$,
showing that the claim is true in both cases.
We finally prove the Berry-Esseen theorem. ${ }^{7}$
Theorem 7 (Berry-Esseen theorem). There is some $A_{0}<36$ such that for each $n \geq 1$,

$$
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-\Phi(x)\right| \leq A_{0} \Gamma_{n} .
$$

Proof. Let $Z$ be a random variable with $Z_{*} P=\gamma_{1}$, i.e. whose cumulative distribution function is $\Phi$. By (6) and because $X_{n, j}, 1 \leq j \leq k_{n}$, are independent and satisfy $E\left(X_{n, j}\right)=0$,

$$
E\left(S_{n}^{2}\right)=\sum_{j=1}^{k_{n}} E\left(X_{n, j}^{2}\right)=\sum_{j=1}^{k_{n}} \sigma_{n, j}^{2}=1
$$

If $x<0$ then by Chebyshev's inequality

$$
F_{n}(x)=P\left(S_{n} \leq x\right)=P\left(-S_{n} \geq-x\right) \leq \frac{1}{x^{2}} E\left(\left|S_{n}\right|^{2}\right)=\frac{1}{x^{2}}
$$

and

$$
\Phi(x)=P(Z \leq x)=P(-Z \geq-x) \leq \frac{1}{x^{2}} E\left(|Z|^{2}\right)=\frac{1}{x^{2}}
$$

[^5]If $x>0$ then also by Chebyshev's inequality

$$
1-F_{n}(x)=1-P\left(S_{n} \leq x\right)=P\left(S_{n}>x\right) \leq \frac{1}{x^{2}}
$$

and

$$
1-\Phi(x)=1-P(Z \leq x)=P(Z>x) \leq \frac{1}{x^{2}}
$$

Therefore, because $F_{n}$ and $\Phi$ are nonnegative and $1-F_{n}$ and $1-\Phi$ are nonnegative, for all $x \in \mathbb{R}$ we have

$$
\left|F_{n}(x)-\Phi(x)\right| \leq \frac{1}{x^{2}}
$$

Then, because $\left|F_{n}\right| \leq 1$ and $|\Phi| \leq 1$,

$$
\int_{\mathbb{R}}\left|F_{n}(x)-\Phi(x)\right| d x \leq \int_{|x| \leq 1} 2 d x+\int_{|x|>1} \frac{1}{x^{2}} d x=6<\infty .
$$

$\Phi^{\prime}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \leq \frac{1}{\sqrt{2 \pi}}$. We apply Lemma 2 with $F=F_{n}, G=\Phi$, and $M=\frac{1}{\sqrt{2 \pi}}$, and because the characteristic function of $\Phi$ is $\phi(t)=e^{-t^{2} / 2}$, we obtain for $T=\frac{1}{4 \Gamma_{n}}$,

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-\Phi(x)\right| & \leq \frac{2}{\pi} \int_{0}^{\frac{1}{4 \Gamma_{n}}} \frac{\left|f_{n}(t)-\phi(t)\right|}{t} d t+\frac{96 M \Gamma_{n}}{\pi} \\
& =\frac{2}{\pi} \int_{0}^{\frac{1}{4 \Gamma_{n}}} \frac{\left|f_{n}(t)-e^{-t^{2} / 2}\right|}{t}+\frac{96 \Gamma_{n}}{\pi \sqrt{2 \pi}}
\end{aligned}
$$

Then applying Lemma 6,

$$
\begin{aligned}
\sup _{x \in \mathbb{R}}\left|F_{n}(x)-\Phi(x)\right| & \leq \frac{2}{\pi} \int_{0}^{\frac{1}{4 \Gamma_{n}}} \frac{16 \Gamma_{n} t^{3} e^{-t^{2} / 3}}{t} d t+\frac{96 \Gamma_{n}}{\pi \sqrt{2 \pi}} \\
& =\Gamma_{n}\left(\frac{32}{\pi} \int_{0}^{\frac{1}{4 \Gamma_{n}}} t^{2} e^{-t^{2} / 3} d t+\frac{96}{\pi \sqrt{2 \pi}}\right) .
\end{aligned}
$$

This proves the claim with

$$
A_{0}=\frac{32}{\pi} \int_{0}^{\infty} t^{2} e^{-t^{2} / 3} d t+\frac{96}{\pi \sqrt{2 \pi}}=\frac{32}{\pi} \cdot \frac{3 \sqrt{3 \pi}}{4}+\frac{96}{\pi \sqrt{2 \pi}}=35.64 \ldots
$$


[^0]:    ${ }^{1}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 236, Lemma 1; cf. Allan Gut, Probability: A Graduate Course, second ed., p. 358, Lemma 6.1.

[^1]:    ${ }^{2}$ In the proof in Chung there are merely two cases but it is not explained why those are exhaustive.

[^2]:    ${ }^{3}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 237, Lemma 2; Zhengyan Lin and Zhidong Bai, Probability Inequalities, p. 29, Theorem 4.1.a.

[^3]:    ${ }^{4}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 239, Lemma 3

[^4]:    ${ }^{5}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 4.

[^5]:    ${ }^{6}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 5.
    ${ }^{7}$ Kai Lai Chung, A Course in Probability Theory, third ed., p. 235, Theorem 7.4.1; cf. Allan Gut, Probability: A Graduate Course, second ed., p. 356, Theorem 6.2; John E. Kolassa, Series Approximation Methods in Statistics, p. 25, Theorem 2.6.1; Alexandr A. Borovkov, Probability Theory, p. 659, Theorem A5.1; Ivan Nourdin and Giovanni Peccati, Normal Approximations with Malliavin Calculus: From Stein's Method to Universality, p. 71, Theorem 3.7.1.

