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1 Cumulative distribution functions

For a random variable X : (Ω,F , P ) → R, we define its cumulative distribu-
tion function FX : R → [0, 1] by

FX(x) = P (X ≤ x) =

∫
{X≤x}

dP =

∫
t≤x

d(X∗P )(t) = (X∗P )((−∞, x]).

A distribution function is a function F : R → [0, 1] such that (i) F (−∞) =
limx→−∞ F (x) = 0, (ii) F (∞) = limx→∞ F (x) = 1, (iii) F is nondecreasing, (iv)
F is right-continuous: for each x ∈ R,

F (x+) = lim
t↓x

F (t) = F (x).

It is a fact that the cumulative distribution function of a random variable is a
distribution function and that for any distribution function F there is a random
variable X for which F = FX .

Let γ1 be the standard Gaussian measure on R: γ1 has density

p(t, 0, 1) =
1√
2π

e−t2/2

with respect to Lebesgue measure on R. Let Φ be the cumulative distribution
function of γ1:

Φ(x) = γ1((−∞, x]) =

∫ x

−∞
dγ1(t) =

∫ x

−∞

1√
2π

e−t2/2dt.

We first prove the following lemma about distribution functions.1

Lemma 1. Suppose that F is a distribution function, that G : R → R satisfies

G(−∞) = lim
x→−∞

G(x) = 0, G(∞) = lim
x→∞

G(x) = 1,

1Kai Lai Chung, A Course in Probability Theory, third ed., p. 236, Lemma 1; cf. Allan
Gut, Probability: A Graduate Course, second ed., p. 358, Lemma 6.1.
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and that G is differentiable and its derivative satisfies

M = sup
x∈R

|G′(x)| < ∞. (1)

Writing

∆ =
1

2M
sup
x∈R

|F (x)−G(x)|,

there is some a ∈ R such that for all T > 0,

2MT∆

(
3

∫ T∆

0

1− cosx

x2
dx− π

)

≤
∣∣∣∣∫

R

1− cosTx

x2
(F (x+ a)−G(x+ a))dx

∣∣∣∣ .
Proof. Because G(−∞) = 0 and G(∞) = 1, there is some compact interval K
such that −1 < G(x) < 2 for x ∈ R \ K. Then, because G is continuous it is
bounded on K, showing that G is bounded on R, and because M > 0 we get
∆ < ∞.

Write H = F −G. Because H(∞) = 0 and H(−∞) = 0, there is a compact
interval K for which

2M∆ = sup
x∈R

|H(x)| = sup
x∈K

|H(x)|.

By the Bolzano-Weierstrass theorem, either there is a sequence un ∈ K increas-
ing to some u ∈ K such that |H(un)| ↑ 2M∆ or there is a sequence un ∈ K
decreasing to some u ∈ K such that |H(un)| ↑ 2M∆.2 In the first case, either
there is a subsequence vn of un such that |H(vn)| = H(vn) or there is a sub-
sequence vn of un such that |H(vn)| = −H(vn). In the first subcase we get
H(u−) = 2M∆, thus

F (u−)−G(u) = 2M∆. (2)

In the second subcase we get H(u−) = −2M∆, thus

F (u−)−G(u) = −2M∆. (3)

In the second case, either there is a subsequence vn of un such that |H(vn)| =
H(vn) or there is a subsequence vn of un such that |H(vn) = −H(vn). In the
first subcase we get H(u+) = 2M∆, thus

F (u)−G(u) = 2M∆. (4)

In the second subcase we get H(u+) = 2M∆, thus

F (u)−G(u) = −2M∆. (5)

2In the proof in Chung there are merely two cases but it is not explained why those are
exhaustive.
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We now deal with the subcase (3). Let a = u−∆. For |x| < ∆, by (1) we have

|G(x+ a)−G(u)| =

∣∣∣∣∣
∫ u+x−∆

u

G′(y)dy

∣∣∣∣∣ ≤ |x−∆|M = (∆− x)M,

whence
G(x+ a) ≥ G(u) + (x−∆)M.

Because x+ a = x+ u−∆ < u and as F is nondecreasing and using (3),

F (x+ a)−G(x+ a) ≤ F (u−)−G(x+ a)

≤ F (u−)− (G(u) + (x−∆)M)

= −M(x+∆).

Then, because x 7→ 1−cosTx
x2 x is an odd function,∫ ∆

−∆

1− cosTx

x2
(F (x+ a)−G(x+ a))dx ≤ −M

∫ ∆

−∆

1− cosTx

x2
(x+∆)dx

= −2M∆

∫ ∆

0

1− cosTx

x2
dx.

On the other hand,∣∣∣∣∣
∫
(−∞,−∆)∪(∆,∞)

1− cosTx

x2
(F (x+ a)−G(x+ a))dx

∣∣∣∣∣
≤2M∆

∫
(−∞,−∆)∪(∆,∞)

1− cosTx

x2
dx

=4M∆

∫ ∞

∆

1− cosTx

x2
dx.

Thus ∫
R

1− cosTx

x2
(F (x+ a)−G(x+ a))dx

≤− 2M∆

∫ ∆

0

1− cosTx

x2
dx+ 4M∆

∫ ∞

∆

1− cosTx

x2
dx

=2M∆

(
−3

∫ ∆

0

1− cosTx

x2
dx+ 2

∫ ∞

0

1− cosTx

x2
dx

)

=2M∆

(
−3

∫ ∆

0

1− cosTx

x2
dx+ 2 · πT

2

)

=2MT∆

(
−3

∫ T∆

0

1− cosx

x2
dx+ π

)
,

which yields the claim of the lemma, for the subcase (3).
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We now prove a lemma that gives an inequality for characteristic functions.3

We remark that because F is a distribution function, it makes sense to speak
about the measure induced by F , and because G is of bounded variation and
is continuous, its variation function VG is continuous and the functions VG −G
and VG are nondecreasing, and it thus makes sense to speak about the signed
measure induced by G = VG − (VG −G), which is equal to the difference of the
measures induced by VG and VG −G.

Lemma 2. Suppose that F is a distribution function, that G : R → R satisfies

G(−∞) = lim
x→−∞

G(x) = 0, G(∞) = lim
x→∞

G(x) = 1,

that G is differentiable and of bounded variation and that its derivative satisfies

M = sup
x∈R

|G′(x)| < ∞,

and that ∫
R
|F −G|dx < ∞.

Write

∆ =
1

2M
sup
x∈R

|F (x)−G(x)|

and

f(t) =

∫
R
eitxdF (x), g(t) =

∫
R
eitxdG(x).

Then for all T > 0,

∆ ≤ 1

πM

∫ T

0

|f(t)− g(t)|
t

dt+
12

πT
.

Proof. For any t ∈ R, because (F − G)(−∞) = 0 and (F − G)(∞) = 0 and
because

∫
R |F −G|dx < ∞, integrating by parts gives

f(t)− g(t) =

∫
R
eitxdF (x)−

∫
R
eitxdG(x)

=

∫
R
eitxd(F −G)(x)

= −it

∫
R
(F −G)(x)eitxdx.

Take a to be the real number that Lemma 1 yields. As

f(t)− g(t)

−it
e−ita(T − |t|) = (T − |t|)

∫
R
(F (x+ a)−G(x+ a))eitxdx,

3Kai Lai Chung, A Course in Probability Theory, third ed., p. 237, Lemma 2; Zhengyan
Lin and Zhidong Bai, Probability Inequalities, p. 29, Theorem 4.1.a.
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we obtain, using Fubini’s theorem,∫ T

−T

f(t)− g(t)

−it
e−ita(T − |t|)dt

=

∫ T

−T

(
(T − |t|)

∫
R
(F (x+ a)−G(x+ a))eitxdx

)
dt

=

∫
R
(F (x+ a)−G(x+ a))

(∫ T

−T

(T − |t|)eitxdt

)
dx

=2

∫
R
(F (x+ a)−G(x+ a))

1− cosTx

x2
dx.

Therefore, because F andG are real valued and thus |f(−t)−g(−t)| = |f(t)− g(t)| =
|f(t)− g(t)|,∣∣∣∣∫

R
(F (x+ a)−G(x+ a))

1− cosTx

x2
dx

∣∣∣∣ ≤ 1

2

∫ T

−T

|f(t)− g(t)|
|t|

(T − |t|)dt

=

∫ T

0

|f(t)− g(t)|
t

(T − t)dt

≤ T

∫ T

0

|f(t)− g(t)|
t

dt.

Using this with Lemma 1,

2MT∆

(
3

∫ T∆

0

1− cosx

x2
dx− π

)
≤ T

∫ T

0

|f(t)− g(t)|
t

dt.

But

3

∫ T∆

0

1− cosx

x2
dx− π = 3

∫ ∞

0

1− cosx

x2
dx− 3

∫ ∞

T∆

1− cosx

x2
dx− π

≥ 3

∫ ∞

0

1− cosx

x2
dx− 6

∫ ∞

T∆

1

x2
dx− π

= 3 · π
2
− 6

T∆
− π

=
π

2
− 6

T∆
,

with which we have

2MT∆

(
3

∫ T∆

0

1− cosx

x2
dx− π

)
≥ 2MT∆ ·

(
π

2
− 6

T∆

)
= MT∆π − 12M,

and hence

MT∆π − 12M ≤ T

∫ T

0

|f(t)− g(t)|
t

dt,
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i.e.

∆ ≤ 12

πT
+

1

πM

∫ T

0

|f(t)− g(t)|
t

dt,

proving the claim.

2 Berry-Esseen theorem

Let Xn,j , n ≥ 1, 1 ≤ j ≤ kn, be L3 random variables, with kn → ∞, such that
for each n, the random variables Xn,j , 1 ≤ j ≤ kn, are independent, and such
that for all n and j,

E(Xn,j) = 0.

Let Fn,j be the cumulative distribution function of Xn,j :

Fn,j(x) = P (Xn,j ≤ x).

Let fn,j be the characteristic function of Xn,j (equivalently, the characteristic
function of Fn,j):

fn,j(t) =

∫
R
eitxd(Xn,j∗P )(x) =

∫
R
eitxdFn,j(x).

Write, for n ≥ 1,

Sn =

kn∑
j=1

Xn,j ,

and let Fn be the cumulative distribution function of Sn:

Fn(x) = P (Sn ≤ x)

Also, let fn be the characteristic function of Sn (equivalently, the characteristic
function of Fn). Because Xn,j , 1 ≤ j ≤ kn, are independent, we have Sn∗P =
(Xn,1∗P ) ∗ · · · ∗ (Xn,kn∗P ) and hence

fn(t) =

∫
R
eitxd(Sn∗P )(x) =

kn∏
j=1

fn,j(t).

For n ≥ 1 and 1 ≤ j ≤ kn, write

σ2
n,j = E(X2

n,j), s2n =

kn∑
j=1

σ2
n,j

and

γn,j = E(|Xn,j |3), Γn =

kn∑
j=1

γn,j .
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We further assume that for each n,

s2n =

kn∑
j=1

σ2
n,j = 1. (6)

We will use the following inequality which we state separately because it is
of general use.

Lemma 3. For n ≥ 1 and |z| < 1,∣∣∣∣∣log(1 + z)−
n−1∑
m=1

(−1)m−1zm

m

∣∣∣∣∣ ≤ |z|n

n(1− |z|)
.

We now prove an inequality for fn, the characteristic function of Sn.
4

Lemma 4. For n ≥ 1, if |t| < 1

2Γ
1/3
n

then

|fn(t)− e−t2/2| ≤ Γn|t|3e−t2/2.

Proof. For 1 ≤ j ≤ kn and l ≥ 0 and v ∈ R,

f
(l)
n,j(v) = (i)lE(X l

n,je
ivXn,j ).

Thus

fn,j(0) = 1, f ′
n,j(0) = iE(Xn,j) = 0, f ′′

n,j(0) = −E(X2
n,j) = −σ2

n,j ,

and
f ′′′
n,j(v) = −iE(X3

n,je
ivXn,j ).

Then by Taylor’s theorem, there is some s between 0 and t such that

fn,j(t) = 1−
σ2
n,j

2
t2 −

iE(X3
n,je

isXn,j )

6
t3.

Put
−iE(X3

n,je
isXn,j ) = θγn,j ,

for which

|θ| =
|E(X3

n,je
isXn,j )|

E(|Xn,j |3)
≤ 1.

Because the L2 norm is upper bounded by the L3 norm and because |t| < 1

2Γ
1/3
n

,

|σn,jt| ≤ |γ1/3
n,j t| ≤ |Γ1/3

n t| < 1

2
,

4Kai Lai Chung, A Course in Probability Theory, third ed., p. 239, Lemma 3.
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and hence

|fn,j(t)− 1| =

∣∣∣∣∣−σ2
n,j

2
t2 +

θγn,jt
3

6

∣∣∣∣∣
≤ 1

2
|σn,jt|2 +

γn,j
48Γn

<
1

8
+

1

48

<
1

4
.

Lemma 3 and the inequality |a+ b|2 ≤ 2(|a|2 + |b|2) then tell us that

|log fn,j(t)− (fn,j(t)− 1)| ≤ |fn,j(t)− 1|2

2(1− |fn,j(t)− 1|)

<
2

3
|fn,j(t)− 1|2

=
2

3

∣∣∣∣∣−σ2
n,j

2
t2 +

θγn,j
6

t3

∣∣∣∣∣
2

≤ 4

3

(
σ4
n,j

4
t4 +

|θ|2γ2
n,j

36
t6

)
.

Because σn,j ≤ γ
1/3
n,j and |θ| ≤ 1,

|log fn,j(t)− (fn,j(t)− 1)| ≤ 4

3

(
σn,jγn,j

4
t4 +

γ2
n,j

36
t6

)

=
4

3

(
|σn,jt|

4
+

|γ1/3
n,j t|3

36

)
γn,j |t|3

≤ 4

3

(
1

2 · 4
+

1

8 · 36

)
γn,j |t|3

=
37

216
γn,j |t|3

<
1

5
γn,j |t|3.

Combining this with fn,j(t) = 1− σ2
n,j

2 t2 +
θγn,j

6 t3,∣∣∣∣∣log fn,j(t) + σ2
n,j

2
t2

∣∣∣∣∣ ≤
∣∣∣∣θγn,j6

t3
∣∣∣∣+ 1

5
γn,j |t|3 ≤ 1

6
γn,j |t|3 +

1

5
γn,j |t|3 ≤ 1

2
γn,j |t|3.

Because this is true for each 1 ≤ j ≤ kn and because, according to (6),
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∑kn

j=1 σ
2
n,j = 1, ∣∣∣∣log fn(t) + t2

2

∣∣∣∣ ≤ |t|32

2

kn∑
j=1

γn,j =
|t|3

2
Γn.

For any z ∈ C it is true that |ez − 1| ≤ |z|e|z|, so the above yields

|fn(t)et
2/2 − 1| = | exp(log(fn(t)et

2/2))− 1|

≤ | log(fn(t)et
2/2)| exp

(∣∣∣log(fn(t)et2/2)∣∣∣)
=

∣∣∣∣log fn(t) + t2

2

∣∣∣∣ exp(∣∣∣log(fn(t)et2/2)∣∣∣)
≤ |t|3

2
Γn exp

(
|t|3

2
Γn

)
.

But |t|3 < 1
8Γn

, so

|fn(t)et
2/2 − 1| ≤ |t|3

2
Γne

1/16 ≤ |t|3Γn,

which completes the proof.

The next lemma gives a different bound on the characteristic function of
Sn.

5

Lemma 5. For n ≥ 1, if |t| < 1
4Γn

then

|fn(t)| ≤ e−t2/3.

Proof. First, for a distribution function F with characteristic function f ,

|f(t)|2 = f(t)f(t)

=

∫
R
eitxdF (x) ·

∫
R
e−itxdF (y)

=

∫
R

(∫
R
eit(x−y)dF (x)

)
dF (y)

=

∫
R

(∫
R
cos t(x− y) + i sin t(x− y)dF (x)

)
dF (y).

Because |f(t)|2 is real it follows that

|f(t)|2 =

∫
R

(∫
R
cos t(x− y)dF (x)

)
dF (y).

5Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 4.
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Using ∣∣∣∣cosu−
(
1− u2

2

)∣∣∣∣ ≤ |u|3

6
, |a+ b|p ≤ 2p−1(|a|p + |b|p),

we have∣∣∣∣cos t(x− y)−
(
1− (t(x− y))2

2

)∣∣∣∣ ≤ 2

3

(
|tx|3 + |ty|3

)
=

2|t|3

3
(|x|3 + |y|3)

and then

|f(t)|2 ≤
∫
R

(∫
R
1− (t(x− y))2

2
+

2|t|3

3
(|x|3 + |y|3)dF (x)

)
dF (y).

Using this for fn,j , and using that E(Xn,j) = 0,

|fn,j(t)|2 ≤
∫
R

(∫
R
1− (t(x− y))2

2
+

2|t|3

3
(|x|3 + |y|3)dFn,j(x)

)
dFn,j(y)

=

∫
R
1−

t2σ2
n,j

2
− t2y2

2
+

2|t|3γn,j
3

+
2|t|3|y|3

3
dF (y)

= 1−
t2σ2

n,j

2
−

t2σ2
n,j

2
+

2|t|3γn,j
3

+
2|t|3γn,j

3

= 1− t2σ2
n,j +

4|t|3γn,j
3

.

Because 1 + u ≤ eu for all u ∈ R,

|fn,j(t)|2 ≤ exp

(
−t2σ2

n,j +
4|t|3γn,j

3

)
.

Then, by (6),

|fn(t)|2 =

kn∏
j=1

|fn,j(t)|2

≤
kn∏
j=1

exp

(
−t2σ2

n,j +
4|t|3γn,j

3

)

= exp

−t2
kn∑
j=1

σ2
n,j +

4|t|3

3

kn∑
j=1

γn,j


= exp

(
−t2 +

4|t|3

3
Γn

)
.

As |t| < 1
4Γn

,

|fn(t)| ≤ exp

(
− t2

2
+

2|t|3

3
Γn

)
≤ exp

(
− t2

2
+

2|t|2

12

)
= e−t2/3,

proving the claim.
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We now combine Lemma 4 and Lemma 5.6

Lemma 6. For n ≥ 1, if |t| < 1
4Γn

then

|fn(t)− e−t2/2| ≤ 16Γn|t|3e−t2/3.

Proof. Either |t| < 1

2Γ
1/3
n

or 1

2Γ
1/3
n

≤ |t| < 1
4Γn

. In the first case, Lemma 4 tells
us

|fn(t)− e−t2/2| ≤ Γn|t|3e−t2/2 ≤ Γn|t|3e−t2/3 ≤ 16Γn|t|3e−t2/3.

In the second case, Lemma 5 tells us

|fn(t)| ≤ e−t2/3,

and so, as in this case we have 1 ≤ 8Γn|t|3,

|fn(t)− e−t2/2| ≤ |fn(t)|+ e−t2/2 ≤ e−t2/3 + e−t2/2 ≤ 2e−t2/3 ≤ 16Γn|t|3e−t2/3,

showing that the claim is true in both cases.

We finally prove the Berry-Esseen theorem.7

Theorem 7 (Berry-Esseen theorem). There is some A0 < 36 such that for each
n ≥ 1,

sup
x∈R

|Fn(x)− Φ(x)| ≤ A0Γn.

Proof. Let Z be a random variable with Z∗P = γ1, i.e. whose cumulative
distribution function is Φ. By (6) and becauseXn,j , 1 ≤ j ≤ kn, are independent
and satisfy E(Xn,j) = 0,

E(S2
n) =

kn∑
j=1

E(X2
n,j) =

kn∑
j=1

σ2
n,j = 1.

If x < 0 then by Chebyshev’s inequality

Fn(x) = P (Sn ≤ x) = P (−Sn ≥ −x) ≤ 1

x2
E(|Sn|2) =

1

x2

and

Φ(x) = P (Z ≤ x) = P (−Z ≥ −x) ≤ 1

x2
E(|Z|2) = 1

x2
.

6Kai Lai Chung, A Course in Probability Theory, third ed., p. 240, Lemma 5.
7Kai Lai Chung, A Course in Probability Theory, third ed., p. 235, Theorem 7.4.1; cf. Allan

Gut, Probability: A Graduate Course, second ed., p. 356, Theorem 6.2; John E. Kolassa, Series
Approximation Methods in Statistics, p. 25, Theorem 2.6.1; Alexandr A. Borovkov, Probability
Theory, p. 659, Theorem A5.1; Ivan Nourdin and Giovanni Peccati, Normal Approximations
with Malliavin Calculus: From Stein’s Method to Universality, p. 71, Theorem 3.7.1.
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If x > 0 then also by Chebyshev’s inequality

1− Fn(x) = 1− P (Sn ≤ x) = P (Sn > x) ≤ 1

x2

and

1− Φ(x) = 1− P (Z ≤ x) = P (Z > x) ≤ 1

x2
.

Therefore, because Fn and Φ are nonnegative and 1 − Fn and 1 − Φ are non-
negative, for all x ∈ R we have

|Fn(x)− Φ(x)| ≤ 1

x2
.

Then, because |Fn| ≤ 1 and |Φ| ≤ 1,∫
R
|Fn(x)− Φ(x)|dx ≤

∫
|x|≤1

2dx+

∫
|x|>1

1

x2
dx = 6 < ∞.

Φ′(x) = 1√
2π

e−x2/2 ≤ 1√
2π

. We apply Lemma 2 with F = Fn, G = Φ, and

M = 1√
2π

, and because the characteristic function of Φ is ϕ(t) = e−t2/2, we

obtain for T = 1
4Γn

,

sup
x∈R

|Fn(x)− Φ(x)| ≤ 2

π

∫ 1
4Γn

0

|fn(t)− ϕ(t)|
t

dt+
96MΓn

π

=
2

π

∫ 1
4Γn

0

|fn(t)− e−t2/2|
t

+
96Γn

π
√
2π

.

Then applying Lemma 6,

sup
x∈R

|Fn(x)− Φ(x)| ≤ 2

π

∫ 1
4Γn

0

16Γnt
3e−t2/3

t
dt+

96Γn

π
√
2π

= Γn

(
32

π

∫ 1
4Γn

0

t2e−t2/3dt+
96

π
√
2π

)
.

This proves the claim with

A0 =
32

π

∫ ∞

0

t2e−t2/3dt+
96

π
√
2π

=
32

π
· 3

√
3π

4
+

96

π
√
2π

= 35.64 . . . .
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