# The Bernstein and Nikolsky inequalities for trigonometric polynomials 

Jordan Bell

January 28, 2015

## 1 Introduction

Let $\mathbb{T}=\mathbb{R} / 2 \pi \mathbb{Z}$. For a function $f: \mathbb{T} \rightarrow \mathbb{C}$ and $\tau \in \mathbb{T}$, we define $f_{\tau}: \mathbb{T} \rightarrow \mathbb{C}$ by $f_{\tau}(t)=f(t-\tau)$. For measurable $f: \mathbb{T} \rightarrow \mathbb{C}$ and $0<r<\infty$, write

$$
\|f\|_{r}=\left(\frac{1}{2 \pi} \int_{\mathbb{T}}|f(t)|^{r} d t\right)^{1 / r}
$$

For $f, g \in L^{1}(\mathbb{T})$, write

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{\mathbb{T}} f(t) g(x-t) d t, \quad x \in \mathbb{T}
$$

and for $f \in L^{1}(\mathbb{T})$, write

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{\mathbb{T}} f(t) e^{-i k t} d t, \quad k \in \mathbb{Z}
$$

This note works out proofs of some inequalities involving the support of $\hat{f}$ for $f \in L^{1}(\mathbb{T})$.

Let $\mathscr{T}_{n}$ be the set of trigonometric polynomials of degree $\leq n$. We define the Dirichlet kernel $D_{n}: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
D_{n}(t)=\sum_{|j| \leq n} e^{i j t}, \quad t \in \mathbb{T}
$$

It is straightforward to check that if $T \in \mathscr{T}_{n}$ then

$$
D_{n} * T=T
$$

## 2 Bernstein's inequality for trigonometric polynomials

DeVore and Lorentz attribute the following inequality to Szegö. ${ }^{1}$

[^0]Theorem 1. If $T \in \mathscr{T}_{n}$ and $T$ is real valued, then for all $x \in \mathbb{T}$,

$$
T^{\prime}(x)^{2}+n^{2} T(x)^{2} \leq n^{2}\|T\|_{\infty}^{2}
$$

Proof. If $T=0$ the result is immediate. Otherwise, take $x \in \mathbb{T}$, and for real $c>1$ define

$$
P_{c}(t)=\frac{T(t+x) \operatorname{sgn} T^{\prime}(x)}{c\|T\|_{\infty}}, \quad t \in \mathbb{T}
$$

$P_{c} \in \mathscr{T}_{n}$, and satisfies

$$
P_{c}^{\prime}(0)=\frac{T^{\prime}(x) \operatorname{sgn} T^{\prime}(x)}{c\|T\|_{\infty}} \geq 0
$$

and $\left\|P_{c}\right\|_{\infty} \leq \frac{1}{c}<1$. Since $\left\|P_{c}\right\|_{\infty}<1$, in particular $\left|P_{c}(0)\right|<1$ and so there is some $\alpha,|\alpha|<\frac{\pi}{2 n}$, such that $\sin n \alpha=P_{c}(0)$. We define $S \in \mathscr{T}_{n}$ by

$$
S(t)=\sin n(t+\alpha)-P_{c}(t), \quad t \in \mathbb{T}
$$

which satisfies $S(0)=\sin n \alpha-P_{c}(0)=0$. For $k=-n, \ldots, n$, let $t_{k}=-\alpha+$ $\frac{(2 k-1) \pi}{2 n}$, for which we have

$$
\sin n\left(t_{k}+\alpha\right)=\sin \frac{(2 k-1) \pi}{2}=(-1)^{k+1}
$$

Because $\left\|P_{c}\right\|_{\infty}<1$,

$$
\operatorname{sgn} S\left(t_{k}\right)=(-1)^{k+1}
$$

so by the intermediate value theorem, for each $k=-n, \ldots, n-1$ there is some $c_{k} \in\left(t_{k}, t_{k+1}\right)$ such that $S\left(c_{k}\right)=0$. Because

$$
t_{n}-t_{-n}=\frac{(2 n-1) \pi}{2 n}-\frac{(-2 n-1) \pi}{2 n}=2 \pi,
$$

it follows that if $j \neq k$ then $c_{j}$ and $c_{k}$ are distinct in $\mathbb{T}$. It is a fact that a trigonometric polynomial of degree $n$ has $\leq 2 n$ distinct roots in $\mathbb{T}$, so if $t \in\left(t_{k}, t_{k+1}\right)$ and $S(t)=0$, then $t=c_{k}$. It is the case that $t_{1}=-\alpha+\frac{\pi}{2 n}>0$ and $t_{0}=-\alpha-\frac{\pi}{2}<0$, so $0 \in\left(t_{0}, t_{1}\right)$. But $S(0)=0$, so $c_{0}=0$. Using $S\left(t_{1}\right)=1>0$ and the fact that $S$ has no zeros in $\left(0, t_{1}\right)$ we get a contradiction from $S^{\prime}(0)<0$, so $S^{\prime}(0) \geq 0$. This gives

$$
0 \leq P_{c}^{\prime}(0)=n \cos n \alpha-S^{\prime}(0) \leq n \cos n \alpha=n \sqrt{1-\sin ^{2} n \alpha}=n \sqrt{1-P_{c}(0)^{2}}
$$

Thus

$$
P_{c}^{\prime}(0) \leq n \sqrt{1-P_{c}(0)^{2}}
$$

or

$$
n^{2} P_{c}(0)+P_{c}^{\prime}(0)^{2} \leq n^{2} .
$$

Because

$$
P_{c}(0)^{2}=\frac{T(x)^{2}}{c^{2}\|T\|_{\infty}^{2}}, \quad P_{c}^{\prime}(0)^{2}=\frac{T^{\prime}(x)^{2}}{c^{2}\|T\|_{\infty}^{2}}
$$

we get

$$
n^{2} T(x)^{2}+T^{\prime}(x)^{2} \leq c^{2} n^{2}\|T\|_{\infty}^{2}
$$

Because this is true for all $c>1$,

$$
n^{2} T(x)^{2}+T^{\prime}(x)^{2} \leq n^{2}\|T\|_{\infty}^{2}
$$

completing the proof.
Using the above we now prove Bernstein's inequality. ${ }^{2}$
Theorem 2 (Bernstein's inequality). If $T \in \mathscr{T}_{n}$, then

$$
\left\|T^{\prime}\right\|_{\infty} \leq n\|T\|_{\infty}
$$

Proof. There is some $x_{0} \in \mathbb{T}$ such that $\left|T^{\prime}\left(x_{0}\right)\right|=\left\|T^{\prime}\right\|_{\infty}$. Let $\alpha \in \mathbb{R}$ be such that $e^{i \alpha} T^{\prime}\left(x_{0}\right)=\left\|T^{\prime}\right\|_{\infty}$. Define $S(x)=\operatorname{Re}\left(e^{i \alpha} T(x)\right)$ for $x \in \mathbb{T}$, which satisfies $S^{\prime}(x)=\operatorname{Re}\left(e^{i \alpha} T^{\prime}(x)\right)$ and in particular

$$
S^{\prime}\left(x_{0}\right)=\operatorname{Re}\left(e^{i \alpha} T^{\prime}\left(x_{0}\right)\right)=e^{i \alpha} T^{\prime}\left(x_{0}\right)=\left\|T^{\prime}\right\|_{\infty} .
$$

Because $S \in \mathscr{T}_{n}$ and $S$ is real valued, Theorem 1 yields

$$
S^{\prime}\left(x_{0}\right)^{2}+n^{2} S\left(x_{0}\right)^{2} \leq n^{2}\|S\|_{\infty}^{2}
$$

A fortiori,

$$
S^{\prime}\left(x_{0}\right)^{2} \leq n^{2}\|S\|_{\infty}^{2},
$$

giving, because $S^{\prime}\left(x_{0}\right)=\left\|T^{\prime}\right\|_{\infty}$ and $\|S\|_{\infty} \leq\|T\|_{\infty}$,

$$
\left\|T^{\prime}\right\|_{\infty}^{2} \leq n^{2}\|T\|_{\infty}^{2}
$$

proving the claim.
The following is a version of Bernstein's inequality. ${ }^{3}$
Theorem 3. If $T \in \mathscr{T}_{n}$ and $A \subset \mathbb{T}$ is a Borel set, there is some $x_{0} \in \mathbb{T}$ such that

$$
\int_{A}\left|T^{\prime}(t)\right| d t \leq n \int_{A-x_{0}}|T(t)| d t
$$

[^1]Proof. Let $A \subset \mathbb{T}$ be a Borel set with indicator function $\chi_{A}$. Define $Q: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
Q(x)=\int_{\mathbb{T}} \chi_{A}(t) T(t+x) \operatorname{sgn} T^{\prime}(t) d t, \quad x \in \mathbb{T}
$$

which we can write as

$$
\begin{aligned}
Q(x) & =\int_{\mathbb{T}} \chi_{A}(t) \sum_{j} \widehat{T}(j) e^{i j(t+x)} \operatorname{sgn} T^{\prime}(t) d t \\
& =\sum_{j} \widehat{T}(j)\left(\int_{\mathbb{T}} \chi_{A}(t) e^{i j t} \operatorname{sgn} T^{\prime}(t) d t\right) e^{i j x}
\end{aligned}
$$

showing that $Q \in \mathscr{T}_{n}$. Also,

$$
Q^{\prime}(x)=\int_{\mathbb{T}} \chi_{A}(t) T^{\prime}(t+x) \operatorname{sgn} T^{\prime}(t) d t, \quad x \in \mathbb{T}
$$

Let $x_{0} \in \mathbb{T}$ with $\left|Q\left(x_{0}\right)\right|=\|Q\|_{\infty}$. Applying Theorem 2 we get

$$
\left\|Q^{\prime}\right\|_{\infty} \leq n\|Q\|_{\infty}
$$

Using

$$
Q^{\prime}(0)=\int_{\mathbb{T}} \chi_{A}(t) T^{\prime}(t) \operatorname{sgn} T^{\prime}(t) d t=\int_{\mathbb{T}} \chi_{A}(t)\left|T^{\prime}(t)\right| d t,
$$

this gives

$$
\begin{aligned}
\int_{\mathbb{T}} \chi_{A}(t)\left|T^{\prime}(t)\right| d t & \leq n\|Q\|_{\infty} \\
& =n\left|Q\left(t_{0}\right)\right| \\
& =n\left|\int_{\mathbb{T}} \chi_{A}(t) T\left(t+x_{0}\right) \operatorname{sgn} T^{\prime}(t) d t\right| \\
& \leq n \int_{\mathbb{T}} \chi_{A}(t)\left|T\left(t+x_{0}\right)\right| d t \\
& =n \int_{\mathbb{T}} \chi_{A-x_{0}}(t)|T(t)| d t
\end{aligned}
$$

Applying the above with $A=\mathbb{T}$ gives the following version of Bernstein's inequality, for the $L^{1}$ norm.

Theorem $4\left(L^{1}\right.$ Bernstein's inequality). If $T \in \mathscr{T}_{n}$, then

$$
\left\|T^{\prime}\right\|_{1} \leq n\|T\|_{1} .
$$

## 3 Nikolsky's inequality for trigonometric polynomials

DeVore and Lorentz attribute the following inequality to Sergey Nikolsky. ${ }^{4}$
Theorem 5 (Nikolsky's inequality). If $T \in \mathscr{T}_{n}$ and $0<q \leq p \leq \infty$, then for $r \geq \frac{q}{2}$ an integer,

$$
\|T\|_{p} \leq(2 n r+1)^{\frac{1}{q}-\frac{1}{p}}\|T\|_{q} .
$$

Proof. Let $m=n r$. Then $T^{r} \in \mathscr{T}_{m}$, so $T^{r} * D_{m}=T^{r}$, and using this and the Cauchy-Schwarz inequality we have, for $x \in \mathbb{T}$,

$$
\begin{aligned}
\left|T(x)^{r}\right| & =\left|\frac{1}{2 \pi} \int_{\mathbb{T}} T(t)^{r} D_{m}(x-t)\right| \\
& \leq \frac{1}{2 \pi} \int_{\mathbb{T}}|T(t)|^{r}\left|D_{m}(x-t)\right| d t \\
& \leq\|T\|_{\infty}^{r-\frac{q}{2}} \cdot \frac{1}{2 \pi} \int_{\mathbb{T}}|T(t)|^{\frac{q}{2}}\left|D_{m}(x-t)\right| d t \\
& \leq\|T\|_{\infty}^{r-\frac{q}{2}}\left\||T|^{q / 2}\right\|_{2}\left\|D_{m}\right\|_{2} \\
& =\|T\|_{\infty}^{r-\frac{q}{2}}\|T\|_{q}^{\frac{q}{2}}\left\|\widehat{D_{m}}\right\|_{\ell^{2}(\mathbb{Z})} \\
& =\sqrt{2 m+1}\|T\|_{\infty}^{r-\frac{q}{2}}\|T\|_{q}^{\frac{q}{2}} .
\end{aligned}
$$

Hence

$$
\|T\|_{\infty}^{r} \leq \sqrt{2 m+1}\|T\|_{\infty}^{r-\frac{q}{2}}\|T\|_{q}^{\frac{q}{2}}
$$

thus

$$
\|T\|_{\infty} \leq(2 m+1)^{\frac{1}{q}}\|T\|_{q} .
$$

Then, using $\|T\|_{p} \leq\|T\|_{\infty}^{1-\frac{q}{p}}\|T\|_{q}^{\frac{q}{p}}$, we have

$$
\|T\|_{p} \leq(2 m+1)^{\frac{1}{q}-\frac{1}{p}}\|T\|_{q}^{1-\frac{q}{p}}\|T\|_{q}^{\frac{q}{p}}=(2 m+1)^{\frac{1}{q}-\frac{1}{p}}\|T\|_{q} .
$$

## 4 The complementary Bernstein inequality

We define a homogeneous Banach space to be a linear subspace $B$ of $L^{1}(\mathbb{T})$ with a norm $\|f\|_{L^{1}(\mathbb{T})} \leq\|f\|_{B}$ with which $B$ is a Banach space, such that if $f \in B$ and $\tau \in \mathbb{T}$ then $f_{\tau} \in B$ and $\left\|f_{\tau}\right\|_{B}=\|f\|_{B}$, and such that if $f \in B$ then $f_{\tau} \rightarrow f$ in $B$ as $\tau \rightarrow 0$.

[^2]Fejér's kernel is, for $n \geq 0$,

$$
K_{n}(t)=\sum_{|j| \leq n}\left(1-\frac{|j|}{n+1}\right) e^{i j t}=\sum_{j \in \mathbb{Z}} \chi_{n}(j)\left(1-\frac{|j|}{n+1}\right) e^{i j t} \quad t \in \mathbb{T} .
$$

One calculates that, for $t \notin 4 \pi \mathbb{Z}$,

$$
K_{n}(t)=\frac{1}{n+1}\left(\frac{\sin \frac{n+1}{2} t}{\sin \frac{1}{2} t}\right)^{2}
$$

Bernstein's inequality is a statement about functions whose Fourier transform is supported only on low frequencies. The following is a statement about functions whose Fourier transform is supported only on high frequencies. ${ }^{5}$ In particular, for $1 \leq p<\infty, L^{p}(\mathbb{T})$ is a homogeneous Banach space, and so is $C(\mathbb{T})$ with the supremum norm.
Theorem 6. Let $B$ be a homogeneous Banach space and let $m$ be a positive integer. Define $C_{m}$ as $C_{m}=m+1$ if $m$ is even and $C_{m}=12 m$ if $m$ is odd. If

$$
f(t)=\sum_{|j| \geq n} a_{j} e^{i j t}, \quad t \in \mathbb{T},
$$

is $m$ times differentiable and $f^{(m)} \in B$, then $f \in B$ and

$$
\|f\|_{B} \leq C_{m} n^{-m}\left\|f^{(m)}\right\|_{B}
$$

Proof. Suppose that $m$ is even. It is a fact that if $a_{j}, j \in \mathbb{Z}$, is an even sequence of nonnegative real numbers such that $a_{j} \rightarrow 0$ as $|j| \rightarrow \infty$ and such that for each $j>0$,

$$
a_{j-1}+a_{j+1}-2 a_{j} \geq 0
$$

then there is a nonnegative function $f \in L^{1}(\mathbb{T})$ such that $\hat{f}(j)=a_{j}$ for all $j \in \mathbb{Z} .{ }^{6}$ Define

$$
a_{j}= \begin{cases}j^{-m} & |j| \geq n \\ n^{-m}+(n-|j|)\left(n^{-m}-(n+1)^{-m}\right) & |j| \leq n-1 .\end{cases}
$$

It is apparent that $a_{j}$ is even and tends to 0 as $|j| \rightarrow \infty$. For $1 \leq j \leq n-2$,

$$
a_{j-1}+a_{j+1}-2 a_{j}=0
$$

For $j=n-1$,

$$
\begin{aligned}
a_{j-1}+a_{j+1}-2 a_{j} & =n^{-m}+(n-(n-2))\left(n^{-m}-(n+1)^{-m}\right)+n^{-m} \\
& -2\left(n^{-m}+(n-(n-1))\left(n^{-m}-(n+1)^{-m}\right)\right) \\
& =0 .
\end{aligned}
$$

[^3]The function $j \mapsto j^{-m}$ is convex on $\{n, n+1, \ldots\}$, as $m \geq 1$, so for $j \geq n$ we have $a_{j-1}+a_{j+1}-2 a_{j} \geq 0$. Therefore, there is some nonnegative $\phi_{m, n} \in L^{1}(\mathbb{T})$ such that

$$
\widehat{\phi_{m, n}}(j)=a_{j}, \quad j \in \mathbb{Z}
$$

Because $\phi_{m, n}$ is nonnegative, and using $n^{-m}-(n+1)^{-m}<\frac{m}{n} n^{-m}$,

$$
\left\|\phi_{m, n}\right\|_{1}=\widehat{\phi_{m, n}}(0)=n^{-m}+n\left(n^{-m}-(n+1)^{-m}\right)<(m+1) n^{-m} .
$$

Define $d \mu_{m, n}(t)=\frac{1}{2 \pi} \phi_{m, n}(t) d t$. For $|j| \geq n$,

$$
\begin{aligned}
f^{(m) * \mu_{m, n}}(j) & =\widehat{f^{(m)}}(j) \widehat{\mu_{m, n}}(j) \\
& =(i j)^{m} \hat{f}(j) \widehat{\phi_{m, n}}(j) \\
& =(i j)^{m} \hat{f}(j) \cdot|j|^{-m} \\
& =i^{m} \hat{f}(j) .
\end{aligned}
$$

For $|j|<n$, since $\hat{f}(j)=0$ we have

$$
f^{(m) * \mu_{m, n}}(j)=(i j)^{m} \hat{f}(j) \widehat{\phi_{m, n}}(j)=0=i^{m} \hat{f}(j),
$$

so for all $j \in \mathbb{Z}$,

$$
f^{(m) * \mu_{m, n}}(j)=i^{m} \hat{f}(j) .
$$

This implies that $f^{(m)} * \mu_{m, n}=i^{m} f$, which in particular tells us that $f \in B$. Then,

$$
\begin{aligned}
\|f\|_{B} & =\left\|i^{m} f\right\|_{B} \\
& =\left\|f^{(m)} * \mu_{m, n}\right\|_{B} \\
& \leq\left\|f^{(m)}\right\|_{B}\left\|\mu_{m, n}\right\|_{M(\mathbb{T})} \\
& =\left\|\phi_{m, n}\right\|_{1}\left\|f^{(m)}\right\|_{B} \\
& \leq(m+1) n^{-m}\left\|f^{(m)}\right\|_{B} .
\end{aligned}
$$

This shows what we want in the case that $m$ is even, with $C_{m}=m+1$.
Suppose that $m$ is odd. For $l$ a positive integer, define $\psi_{l}: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
\psi_{l}(t)=\left(e^{2 l i t}+\frac{1}{2} e^{3 l i t}\right) K_{l-1}(t), \quad t \in \mathbb{T} .
$$

There is a unique $l_{n}$ such that $n \in\left\{2 l_{n}, 2 l_{n}+1\right\}$. For $k \geq 0$ an integer, define $\Psi_{n, k}: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
\Psi_{n, k}(t)=\psi_{l_{n} 2^{k}}(t), \quad t \in \mathbb{T}
$$

$\Psi_{n, k}$ satisfies

$$
\left\|\Psi_{n, k}\right\|_{1} \leq \frac{3}{2}\left\|K_{k-1}\right\|_{1}=\frac{3}{2} \cdot \frac{1}{2 \pi} \int_{\mathbb{T}}\left|K_{k-1}(t)\right| d t=\frac{3}{2} \cdot \frac{1}{2 \pi} \int_{\mathbb{T}} K_{k-1}(t) d t=\frac{3}{2} .
$$

On the one hand, for $j \leq 0$, from the definition of $\psi_{l}$ we have $\widehat{\Psi_{n, k}}(j)=0$, hence $\sum_{k=0}^{\infty} \widehat{\Psi_{n, k}}(j)=0$. On the other hand, for $j \geq n$ we assert that

$$
\sum_{k=0}^{\infty} \widehat{\Psi_{n, k}}(j)=1
$$

We define $\Phi_{n}: \mathbb{T} \rightarrow \mathbb{C}$ by

$$
\Phi_{n}(t)=\sum_{k=0}^{\infty}\left(\Psi_{n, k} * \phi_{1, n 2^{k}}\right)(t), \quad t \in \mathbb{T} .
$$

We calculate the Fourier coefficients of $\Phi_{n}$. For $j \geq n$,

$$
\widehat{\Phi_{n}}(j)=\sum_{k=0}^{\infty} \widehat{\Phi_{n, k}}(j) \widehat{\phi_{1, n 2^{k}}}(j)=\frac{1}{j} \sum_{k=0}^{\infty} \widehat{\Phi_{n, k}}(j)=\frac{1}{j} .
$$

As well,

$$
\left\|\Phi_{n}\right\|_{1} \leq \sum_{k=0}^{\infty}\left\|\Psi_{n, k} * \phi_{1, n 2^{k}}\right\|_{1} \leq \sum_{k=0}^{\infty}\left\|\Psi_{n, k}\right\|_{1}\left\|\phi_{1, n 2^{k}}\right\|_{1} \leq \frac{3}{2} \sum_{k=0}^{\infty} 2\left(n 2^{k}\right)^{-1}=\frac{6}{n}
$$

We now define

$$
d \mu_{1, n}(t)=\frac{1}{2 \pi}\left(\Phi_{n}(t)-\Phi_{n}(-t)\right) d t
$$

which satisfies for $|j| \geq n$,

$$
\widehat{\mu_{1, n}}(j)=\widehat{\Phi_{n}}(j)-\widehat{\Phi_{n}}(-j)=\frac{1}{j}
$$

and hence

$$
\widehat{f^{\prime} * \mu_{1, n}}(j)=\widehat{f^{\prime}}(j) \widehat{\mu_{1, n}}(j)=i j \hat{f}(j) \cdot \frac{1}{j}=i \hat{f}(j)
$$

Because $\hat{f}(j)=0$ for $|j|<n, \widehat{f^{\prime} * \mu_{1, n}}(j)=0$ for $|j|<n$, it follows that for any $j \in \mathbb{Z}$,

$$
\widehat{f^{\prime} * \mu_{1, n}}(j)=i \hat{f}(j)
$$

and therefore,

$$
f^{\prime} * \mu_{1, n}=i f
$$

Then
$\|f\|_{B}=\|i f\|_{B}=\left\|f^{\prime} * \mu_{1, n}\right\|_{B} \leq\left\|\mu_{1, n}\right\|_{M(\mathbb{T})}\left\|f^{\prime}\right\|_{B} \leq 2\left\|\Phi_{n}\right\|_{1}\left\|f^{\prime}\right\|_{B} \leq \frac{12}{n}\left\|f^{\prime}\right\|_{B}$.
That is, with $C_{1}=12$ we have

$$
\|f\|_{B} \leq 12 n^{-1}\left\|f^{\prime}\right\|_{B}
$$

For $m=2 \nu+1$, we define

$$
\mu_{m, n}=\mu_{1, n} * \mu_{2 \nu, n}
$$

for which we have, for $|j| \geq n$,

$$
f\left(\widehat{m) * \mu_{m, n}}(j)=(i j)^{m} \hat{f}(j) \widehat{\mu_{1, n}}(j) \widehat{\mu_{2 \nu, n}}(j)=(i j)^{m} \hat{f}(j) \cdot \frac{1}{j} \cdot j^{-2 \nu}=i^{m} \hat{f}(j)\right.
$$

It follows that

$$
f^{(m)} * \mu_{m, n}=i^{m} f
$$

whence

$$
\begin{aligned}
\|f\|_{B} & =\left\|i^{m} f\right\|_{B} \\
& =\left\|f^{(m)} * \mu_{m, n}\right\|_{B} \\
& \leq\left\|\mu_{m, n}\right\|_{M(\mathbb{T})}\left\|f^{(m)}\right\|_{B} \\
& \leq\left\|\mu_{1, n}\right\|_{M(\mathbb{T})}\left\|\mu_{2 \nu, n}\right\|_{M(\mathbb{T})}\left\|f^{(m)}\right\|_{B} \\
& \leq \frac{12}{n} \cdot(2 \nu+1) n^{-2 \nu}\left\|f^{(m)}\right\|_{B} \\
& =12 m n^{-m}\left\|f^{(m)}\right\|_{B} .
\end{aligned}
$$

That is, with $C_{m}=12 m$, we have

$$
\|f\|_{B} \leq C_{m} n^{-m}\left\|f^{(m)}\right\|_{B}
$$

completing the proof.


[^0]:    ${ }^{1}$ Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 97, Theorem 1.1.

[^1]:    ${ }^{2}$ Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 98.
    ${ }^{3}$ Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 101, Theorem 2.4.

[^2]:    ${ }^{4}$ Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 102, Theorem 2.6.

[^3]:    ${ }^{5}$ Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 55, Theorem 8.4.
    ${ }^{6}$ Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 24, Theorem 4.1.

