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1 Introduction

Let T = R/2πZ. For a function f : T → C and τ ∈ T, we define fτ : T → C by
fτ (t) = f(t− τ). For measurable f : T → C and 0 < r <∞, write

∥f∥r =

(
1

2π

∫
T
|f(t)|rdt

)1/r

.

For f, g ∈ L1(T), write

(f ∗ g)(x) = 1

2π

∫
T
f(t)g(x− t)dt, x ∈ T,

and for f ∈ L1(T), write

f̂(k) =
1

2π

∫
T
f(t)e−iktdt, k ∈ Z.

This note works out proofs of some inequalities involving the support of f̂ for
f ∈ L1(T).

Let Tn be the set of trigonometric polynomials of degree ≤ n. We define
the Dirichlet kernel Dn : T → C by

Dn(t) =
∑
|j|≤n

eijt, t ∈ T.

It is straightforward to check that if T ∈ Tn then

Dn ∗ T = T.

2 Bernstein’s inequality for trigonometric poly-
nomials

DeVore and Lorentz attribute the following inequality to Szegö.1

1Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 97, Theorem
1.1.
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Theorem 1. If T ∈ Tn and T is real valued, then for all x ∈ T,

T ′(x)2 + n2T (x)2 ≤ n2 ∥T∥2∞ .

Proof. If T = 0 the result is immediate. Otherwise, take x ∈ T, and for real
c > 1 define

Pc(t) =
T (t+ x)sgnT ′(x)

c ∥T∥∞
, t ∈ T.

Pc ∈ Tn, and satisfies

P ′
c(0) =

T ′(x)sgnT ′(x)

c ∥T∥∞
≥ 0

and ∥Pc∥∞ ≤ 1
c < 1. Since ∥Pc∥∞ < 1, in particular |Pc(0)| < 1 and so there is

some α, |α| < π
2n , such that sinnα = Pc(0). We define S ∈ Tn by

S(t) = sinn(t+ α)− Pc(t), t ∈ T,

which satisfies S(0) = sinnα − Pc(0) = 0. For k = −n, . . . , n, let tk = −α +
(2k−1)π

2n , for which we have

sinn(tk + α) = sin
(2k − 1)π

2
= (−1)k+1.

Because ∥Pc∥∞ < 1,
sgnS(tk) = (−1)k+1,

so by the intermediate value theorem, for each k = −n, . . . , n− 1 there is some
ck ∈ (tk, tk+1) such that S(ck) = 0. Because

tn − t−n =
(2n− 1)π

2n
− (−2n− 1)π

2n
= 2π,

it follows that if j ̸= k then cj and ck are distinct in T. It is a fact that
a trigonometric polynomial of degree n has ≤ 2n distinct roots in T, so if
t ∈ (tk, tk+1) and S(t) = 0, then t = ck. It is the case that t1 = −α + π

2n > 0
and t0 = −α − π

2 < 0, so 0 ∈ (t0, t1). But S(0) = 0, so c0 = 0. Using
S(t1) = 1 > 0 and the fact that S has no zeros in (0, t1) we get a contradiction
from S′(0) < 0, so S′(0) ≥ 0. This gives

0 ≤ P ′
c(0) = n cosnα− S′(0) ≤ n cosnα = n

√
1− sin2 nα = n

√
1− Pc(0)2.

Thus
P ′
c(0) ≤ n

√
1− Pc(0)2,

or
n2Pc(0) + P ′

c(0)
2 ≤ n2.
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Because

Pc(0)
2 =

T (x)2

c2 ∥T∥2∞
, P ′

c(0)
2 =

T ′(x)2

c2 ∥T∥2∞
we get

n2T (x)2 + T ′(x)2 ≤ c2n2 ∥T∥2∞ .

Because this is true for all c > 1,

n2T (x)2 + T ′(x)2 ≤ n2 ∥T∥2∞ ,

completing the proof.

Using the above we now prove Bernstein’s inequality.2

Theorem 2 (Bernstein’s inequality). If T ∈ Tn, then

∥T ′∥∞ ≤ n ∥T∥∞ .

Proof. There is some x0 ∈ T such that |T ′(x0)| = ∥T ′∥∞. Let α ∈ R be such
that eiαT ′(x0) = ∥T ′∥∞. Define S(x) = Re (eiαT (x)) for x ∈ T, which satisfies
S′(x) = Re (eiαT ′(x)) and in particular

S′(x0) = Re (eiαT ′(x0)) = eiαT ′(x0) = ∥T ′∥∞ .

Because S ∈ Tn and S is real valued, Theorem 1 yields

S′(x0)
2 + n2S(x0)

2 ≤ n2 ∥S∥2∞ .

A fortiori,
S′(x0)

2 ≤ n2 ∥S∥2∞ ,

giving, because S′(x0) = ∥T ′∥∞ and ∥S∥∞ ≤ ∥T∥∞,

∥T ′∥2∞ ≤ n2 ∥T∥2∞ ,

proving the claim.

The following is a version of Bernstein’s inequality.3

Theorem 3. If T ∈ Tn and A ⊂ T is a Borel set, there is some x0 ∈ T such
that ∫

A

|T ′(t)|dt ≤ n

∫
A−x0

|T (t)|dt.

2Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 98.
3Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 101, Theorem

2.4.
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Proof. Let A ⊂ T be a Borel set with indicator function χA. Define Q : T → C
by

Q(x) =

∫
T
χA(t)T (t+ x)sgnT ′(t)dt, x ∈ T,

which we can write as

Q(x) =

∫
T
χA(t)

∑
j

T̂ (j)eij(t+x)sgnT ′(t)dt

=
∑
j

T̂ (j)

(∫
T
χA(t)e

ijtsgnT ′(t)dt

)
eijx,

showing that Q ∈ Tn. Also,

Q′(x) =

∫
T
χA(t)T

′(t+ x)sgnT ′(t)dt, x ∈ T.

Let x0 ∈ T with |Q(x0)| = ∥Q∥∞. Applying Theorem 2 we get

∥Q′∥∞ ≤ n ∥Q∥∞ .

Using

Q′(0) =

∫
T
χA(t)T

′(t)sgnT ′(t)dt =

∫
T
χA(t)|T ′(t)|dt,

this gives ∫
T
χA(t)|T ′(t)|dt ≤ n ∥Q∥∞

= n|Q(t0)|

= n

∣∣∣∣∫
T
χA(t)T (t+ x0)sgnT

′(t)dt

∣∣∣∣
≤ n

∫
T
χA(t)|T (t+ x0)|dt

= n

∫
T
χA−x0

(t)|T (t)|dt.

Applying the above with A = T gives the following version of Bernstein’s
inequality, for the L1 norm.

Theorem 4 (L1 Bernstein’s inequality). If T ∈ Tn, then

∥T ′∥1 ≤ n ∥T∥1 .
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3 Nikolsky’s inequality for trigonometric poly-
nomials

DeVore and Lorentz attribute the following inequality to Sergey Nikolsky.4

Theorem 5 (Nikolsky’s inequality). If T ∈ Tn and 0 < q ≤ p ≤ ∞, then for
r ≥ q

2 an integer,

∥T∥p ≤ (2nr + 1)
1
q−

1
p ∥T∥q .

Proof. Let m = nr. Then T r ∈ Tm, so T r ∗Dm = T r, and using this and the
Cauchy-Schwarz inequality we have, for x ∈ T,

|T (x)r| =
∣∣∣∣ 1

2π

∫
T
T (t)rDm(x− t)

∣∣∣∣
≤ 1

2π

∫
T
|T (t)|r|Dm(x− t)|dt

≤ ∥T∥r−
q
2

∞ · 1

2π

∫
T
|T (t)|

q
2 |Dm(x− t)|dt

≤ ∥T∥r−
q
2

∞

∥∥∥|T |q/2∥∥∥
2
∥Dm∥2

= ∥T∥r−
q
2

∞ ∥T∥
q
2
q

∥∥∥D̂m

∥∥∥
ℓ2(Z)

=
√
2m+ 1 ∥T∥r−

q
2

∞ ∥T∥
q
2
q .

Hence
∥T∥r∞ ≤

√
2m+ 1 ∥T∥r−

q
2

∞ ∥T∥
q
2
q ,

thus
∥T∥∞ ≤ (2m+ 1)

1
q ∥T∥q .

Then, using ∥T∥p ≤ ∥T∥1−
q
p

∞ ∥T∥
q
p
q , we have

∥T∥p ≤ (2m+ 1)
1
q−

1
p ∥T∥1−

q
p

q ∥T∥
q
p
q = (2m+ 1)

1
q−

1
p ∥T∥q .

4 The complementary Bernstein inequality

We define a homogeneous Banach space to be a linear subspace B of L1(T)
with a norm ∥f∥L1(T) ≤ ∥f∥B with which B is a Banach space, such that if

f ∈ B and τ ∈ T then fτ ∈ B and ∥fτ∥B = ∥f∥B , and such that if f ∈ B then
fτ → f in B as τ → 0.

4Ronald A. DeVore and George G. Lorentz, Constructive Approximation, p. 102, Theorem
2.6.
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Fejér’s kernel is, for n ≥ 0,

Kn(t) =
∑
|j|≤n

(
1− |j|

n+ 1

)
eijt =

∑
j∈Z

χn(j)

(
1− |j|

n+ 1

)
eijt t ∈ T.

One calculates that, for t ̸∈ 4πZ,

Kn(t) =
1

n+ 1

(
sin n+1

2 t

sin 1
2 t

)2

.

Bernstein’s inequality is a statement about functions whose Fourier trans-
form is supported only on low frequencies. The following is a statement about
functions whose Fourier transform is supported only on high frequencies.5 In
particular, for 1 ≤ p < ∞, Lp(T) is a homogeneous Banach space, and so is
C(T) with the supremum norm.

Theorem 6. Let B be a homogeneous Banach space and let m be a positive
integer. Define Cm as Cm = m+ 1 if m is even and Cm = 12m if m is odd. If

f(t) =
∑
|j|≥n

aje
ijt, t ∈ T,

is m times differentiable and f (m) ∈ B, then f ∈ B and

∥f∥B ≤ Cmn
−m

∥∥∥f (m)
∥∥∥
B
.

Proof. Suppose that m is even. It is a fact that if aj , j ∈ Z, is an even sequence
of nonnegative real numbers such that aj → 0 as |j| → ∞ and such that for
each j > 0,

aj−1 + aj+1 − 2aj ≥ 0,

then there is a nonnegative function f ∈ L1(T) such that f̂(j) = aj for all
j ∈ Z.6 Define

aj =

{
j−m |j| ≥ n

n−m + (n− |j|)(n−m − (n+ 1)−m) |j| ≤ n− 1.

It is apparent that aj is even and tends to 0 as |j| → ∞. For 1 ≤ j ≤ n− 2,

aj−1 + aj+1 − 2aj = 0.

For j = n− 1,

aj−1 + aj+1 − 2aj = n−m + (n− (n− 2))(n−m − (n+ 1)−m) + n−m

− 2
(
n−m + (n− (n− 1))(n−m − (n+ 1)−m)

)
= 0.

5Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 55, Theorem
8.4.

6Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 24, Theorem
4.1.
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The function j 7→ j−m is convex on {n, n + 1, . . .}, as m ≥ 1, so for j ≥ n we
have aj−1+aj+1−2aj ≥ 0. Therefore, there is some nonnegative ϕm,n ∈ L1(T)
such that

ϕ̂m,n(j) = aj , j ∈ Z.
Because ϕm,n is nonnegative, and using n−m − (n+ 1)−m < m

n n
−m,

∥ϕm,n∥1 = ϕ̂m,n(0) = n−m + n(n−m − (n+ 1)−m) < (m+ 1)n−m.

Define dµm,n(t) =
1
2πϕm,n(t)dt. For |j| ≥ n,

̂f (m) ∗ µm,n(j) = f̂ (m)(j)µ̂m,n(j)

= (ij)mf̂(j)ϕ̂m,n(j)

= (ij)mf̂(j) · |j|−m

= imf̂(j).

For |j| < n, since f̂(j) = 0 we have

̂f (m) ∗ µm,n(j) = (ij)mf̂(j)ϕ̂m,n(j) = 0 = imf̂(j),

so for all j ∈ Z,
̂f (m) ∗ µm,n(j) = imf̂(j).

This implies that f (m) ∗ µm,n = imf , which in particular tells us that f ∈ B.
Then,

∥f∥B = ∥imf∥B
=

∥∥∥f (m) ∗ µm,n

∥∥∥
B

≤
∥∥∥f (m)

∥∥∥
B
∥µm,n∥M(T)

= ∥ϕm,n∥1
∥∥∥f (m)

∥∥∥
B

≤ (m+ 1)n−m
∥∥∥f (m)

∥∥∥
B
.

This shows what we want in the case that m is even, with Cm = m+ 1.
Suppose that m is odd. For l a positive integer, define ψl : T → C by

ψl(t) =

(
e2lit +

1

2
e3lit

)
Kl−1(t), t ∈ T.

There is a unique ln such that n ∈ {2ln, 2ln + 1}. For k ≥ 0 an integer, define
Ψn,k : T → C by

Ψn,k(t) = ψln2k(t), t ∈ T.
Ψn,k satisfies

∥Ψn,k∥1 ≤ 3

2
∥Kk−1∥1 =

3

2
· 1

2π

∫
T
|Kk−1(t)|dt =

3

2
· 1

2π

∫
T
Kk−1(t)dt =

3

2
.
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On the one hand, for j ≤ 0, from the definition of ψl we have Ψ̂n,k(j) = 0, hence∑∞
k=0 Ψ̂n,k(j) = 0. On the other hand, for j ≥ n we assert that

∞∑
k=0

Ψ̂n,k(j) = 1.

We define Φn : T → C by

Φn(t) =

∞∑
k=0

(Ψn,k ∗ ϕ1,n2k)(t), t ∈ T.

We calculate the Fourier coefficients of Φn. For j ≥ n,

Φ̂n(j) =

∞∑
k=0

Φ̂n,k(j)ϕ̂1,n2k(j) =
1

j

∞∑
k=0

Φ̂n,k(j) =
1

j
.

As well,

∥Φn∥1 ≤
∞∑
k=0

∥∥Ψn,k ∗ ϕ1,n2k
∥∥
1
≤

∞∑
k=0

∥Ψn,k∥1
∥∥ϕ1,n2k∥∥1 ≤ 3

2

∞∑
k=0

2(n2k)−1 =
6

n

We now define

dµ1,n(t) =
1

2π
(Φn(t)− Φn(−t))dt,

which satisfies for |j| ≥ n,

µ̂1,n(j) = Φ̂n(j)− Φ̂n(−j) =
1

j

and hence
̂f ′ ∗ µ1,n(j) = f̂ ′(j)µ̂1,n(j) = ijf̂(j) · 1

j
= if̂(j).

Because f̂(j) = 0 for |j| < n, ̂f ′ ∗ µ1,n(j) = 0 for |j| < n, it follows that for any
j ∈ Z,

̂f ′ ∗ µ1,n(j) = if̂(j),

and therefore,
f ′ ∗ µ1,n = if.

Then

∥f∥B = ∥if∥B = ∥f ′ ∗ µ1,n∥B ≤ ∥µ1,n∥M(T) ∥f
′∥B ≤ 2 ∥Φn∥1 ∥f

′∥B ≤ 12

n
∥f ′∥B .

That is, with C1 = 12 we have

∥f∥B ≤ 12n−1 ∥f ′∥B .
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For m = 2ν + 1, we define

µm,n = µ1,n ∗ µ2ν,n,

for which we have, for |j| ≥ n,

̂f (m) ∗ µm,n(j) = (ij)mf̂(j)µ̂1,n(j)µ̂2ν,n(j) = (ij)mf̂(j) · 1
j
· j−2ν = imf̂(j).

It follows that
f (m) ∗ µm,n = imf,

whence

∥f∥B = ∥imf∥B
=

∥∥∥f (m) ∗ µm,n

∥∥∥
B

≤ ∥µm,n∥M(T)

∥∥∥f (m)
∥∥∥
B

≤ ∥µ1,n∥M(T) ∥µ2ν,n∥M(T)

∥∥∥f (m)
∥∥∥
B

≤ 12

n
· (2ν + 1)n−2ν

∥∥∥f (m)
∥∥∥
B

= 12mn−m
∥∥∥f (m)

∥∥∥
B
.

That is, with Cm = 12m, we have

∥f∥B ≤ Cmn
−m

∥∥∥f (m)
∥∥∥
B
,

completing the proof.
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