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1 Introduction

Let T = R/27Z. For a function f: T — C and 7 € T, we define f, : T — C by
f+(t) = f(t — 7). For measurable f : T — C and 0 < r < 0o, write

i, = (s [urora)”

For f,g € LY(T), write

(F+o)a) = - [ fOge =0t aeT.

and for f € L*(T), write
fopy L —ikt
Flk) = 27T/Tf(t)e dt, kel

This note works out proofs of some inequalities involving the support of f for
f € LY(T).

Let 7, be the set of trigonometric polynomials of degree < n. We define
the Dirichlet kernel D,, : T — C by

Dn(t)= Y€’ teT.

l7l<n

It is straightforward to check that if T € .7, then
D,xT=T.

2 Bernstein’s inequality for trigonometric poly-
nomials

DeVore and Lorentz attribute the following inequality to Szegd.!

1Ronald A. DeVore and George G. Lorentz, Constructive Approzimation, p. 97, Theorem
1.1.



Theorem 1. If T € 9, and T is real valued, then for all z € T,

T'(z)? +n*T(z)? < n?||T|?, .

Proof. If T = 0 the result is immediate. Otherwise, take z € T, and for real

¢ > 1 define
T(t+ z)sgnT’(x)

P.(t) = , teT.
‘ T
P. € 7,, and satisfies
T (x)sgnT’(x)
Pl(0) = —25 " > g
[Tl

and ||P.[|, <1 < 1. Since ||P||, <1, in particular |P.(0)| < 1 and so there is
some a, |a| < 3=, such that sinna = P.(0). We define S € .7, by

S(t) =sinn(t + o) — Pe(t), teT,

which satisfies S(0) = sinna — P.(0) = 0. For k = —n,...,n, let t = —a +

(2’“2;1)”, for which we have
2k —1
sinn(ty + ) = sin % = (=1)F*,
Because |||, <1,
sgn S(t) = (—1)**1,
so by the intermediate value theorem, for each k = —n,...,n — 1 there is some

¢k € (tg,tg+1) such that S(cx) = 0. Because

fog 2n—Dr  (=2n—17 o,
2n 2n

it follows that if j # k then c¢; and ¢, are distinct in T. It is a fact that
a trigonometric polynomial of degree n has < 2n distinct roots in T, so if
t € (ty,try1) and S(t) = 0, then t = c;. It is the case that t; = —a+ 5~ >0
and tp = —a — § < 0, s0 0 € (fo,t1). But S(0) = 0, so ¢ = 0. Using
S(t1) = 1> 0 and the fact that S has no zeros in (0,¢1) we get a contradiction
from S’(0) < 0, so S’(0) > 0. This gives

0 < P.(0) = ncosna — S'(0) < ncosna = nV 1 —sin® na = ny/1 — P.(0)2.
Thus
P!(0) < ny/1— P.(0)2,

or
n?P.(0) 4+ P.(0)* < n?.



Because
T(x)* ,

TI 2
2 2 Pc(0)2 = <x)
TS

2
AT

P.(0)* =

we get
n*T(z)? +T'(z)? < En?||T)% .

Because this is true for all ¢ > 1,
T () + T'(2)* < n? TS,
completing the proof. O
Using the above we now prove Bernstein’s inequality.?

Theorem 2 (Bernstein’s inequality). If T € .7, then

1T < 1T -

Proof. There is some zy € T such that |T"(zo)| = ||T'|| .. Let @ € R be such
that e“T"(zg) = ||T"||.- Define S(z) = Re (¢"*T'(z)) for z € T, which satisfies
S'(z) = Re (e!*T’(x)) and in particular

S'(w0) = Re (¢'“T"(x0)) = '“T"(z0) = [|IT"]| . -
Because S € 7, and S is real valued, Theorem 1 yields
S'(x0)? +n2S(x0)? < n?||S|%, -

A fortiori,
S'(wo)® < n*[IS|I3,

giving, because S'(x¢) = ||T"||, and [|S|| o < [|T| >
2 2 2
1Tl < n* TN
proving the claim. O
The following is a version of Bernstein’s inequality.3

Theorem 3. If T € .9, and A C T is a Borel set, there is some zg € T such

that
/ T (t)|dt < n/ |T(t)|dt.
A A—zo

2Ronald A. DeVore and George G. Lorentz, Constructive Approzimation, p. 98.
3Ronald A. DeVore and George G. Lorentz, Constructive Approzimation, p. 101, Theorem
2.4.




Proof. Let A C T be a Borel set with indicator function x4. Define @ : T — C
by

Qx) = /TXA(t)T(t + z)sgn T’ (t)dt, zeT,

which we can write as

Q) = [ xa®) L TG s ()

J
= Zf(]) </ XA(t)eijtsgnT’(t)dt> el
‘ T
j
showing that @ € 7,. Also,
Q' (x) = / Xa()T'(t + z)sgn T (t)dt, z €T.
T

Let zg € T with |Q(zo)| = || Q|| .- Applying Theorem 2 we get

Qo <1 |Ql s -
Using
Q'(0) = /T AT (D)sen T/ (1)t = /T Xa®)T(®)]dt,

this gives

/T Xa® [T (®)]dt < n]|Qll.,
=n|Q(to)]

/11‘ xa(t)T(t 4 zo)sgn T’(t)dt'

=N

< n/TXA(t)\T(t—i—:coﬂdt
=n [ xaa OOl

O

Applying the above with A = T gives the following version of Bernstein’s
inequality, for the L' norm.

Theorem 4 (L' Bernstein’s inequality). If T € .7, then

17"l < nl|T1l; -



3 Nikolsky’s inequality for trigonometric poly-
nomials

DeVore and Lorentz attribute the following inequality to Sergey Nikolsky.*

Theorem 5 (Nikolsky’s inequality). If T € 9, and 0 < ¢ < p < oo, then for
r > 1 an integer,
2 11
T[], < 2nr+1)a> T, .
Proof. Let m = nr. Then T" € 9,,, so T" x D,,, = T", and using this and the

Cauchy-Schwarz inequality we have, for x € T,

% /T T(t)’"Dm(x—t)’

3 [ 17O bt

T(2)"| =

IN

r_a 1 a
<ITISE - o [ O D -
T JT
r_q
< ITUSE i1 1Dl
=712 |72 || D
714 002 | B .,

= V2m 1 1|T| % || .
Hence . .
ITN% < vV2m+ 1| T2 |72,
thus )
1T < (2m+ 1) [T,

Then, using |||, < ||T||17% ||TH§, we have

oo

1_1 1—4a a 1_1
T[], < 2m+1)a7% |||, 7 [Tl = 2m+1)a"7 ||T]|,.

4 The complementary Bernstein inequality

We define a homogeneous Banach space to be a linear subspace B of L!(T)
with a norm [|f|[,1q) < [[fllp with which B is a Banach space, such that if
feBandteTthen f. € B and ||f-||g = || fll 5, and such that if f € B then
fr—=finBasT—0.

4Ronald A. DeVore and George G. Lorentz, Constructive Approzimation, p. 102, Theorem
2.6.



Fejér’s kernel is, for n > 0,

Kn(t) =Y <1— n|j_|1)eijt:ZXn(j) (1— nil>eiﬁ te.

l7]<n JEL

One calculates that, for ¢ & 477Z,

- 2
Kot) = 1 (sm;rlt) '

n+1 sin%t

Bernstein’s inequality is a statement about functions whose Fourier trans-
form is supported only on low frequencies. The following is a statement about
functions whose Fourier transform is supported only on high frequencies.® In
particular, for 1 < p < oo, LP(T) is a homogeneous Banach space, and so is
C(T) with the supremum norm.

Theorem 6. Let B be a homogeneous Banach space and let m be a positive
integer. Define (), as C,, = m + 1 if m is even and C,,, = 12m if m is odd. If

ft) = Z a;et, teT,

l7]=2n

is m times differentiable and f(™ € B, then f € B and
£l < Con™ || £ -

Proof. Suppose that m is even. It is a fact that if a;, j € Z, is an even sequence
of nonnegative real numbers such that a; — 0 as |j| — oo and such that for
each j > 0,

aj—1+ajy1 —2a; >0,

then there is a nonnegative function f € L'(T) such that f(j) = a; for all
j € Z.5 Define

A Ly 20
nm 4 (n =) = (n+1)7") il <n -1
It is apparent that a; is even and tends to 0 as [j| — co. For 1 < j <n —2,
aj—1+ ajy1 — 2a; = 0.
For j =n—1,
Gy +agan = 2a; =" 4 (n— (n—2) (0" — (n+ 1)) 0

-2 (nfm +n=—(Mn-1))n"—=(n+ 1)7’"))
=0.

5Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 55, Theorem
8.4.

6Yitzhak Katznelson, An Introduction to Harmonic Analysis, third ed., p. 24, Theorem
4.1.



The function j — j~™ is convex on {n,n+1,...}, as m > 1, so for j > n we

have a;_1 4+ aj+1 —2a; > 0. Therefore, there is some nonnegative ¢,, ,, € L*(T)
such that -
d’m,n(j) = a4y, JEZL.

Because ¢, is nonnegative, and using n="™ — (n +1)7" < 2",

Ibmnlly = Brmn(0) = 2™ +n(n™™ — (n4+1)"™) < (m+ 1)n~™,

Define dpip, n(t) = %(bmm(t)dt. For |j| > n,

o — —

FO s i (5) = £ (5) oo (7)
= (i)™ () Bmn )
= (i)™ f(G) - i~
=" f(5)-

For |j| < n, since f(j) = 0 we have

f(m) * ,um,n(j) = (Zj)mf(])¢m,n(]) =0= me(])7
so for all j € Z, o
f(m) * ,Um,n(j) = mf(])

This implies that f™) x tm,n = 4™ f, which in particular tells us that f € B.
Then,

£z =" fll5
= Hf(m) * Um,n
B

< <m>H .

< |7 Mo g
= H¢m,n”1 Hf(m)HB
<(m+1)n™™" Hf(m)HB.

This shows what we want in the case that m is even, with C,, = m + 1.
Suppose that m is odd. For [ a positive integer, define ¢; : T — C by

. 1 o
Yi(t) = (em + 2e3l”> K1 (t), teT.

There is a unique [, such that n € {21,,,2l, + 1}. For k > 0 an integer, define
\I’n,k :T—C by
\Pn,k(t) =1y, on (1), teT.

U, 1 satisfies

3 3 1 3 1 3
v < — || Kk = - — Ki 1(t)|dt==--— [ Kg_1(t)dt = —.
il < 5 Wil = 5 5= [ 1Kl =550 [ Kaae =5



On the one hand, for j < 0, from the definition of v; we have ¥, k( /) = 0, hence
Yo ¥n k( j) = 0. On the other hand, for j > n we assert that

S W) =

k=0
We define ®,, : T — C by

o0

Z nk*¢1n2k (t) teT.

k=0
We calculate the Fourier coefficients of ®,,. For j > n,

oo

Z ¢n k ¢1 n?’C Z

As well,

oo

3 _ 6
I, < 522(n2k) = n

k=0

S 9]
||¢)'ILH1 S Z ||\I/7L,k * ¢1,n2’“||1 S Z ||\Il s
k=0 k=0

We now define

d;“’l,n(t) = %

which satisfies for |j| > n,

—~ —~ 1

m(]) = (I)n(.j) - (I)n(_j) = =

and hence

e mnG) = PimnG) = i) - ; = if(j).

Because f(j) = 0 for |j| < n, fﬂn(j) = 0 for |j| < n, it follows that for any
jez, -
F mn(i) = if (),
and therefore,
fxpin =if.
Then

Il =liflg =1 *mnllp < lpanllyery 1 < 2020l 1115 <2 Hf 5 -
That is, with C7; = 12 we have

1115 < 1207 0|l -



For m = 2v + 1, we define

Hm,n = ﬂl,n * H2v,n,

for which we have, for |j| > n,

-~ . N P\ o\ — - ..m". 1 —2v m".
FO) 5 i (5) = (63)™ F () 1,0 (5) B20n (5) = (i) f(])';'] »=i"f(j)
It follows that
f(m) >k,um,n = mea
whence
Ifllg =" fllg
_ || £m)
Hf *fimn |
< lttmm )|
< Nt lagery [ £
< et nllarcey Ny |77
12
<= () f(m)H
n B

=12mn~" Hf(m)H .
B
That is, with C,,, = 12m, we have
£l < Crn™™ [ £

completing the proof.



