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1 Bernoulli polynomials

For k ≥ 0, the Bernoulli polynomial Bk(x) is defined by

zexz

ez − 1
=

∞∑
k=0

Bk(x)
zk

k!
, |z| < 2π. (1)

The Bernoulli numbers are Bk = Bk(0), the constant terms of the Bernoulli
polynomials. For any x, using L’Hospital’s rule the left-hand side of (1) tends
to 1 as z → 0, and the right-hand side tends to B0(x), hence B0(x) = 1.
Differentiating (1) with respect to x,

∞∑
k=0

B′
k(x)

zk

k!
=

z2exz

ez − 1
=

∞∑
k=0

Bk(x)
zk+1

k!
=

∞∑
k=1

Bk−1(x)
zk

(k − 1)!
,

so B′
0(x) = 0 and for k ≥ 1 we have

B′
k(x)
k! = Bk−1(x)

(k−1)! , i.e. B′
k(x) = kBk−1(x).

Furthermore, for k ≥ 1, integrating (1) with respect to x on [0, 1] produces

1 =

∞∑
k=0

(∫ 1

0

Bk(x)dx

)
zk

k!
, |z| < 2π,

hence
∫ 1

0
B0(x)dx = 1 and for k ≥ 1,∫ 1

0

Bk(x)dx = 0.

The first few Bernoulli polynomials are

B0(x) = 1, B1(x) = x− 1

2
, B2(x) = x2 − x+

1

6
, B3(x) = x3 − 3

2
x2 +

1

2
x.
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The Bernoulli polynomials satisfy the following:

∞∑
k=0

Bk(x+ 1)
zk

k!
=

ze(x+1)z

ez − 1

=
zexz(ez − 1 + 1)

ez − 1

= zexz +
zexz

ez − 1

=

∞∑
k=0

xkzk+1

k!
+

∞∑
k=0

Bk(x)
zk

k!

=

∞∑
k=1

xk−1zk

(k − 1)!
+

∞∑
k=0

Bk(x)
zk

k!
,

hence for k ≥ 1 it holds that Bk(x + 1) = kxk−1 + Bk(x). In particular, for
k ≥ 2, Bk(1) = Bk(0).

Using (1),

∞∑
k=0

Bk(1− x)
zk

k!
=

ze(1−x)z

ez − 1

=
zeze−xz

ez − 1

=
ze−xz

1− e−z

=
−ze−xz

e−z − 1

=

∞∑
k=0

Bk(x)
(−z)k

k!
,

hence for k ≥ 0,
Bk(1− x) = (−1)kBk(x).

Finally, it is a fact that for k ≥ 2,

sup
0≤x≤1

|Bk(x)| ≤
2ζ(k)k!

(2π)k
. (2)

2 Periodic Bernoulli functions

For x ∈ R, let [x] be the greatest integer ≤ x, and let R(x) = x − [x], called
the fractional part of x. Write T = R/Z and define the periodic Bernoulli
functions Pk : T → R by

Pk(t) = Bk(R(t)), t ∈ T.
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For k ≥ 2, because Bk(1) = Bk(0), the function Pk is continuous. For f : T → C
define its Fourier transform f̂ : Z → C by

f̂(n) =

∫
T
f(t)e−2πintdt, n ∈ Z.

For k ≥ 1, one calculates P̂k(0) = 0 and using integration by parts,

P̂k(n) = − 1

(2πin)k

for n ̸= 0. Thus for k ≥ 1, the Fourier series of Pk is1

Pk(t) ∼
∑
n∈Z

P̂k(n)e
2πint = − 1

(2πi)k

∑
n̸=0

n−ke2πint.

For k ≥ 2,
∑

n∈Z |P̂k(n)| < ∞, from which it follows that
∑

|n|≤N P̂k(n)e
2πint

converges to Pk(t) uniformly for t ∈ T. Furthermore, for t ̸∈ Z,2

P1(t) = − 1

π

∞∑
n=1

1

n
sin 2πnt.

For f, g ∈ L1(T) and n ∈ Z,

f̂ ∗ g(n) =
∫
T

(∫
T
f(x− y)g(y)dy

)
e−2πinxdx

=

∫
T
g(y)

(∫
T
f(x− y)e−2πinxdx

)
dy

=

∫
T
g(y)

(∫
T
f(x)e−2πinxe−2πinydx

)
dy

= f̂(n)ĝ(n).

For k, l ≥ 1 and for n ̸= 0,

P̂k ∗ Pl(n) = P̂k(n)P̂l(n)

= −(2πin)−k · −(2πin)−l

= (2πin)−k−l

= −P̂k+l(n),

and P̂k ∗ Pl(0) = 0 = −P̂k+l(0), so Pk ∗ Pl = −Pk+l.

1cf. http://www.math.umn.edu/~garrett/m/mfms/notes_c/bernoulli.pdf
2Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical

Theory, p. 499, Theorem B.2.
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3 Euler-Maclaurin summation formula

The Euler-Maclaurin summation formula is the following.3 If a < b are
real numbers, K is a positive integer, and f is a CK function on an open set
that contains [a, b], then

∑
a<m≤b

f(m) =

∫ b

a

f(x)dx+

K∑
k=1

(−1)k

k!
(Pk(b)f

(k−1)(b)− Pk(a)f
(k−1)(a))

− (−1)K

K!

∫ b

a

PK(x)f (K)(x)dx.

Applying the Euler-Maclaurin summation formula with a = 1, b = n,K =
2, f(x) = log x yields4∑

1≤m≤n

log n = n log n− n+
1

2
log n+

1

2
log 2π +O(n−1).

Since e1+O(n−1) = 1 +O(n−1),

n! = nne−n
√
2πn(1 +O(n−1)),

Stirling’s approximation.
Write an = − log n+

∑
1≤m≤n

1
m . Because log(1− x) is concave,

an − an−1 =
1

n
+ log

(
1− 1

n

)
≤ 1 + 1− 1

n
= 0,

which means that the sequence an is nonincreasing. For f(x) = 1
x , because f is

positive and nonincreasing,∑
1≤m≤n

f(m) ≥
∫ n+1

1

f(x)dx = log(n+ 1) > log n,

hence an > 0. Because an is positive and nonincreasing, there exists some non-
negative limit, γ, called Euler’s constant. Using the Euler-Maclaurin summa-
tion formula with a = 1, b = n,K = 1, f(x) = 1

x , as P1(x) = [x]− 1
2 ,∑

1<m≤n

1

m
= log n+

1

2n
− 1

2
+

1

2

∫ n

1

1

x2
dx−

∫ n

1

R(x)
1

x2
dx,

which is ∑
1<m≤n

1

m
= log n−

∫ ∞

1

R(x)

x2
dx+

∫ ∞

n

R(x)

x2
dx;

3Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical
Theory, p. 500, Theorem B.5.

4Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical
Theory, p. 503, Eq. B.25.

4



as 0 ≤ R(x)x−2 ≤ x−2, the function x 7→ R(x)x−2 is integrable on [1,∞). Since
0 ≤

∫∞
n

R(x)x−2dx ≤
∫∞
n

x−2dx = n−1,∑
1≤m≤n

1

m
= log n+ C +O(n−1)

for C = 1−
∫∞
1

R(x)x−2. But − log n+
∑

1≤m≤n
1
m → γ as n → ∞, from which

it follows that C = γ, and thus∑
1≤m≤n

1

m
= log n+ γ +O(n−1).

4 Hurwitz zeta function

For 0 < α ≤ 1 and Re s > 1, define the Hurwitz zeta function by

ζ(s, α) =
∑
n≥0

(n+ α)−s.

For Re s > 0,

Γ(s) =

∫ ∞

0

ts−1e−tdt,

and for n ≥ 0 do the change of variable t = (n+ α)u,

Γ(s) =

∫ ∞

0

(n+ α)s−1us−1e−(n+α)u(n+ α)du

= (n+ α)s
∫ ∞

0

us−1e−nue−αudu.

For real s > 1,

(n+ α)−sΓ(s) =

∫ ∞

0

us−1e−nue−αudu.

Then∑
0≤n≤N

(n+ α)−sΓ(s) =
∑

0≤n≤N

∫ ∞

0

us−1e−nue−αudu =

∫ ∞

0

fN (s, u)du,

where

fN (s, u) =

{
us−1e−αu 1−e−(N+1)u

1−e−u u > 0

0 u = 0.

fN (s, u) ≥ 0 and the sequence fN (s, u) is pointwise nondecreasing, and

lim
N→∞

fN (s, u) = f(s, u) =

{
us−1e−αu 1

1−e−u u > 0

0 u = 0.
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By the monotone convergence theorem,∫ ∞

0

fN (s, u)du →
∫ ∞

0

f(s, u)du,

which means that, for real s > 1,

ζ(s, α)Γ(s) =

∫ ∞

0

f(s, u)du.

Write ∫ ∞

0

f(s, u)du =

∫ 1

0

f(s, u)du+

∫ ∞

1

f(s, u)du.

Now, by (1), for 0 < u < 2π,

f(s, u) = us−1e−αu 1

1− e−u

= us−2 · −ue−αu

e−u − 1

= us−2
∞∑
k=0

Bk(α)
(−u)k

k!

=

∞∑
k=0

(−1)kBk(α)
uk+s−2

k!
.

For k ≥ 2, real s > 1, and 0 < u < 2π, by (2),∣∣∣∣Bk(α)
uk+s−2

k!

∣∣∣∣ ≤ 2ζ(k)k!

(2π)k
· uk+s−2 · 1

k!
= 2ζ(k)

( u

2π

)k

us−2,

which is summable, and thus by the dominated convergence theorem,∫ 1

0

f(s, u)du =

∫ 1

0

∞∑
k=0

(−1)kBk(α)
uk+s−2

k!
du

=

∞∑
k=0

(−1)kBk(α)
1

k!

1

k + s− 1
.

Check that s 7→
∑∞

k=0(−1)kBk(α)
1
k!

1
k+s−1 is meromorphic on C, with poles of

order 0 or 1 at s = −k+1, k ≥ 0 (the order of the pole is 0 if Bk(α) = 0), at which
the residue is (−1)kBk(α)

1
k! .

5 On the other hand, check that s 7→
∫∞
1

f(s, u)du
is entire. Therefore ζ(s, α)Γ(s) is meromorphic on C, with poles of order 0
or 1 at s = −k + 1, k ≥ 0 and the residue of ζ(s, α)Γ(s) at s = −k + 1 is
(−1)kBk(α)

1
k! . But it is a fact that Γ(s) has poles of order 1 at s = −n, n ≥ 0,

with residue (−1)n

n! . Hence the only pole of ζ(s, α) is at s = 1, at which the
residue is 1.

5Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number Theory 1: Fermat’s
Dream, p. 96.
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Theorem 1. For n ≥ 1 and for 0 < α ≤ 1,

ζ(1− n, α) = −Bn(α)

n
.

Proof. For n ≥ 1, because ζ(s, α) does not have a pole at s = 1−n and because

Γ(s) has a pole of order 1 at s = 1− n with residue (−1)n−1

(n−1)! ,

lim
s→1−n

(s− (1− n))Γ(s)ζ(s, α) = ζ(1− n, α) · lim
s→1−n

(s− (1− n))Γ(s)

= ζ(1− n, α) · Ress=1−nΓ(s)

= ζ(1− n, α) · (−1)n−1

(n− 1)!
.

On the other hand, ζ(s, α)Γ(s) has a pole of order 1 at s = 1− n with residue
(−1)nBn(α)

1
n! . Therefore

ζ(1− n, α) · (−1)n−1

(n− 1)!
= (−1)nBn(α)

1

n!
,

i.e. for n ≥ 1 and 0 < α ≤ 1,

ζ(1− n, α) = −Bn(α)

n
.

5 Sobolev spaces

For real s ≥ 0, we define the Sobolev spaceHs(T) as the set of those f ∈ L2(T)
such that

|f̂(0)|2 +
∑

n∈Z\{0}

|f̂(n)|2|n|2s < ∞.

For f, g ∈ Hs(T), define

⟨f, g⟩Hs(T) = f̂(0)ĝ(0) +
∑

n∈Z\{0}

f̂(n)ĝ(n)|n|2s.

This is an inner product, with which Hs(T) is a Hilbert space.6

6See http://www.math.umn.edu/~garrett/m/mfms/notes/09_sobolev.pdf
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For c ∈ CZ, if s > r + 1
2 ,∥∥∥∥∥∥

∑
|n|≤N

cne
2πinx

∥∥∥∥∥∥
Cr(T)

= sup
0≤j≤r

sup
x∈T

∣∣∣∣∣∣
∑

|n|≤N

cn(2πin)
je2πinx

∣∣∣∣∣∣
≤|c0|2 + sup

0≤j≤r
sup
x∈T

∣∣∣∣∣∣
∑

1≤|n|≤N

cn(2πin)
je2πinx

∣∣∣∣∣∣
≤|c0|2 + (2π)r

∑
1≤|n|≤N

|cn||n|r

=|c0|2 + (2π)r
∑

1≤|n|≤N

|cn||n|s|n|−(r−s)

≤|c0|2 + (2π)r

 ∑
1≤|n|≤N

|cn|2|n|2s
1/2  ∑

1≤|n|≤N

|n|−(2s−2r)

1/2

≤|c0|2 + (2π)r · (2 · ζ(2s− 2r))1/2 ·

 ∑
1≤|n|≤N

|cn|2|n|2s
1/2

.

For f ∈ Hs(T), the partial sums
∑

|n|≤N f̂(n)e2πinx are a Cauchy sequence in

Hs(T) and by the above are a Cauchy sequence in the Banach space Cr(T) and
so converge to some g ∈ Cr(T). Then ĝ = f̂ , which implies that g = f almost
everywhere.

For k ≥ 1, P̂k(0) = 0 and P̂k(n) = −(2πin)−k for n ̸= 0. For k, l > s+ 1
2 ,

⟨Pk, Pl⟩Hs(T) =
∑

n∈Z\{0}

−(2πin)−k−(2πin)−l

=
∑

n∈Z\{0}

i−k+l(2πn)−k−l

= i−k+l(2π)−k−l · 2 · ζ(k + l).

Thus if k > s+ 1
2 then Pk ∈ Hs(T), and in particular Pk ∈ Hk−1(T) for k ≥ 1.

For s > r + 1
2 , if f ∈ Hs(T) then there is some g ∈ Cr(T) such that g = f

almost everywhere. Thus if r + 1
2 < s < k − 1

2 , i.e. k > r + 1, then there is
some g ∈ Cr(T) such that g = Pk almost everywhere. But for k ̸= 1, Pk is
continuous, so in fact g = Pk. In particular, Pk ∈ Ck−2(T) for k ≥ 2.
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6 Reproducing kernel Hilbert spaces

For x ∈ T and f : T → C, define (τxf)(y) = f(y − x). We calculate

τ̂xf(n) =

∫
T
f(y − x)e−2πinydy

= e−2πinx

∫
T
f(y)e−2πinydy

= e−2πinxf̂(n).

Let r ≥ 1. For x ∈ T, define Fx : T → R by

Fx = 1 + (−1)r−1(2π)2rτxP2r.

For n ∈ Z,

F̂x(n) = δ0(n) + (−1)r−1(2π)2r · e−2πinxP̂2r(n).

F̂x(0) = 1, and for n ̸= 0,

F̂x(n) = (−1)r−1(2π)2r · e−2πinx · −(2πin)−2r = |n|−2re−2πinx.

For f ∈ Hr(T),

⟨f, Fx⟩Hr(T) = f̂(0)F̂x(0) +
∑

n∈Z\{0}

f̂(n)F̂x(n)|n|2r

= f̂(0) +
∑

n∈Z\{0}

f̂(n)|n|−2re2πinx|n|2r

= f̂(0) +
∑

n∈Z\{0}

f̂(n)e2πinx

= f(x).

This shows that Hr(T) is a reproducing kernel Hilbert space.
Define F : T× T → R by

F (x, y) = ⟨Fx, Fy⟩Hr(T)

= Fx(y)

= 1 + (−1)r−1(2π)2rP2r(y − x).

Thus the reproducing kernel of Hr(T) is7

F (x, y) = 1 + (−1)r−1(2π)2rP2r(y − x).

7cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in
Probability and Statistics, p. 318, who use a different inner product on Hr(T) and consequently
have a different expression for the reproducing kernel.
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