Bernoulli polynomials

Jordan Bell

March 9, 2016

1 Bernoulli polynomials

For $k \geq 0$, the Bernoulli polynomial $B_{k}(x)$ is defined by

$$
\begin{equation*}
\frac{z e^{x z}}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!}, \quad|z|<2 \pi \tag{1}
\end{equation*}
$$

The Bernoulli numbers are $B_{k}=B_{k}(0)$, the constant terms of the Bernoulli polynomials. For any x, using L'Hospital's rule the left-hand side of (1) tends to 1 as $z \rightarrow 0$, and the right-hand side tends to $B_{0}(x)$, hence $B_{0}(x)=1$. Differentiating (1) with respect to x,

$$
\sum_{k=0}^{\infty} B_{k}^{\prime}(x) \frac{z^{k}}{k!}=\frac{z^{2} e^{x z}}{e^{z}-1}=\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k+1}}{k!}=\sum_{k=1}^{\infty} B_{k-1}(x) \frac{z^{k}}{(k-1)!}
$$

so $B_{0}^{\prime}(x)=0$ and for $k \geq 1$ we have $\frac{B_{k}^{\prime}(x)}{k!}=\frac{B_{k-1}(x)}{(k-1)!}$, i.e. $B_{k}^{\prime}(x)=k B_{k-1}(x)$. Furthermore, for $k \geq 1$, integrating (1) with respect to x on [0, 1] produces

$$
1=\sum_{k=0}^{\infty}\left(\int_{0}^{1} B_{k}(x) d x\right) \frac{z^{k}}{k!}, \quad|z|<2 \pi
$$

hence $\int_{0}^{1} B_{0}(x) d x=1$ and for $k \geq 1$,

$$
\int_{0}^{1} B_{k}(x) d x=0
$$

The first few Bernoulli polynomials are
$B_{0}(x)=1, \quad B_{1}(x)=x-\frac{1}{2}, \quad B_{2}(x)=x^{2}-x+\frac{1}{6}, \quad B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x$.

The Bernoulli polynomials satisfy the following:

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{k}(x+1) \frac{z^{k}}{k!} & =\frac{z e^{(x+1) z}}{e^{z}-1} \\
& =\frac{z e^{x z}\left(e^{z}-1+1\right)}{e^{z}-1} \\
& =z e^{x z}+\frac{z e^{x z}}{e^{z}-1} \\
& =\sum_{k=0}^{\infty} \frac{x^{k} z^{k+1}}{k!}+\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!} \\
& =\sum_{k=1}^{\infty} \frac{x^{k-1} z^{k}}{(k-1)!}+\sum_{k=0}^{\infty} B_{k}(x) \frac{z^{k}}{k!}
\end{aligned}
$$

hence for $k \geq 1$ it holds that $B_{k}(x+1)=k x^{k-1}+B_{k}(x)$. In particular, for $k \geq 2, B_{k}(1)=B_{k}(0)$.

Using (1),

$$
\begin{aligned}
\sum_{k=0}^{\infty} B_{k}(1-x) \frac{z^{k}}{k!} & =\frac{z e^{(1-x) z}}{e^{z}-1} \\
& =\frac{z e^{z} e^{-x z}}{e^{z}-1} \\
& =\frac{z e^{-x z}}{1-e^{-z}} \\
& =\frac{-z e^{-x z}}{e^{-z}-1} \\
& =\sum_{k=0}^{\infty} B_{k}(x) \frac{(-z)^{k}}{k!}
\end{aligned}
$$

hence for $k \geq 0$,

$$
B_{k}(1-x)=(-1)^{k} B_{k}(x)
$$

Finally, it is a fact that for $k \geq 2$,

$$
\begin{equation*}
\sup _{0 \leq x \leq 1}\left|B_{k}(x)\right| \leq \frac{2 \zeta(k) k!}{(2 \pi)^{k}} \tag{2}
\end{equation*}
$$

2 Periodic Bernoulli functions

For $x \in \mathbb{R}$, let $[x]$ be the greatest integer $\leq x$, and let $R(x)=x-[x]$, called the fractional part of x. Write $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ and define the periodic Bernoulli functions $P_{k}: \mathbb{T} \rightarrow \mathbb{R}$ by

$$
P_{k}(t)=B_{k}(R(t)), \quad t \in \mathbb{T}
$$

For $k \geq 2$, because $B_{k}(1)=B_{k}(0)$, the function P_{k} is continuous. For $f: \mathbb{T} \rightarrow \mathbb{C}$ define its Fourier transform $\widehat{f}: \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
\widehat{f}(n)=\int_{\mathbb{T}} f(t) e^{-2 \pi i n t} d t, \quad n \in \mathbb{Z}
$$

For $k \geq 1$, one calculates $\widehat{P}_{k}(0)=0$ and using integration by parts,

$$
\widehat{P}_{k}(n)=-\frac{1}{(2 \pi i n)^{k}}
$$

for $n \neq 0$. Thus for $k \geq 1$, the Fourier series of P_{k} is ${ }^{1}$

$$
P_{k}(t) \sim \sum_{n \in \mathbb{Z}} \widehat{P}_{k}(n) e^{2 \pi i n t}=-\frac{1}{(2 \pi i)^{k}} \sum_{n \neq 0} n^{-k} e^{2 \pi i n t}
$$

For $k \geq 2, \sum_{n \in \mathbb{Z}}\left|\widehat{P}_{k}(n)\right|<\infty$, from which it follows that $\sum_{|n| \leq N} \widehat{P}_{k}(n) e^{2 \pi i n t}$ converges to $P_{k}(t)$ uniformly for $t \in \mathbb{T}$. Furthermore, for $t \notin \mathbb{Z},{ }^{2}$

$$
P_{1}(t)=-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin 2 \pi n t
$$

For $f, g \in L^{1}(\mathbb{T})$ and $n \in \mathbb{Z}$,

$$
\begin{aligned}
\widehat{f * g}(n) & =\int_{\mathbb{T}}\left(\int_{\mathbb{T}} f(x-y) g(y) d y\right) e^{-2 \pi i n x} d x \\
& =\int_{\mathbb{T}} g(y)\left(\int_{\mathbb{T}} f(x-y) e^{-2 \pi i n x} d x\right) d y \\
& =\int_{\mathbb{T}} g(y)\left(\int_{\mathbb{T}} f(x) e^{-2 \pi i n x} e^{-2 \pi i n y} d x\right) d y \\
& =\widehat{f}(n) \widehat{g}(n)
\end{aligned}
$$

For $k, l \geq 1$ and for $n \neq 0$,

$$
\begin{aligned}
\widehat{P_{k} * P_{l}}(n) & =\widehat{P_{k}}(n) \widehat{P_{l}}(n) \\
& =-(2 \pi i n)^{-k} \cdot-(2 \pi i n)^{-l} \\
& =(2 \pi i n)^{-k-l} \\
& =-\widehat{P_{k+l}}(n)
\end{aligned}
$$

and $\widehat{P_{k} * P_{l}}(0)=0=-\widehat{P_{k+l}}(0)$, so $P_{k} * P_{l}=-P_{k+l}$.

[^0]
3 Euler-Maclaurin summation formula

The Euler-Maclaurin summation formula is the following. ${ }^{3}$ If $a<b$ are real numbers, K is a positive integer, and f is a C^{K} function on an open set that contains $[a, b]$, then

$$
\begin{aligned}
\sum_{a<m \leq b} f(m) & =\int_{a}^{b} f(x) d x+\sum_{k=1}^{K} \frac{(-1)^{k}}{k!}\left(P_{k}(b) f^{(k-1)}(b)-P_{k}(a) f^{(k-1)}(a)\right) \\
& -\frac{(-1)^{K}}{K!} \int_{a}^{b} P_{K}(x) f^{(K)}(x) d x
\end{aligned}
$$

Applying the Euler-Maclaurin summation formula with $a=1, b=n, K=$ $2, f(x)=\log x$ yields 4

$$
\sum_{1 \leq m \leq n} \log n=n \log n-n+\frac{1}{2} \log n+\frac{1}{2} \log 2 \pi+O\left(n^{-1}\right)
$$

Since $e^{1+O\left(n^{-1}\right)}=1+O\left(n^{-1}\right)$,

$$
n!=n^{n} e^{-n} \sqrt{2 \pi n}\left(1+O\left(n^{-1}\right)\right)
$$

Stirling's approximation.
Write $a_{n}=-\log n+\sum_{1 \leq m \leq n} \frac{1}{m}$. Because $\log (1-x)$ is concave,

$$
a_{n}-a_{n-1}=\frac{1}{n}+\log \left(1-\frac{1}{n}\right) \leq 1+1-\frac{1}{n}=0
$$

which means that the sequence a_{n} is nonincreasing. For $f(x)=\frac{1}{x}$, because f is positive and nonincreasing,

$$
\sum_{1 \leq m \leq n} f(m) \geq \int_{1}^{n+1} f(x) d x=\log (n+1)>\log n
$$

hence $a_{n}>0$. Because a_{n} is positive and nonincreasing, there exists some nonnegative limit, γ, called Euler's constant. Using the Euler-Maclaurin summation formula with $a=1, b=n, K=1, f(x)=\frac{1}{x}$, as $P_{1}(x)=[x]-\frac{1}{2}$,

$$
\sum_{1<m \leq n} \frac{1}{m}=\log n+\frac{1}{2 n}-\frac{1}{2}+\frac{1}{2} \int_{1}^{n} \frac{1}{x^{2}} d x-\int_{1}^{n} R(x) \frac{1}{x^{2}} d x
$$

which is

$$
\sum_{1<m \leq n} \frac{1}{m}=\log n-\int_{1}^{\infty} \frac{R(x)}{x^{2}} d x+\int_{n}^{\infty} \frac{R(x)}{x^{2}} d x
$$

[^1]as $0 \leq R(x) x^{-2} \leq x^{-2}$, the function $x \mapsto R(x) x^{-2}$ is integrable on $[1, \infty)$. Since $0 \leq \int_{n}^{\infty} R(x) x^{-2} d x \leq \int_{n}^{\infty} x^{-2} d x=n^{-1}$,
$$
\sum_{1 \leq m \leq n} \frac{1}{m}=\log n+C+O\left(n^{-1}\right)
$$
for $C=1-\int_{1}^{\infty} R(x) x^{-2}$. But $-\log n+\sum_{1 \leq m \leq n} \frac{1}{m} \rightarrow \gamma$ as $n \rightarrow \infty$, from which it follows that $C=\gamma$, and thus
$$
\sum_{1 \leq m \leq n} \frac{1}{m}=\log n+\gamma+O\left(n^{-1}\right)
$$

4 Hurwitz zeta function

For $0<\alpha \leq 1$ and $\operatorname{Re} s>1$, define the Hurwitz zeta function by

$$
\zeta(s, \alpha)=\sum_{n \geq 0}(n+\alpha)^{-s}
$$

For $\operatorname{Re} s>0$,

$$
\Gamma(s)=\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

and for $n \geq 0$ do the change of variable $t=(n+\alpha) u$,

$$
\begin{aligned}
\Gamma(s) & =\int_{0}^{\infty}(n+\alpha)^{s-1} u^{s-1} e^{-(n+\alpha) u}(n+\alpha) d u \\
& =(n+\alpha)^{s} \int_{0}^{\infty} u^{s-1} e^{-n u} e^{-\alpha u} d u
\end{aligned}
$$

For real $s>1$,

$$
(n+\alpha)^{-s} \Gamma(s)=\int_{0}^{\infty} u^{s-1} e^{-n u} e^{-\alpha u} d u
$$

Then

$$
\sum_{0 \leq n \leq N}(n+\alpha)^{-s} \Gamma(s)=\sum_{0 \leq n \leq N} \int_{0}^{\infty} u^{s-1} e^{-n u} e^{-\alpha u} d u=\int_{0}^{\infty} f_{N}(s, u) d u
$$

where

$$
f_{N}(s, u)= \begin{cases}u^{s-1} e^{-\alpha u} \frac{1-e^{-(N+1) u}}{1-e^{-u}} & u>0 \\ 0 & u=0\end{cases}
$$

$f_{N}(s, u) \geq 0$ and the sequence $f_{N}(s, u)$ is pointwise nondecreasing, and

$$
\lim _{N \rightarrow \infty} f_{N}(s, u)=f(s, u)= \begin{cases}u^{s-1} e^{-\alpha u} \frac{1}{1-e^{-u}} & u>0 \\ 0 & u=0\end{cases}
$$

By the monotone convergence theorem,

$$
\int_{0}^{\infty} f_{N}(s, u) d u \rightarrow \int_{0}^{\infty} f(s, u) d u
$$

which means that, for real $s>1$,

$$
\zeta(s, \alpha) \Gamma(s)=\int_{0}^{\infty} f(s, u) d u
$$

Write

$$
\int_{0}^{\infty} f(s, u) d u=\int_{0}^{1} f(s, u) d u+\int_{1}^{\infty} f(s, u) d u
$$

Now, by (1), for $0<u<2 \pi$,

$$
\begin{aligned}
f(s, u) & =u^{s-1} e^{-\alpha u} \frac{1}{1-e^{-u}} \\
& =u^{s-2} \cdot \frac{-u e^{-\alpha u}}{e^{-u}-1} \\
& =u^{s-2} \sum_{k=0}^{\infty} B_{k}(\alpha) \frac{(-u)^{k}}{k!} \\
& =\sum_{k=0}^{\infty}(-1)^{k} B_{k}(\alpha) \frac{u^{k+s-2}}{k!} .
\end{aligned}
$$

For $k \geq 2$, real $s>1$, and $0<u<2 \pi$, by (2),

$$
\left|B_{k}(\alpha) \frac{u^{k+s-2}}{k!}\right| \leq \frac{2 \zeta(k) k!}{(2 \pi)^{k}} \cdot u^{k+s-2} \cdot \frac{1}{k!}=2 \zeta(k)\left(\frac{u}{2 \pi}\right)^{k} u^{s-2}
$$

which is summable, and thus by the dominated convergence theorem,

$$
\begin{aligned}
\int_{0}^{1} f(s, u) d u & =\int_{0}^{1} \sum_{k=0}^{\infty}(-1)^{k} B_{k}(\alpha) \frac{u^{k+s-2}}{k!} d u \\
& =\sum_{k=0}^{\infty}(-1)^{k} B_{k}(\alpha) \frac{1}{k!} \frac{1}{k+s-1}
\end{aligned}
$$

Check that $s \mapsto \sum_{k=0}^{\infty}(-1)^{k} B_{k}(\alpha) \frac{1}{k!} \frac{1}{k+s-1}$ is meromorphic on \mathbb{C}, with poles of order 0 or 1 at $s=-k+1, k \geq 0$ (the order of the pole is 0 if $B_{k}(\alpha)=0$), at which the residue is $(-1)^{k} B_{k}(\alpha) \frac{1}{k!} \cdot{ }^{5}$ On the other hand, check that $s \mapsto \int_{1}^{\infty} f(s, u) d u$ is entire. Therefore $\zeta(s, \alpha) \Gamma(s)$ is meromorphic on \mathbb{C}, with poles of order 0 or 1 at $s=-k+1, k \geq 0$ and the residue of $\zeta(s, \alpha) \Gamma(s)$ at $s=-k+1$ is $(-1)^{k} B_{k}(\alpha) \frac{1}{k!}$. But it is a fact that $\Gamma(s)$ has poles of order 1 at $s=-n, n \geq 0$, with residue $\frac{(-1)^{n}}{n!}$. Hence the only pole of $\zeta(s, \alpha)$ is at $s=1$, at which the residue is 1 .

[^2]Theorem 1. For $n \geq 1$ and for $0<\alpha \leq 1$,

$$
\zeta(1-n, \alpha)=-\frac{B_{n}(\alpha)}{n}
$$

Proof. For $n \geq 1$, because $\zeta(s, \alpha)$ does not have a pole at $s=1-n$ and because $\Gamma(s)$ has a pole of order 1 at $s=1-n$ with residue $\frac{(-1)^{n-1}}{(n-1)!}$,

$$
\begin{aligned}
\lim _{s \rightarrow 1-n}(s-(1-n)) \Gamma(s) \zeta(s, \alpha) & =\zeta(1-n, \alpha) \cdot \lim _{s \rightarrow 1-n}(s-(1-n)) \Gamma(s) \\
& =\zeta(1-n, \alpha) \cdot \operatorname{Res}_{s=1-n} \Gamma(s) \\
& =\zeta(1-n, \alpha) \cdot \frac{(-1)^{n-1}}{(n-1)!}
\end{aligned}
$$

On the other hand, $\zeta(s, \alpha) \Gamma(s)$ has a pole of order 1 at $s=1-n$ with residue $(-1)^{n} B_{n}(\alpha) \frac{1}{n!}$. Therefore

$$
\zeta(1-n, \alpha) \cdot \frac{(-1)^{n-1}}{(n-1)!}=(-1)^{n} B_{n}(\alpha) \frac{1}{n!}
$$

i.e. for $n \geq 1$ and $0<\alpha \leq 1$,

$$
\zeta(1-n, \alpha)=-\frac{B_{n}(\alpha)}{n}
$$

5 Sobolev spaces

For real $s \geq 0$, we define the Sobolev space $H^{s}(\mathbb{T})$ as the set of those $f \in L^{2}(\mathbb{T})$ such that

$$
|\widehat{f}(0)|^{2}+\sum_{n \in \mathbb{Z} \backslash\{0\}}|\widehat{f}(n)|^{2}|n|^{2 s}<\infty
$$

For $f, g \in H^{s}(\mathbb{T})$, define

$$
\langle f, g\rangle_{H^{s}(\mathbb{T})}=\widehat{f}(0) \overline{\widehat{g}(0)}+\sum_{n \in \mathbb{Z} \backslash\{0\}} \widehat{f}(n) \overline{\bar{g}(n)}|n|^{2 s}
$$

This is an inner product, with which $H^{s}(\mathbb{T})$ is a Hilbert space. ${ }^{6}$

[^3]For $c \in \mathbb{C}^{\mathbb{Z}}$, if $s>r+\frac{1}{2}$,

$$
\begin{aligned}
& \left\|\sum_{|n| \leq N} c_{n} e^{2 \pi i n x}\right\|_{C^{r}(\mathbb{T})} \\
& =\sup _{0 \leq j \leq r} \sup _{x \in \mathbb{T}}\left|\sum_{|n| \leq N} c_{n}(2 \pi i n)^{j} e^{2 \pi i n x}\right| \\
& \leq\left|c_{0}\right|^{2}+\sup _{0 \leq j \leq r} \sup _{x \in \mathbb{T}}\left|\sum_{1 \leq|n| \leq N} c_{n}(2 \pi i n)^{j} e^{2 \pi i n x}\right| \\
& \leq\left|c_{0}\right|^{2}+(2 \pi)^{r} \sum_{1 \leq|n| \leq N}\left|c_{n}\right||n|^{r} \\
& =\left|c_{0}\right|^{2}+(2 \pi)^{r} \sum_{1 \leq|n| \leq N}\left|c_{n}\right||n|^{s}|n|^{-(r-s)} \\
& \leq\left|c_{0}\right|^{2}+(2 \pi)^{r}\left(\sum_{1 \leq|n| \leq N}\left|c_{n}\right|^{2}|n|^{2 s}\right)^{1 / 2}\left(\sum_{1 \leq|n| \leq N}|n|^{-(2 s-2 r)}\right)^{1 / 2} \\
& \leq\left|c_{0}\right|^{2}+(2 \pi)^{r} \cdot(2 \cdot \zeta(2 s-2 r))^{1 / 2} \cdot\left(\sum_{1 \leq|n| \leq N}\left|c_{n}\right|^{2}|n|^{2 s}\right)^{1 / 2}
\end{aligned}
$$

For $f \in H^{s}(\mathbb{T})$, the partial sums $\sum_{|n| \leq N} \widehat{f}(n) e^{2 \pi i n x}$ are a Cauchy sequence in $H^{s}(\mathbb{T})$ and by the above are a Cauchy sequence in the Banach space $C^{r}(\mathbb{T})$ and so converge to some $g \in C^{r}(\mathbb{T})$. Then $\widehat{g}=\widehat{f}$, which implies that $g=f$ almost everywhere.

For $k \geq 1, \widehat{P}_{k}(0)=0$ and $\widehat{P}_{k}(n)=-(2 \pi i n)^{-k}$ for $n \neq 0$. For $k, l>s+\frac{1}{2}$,

$$
\begin{aligned}
\left\langle P_{k}, P_{l}\right\rangle_{H^{s}(\mathbb{T})} & =\sum_{n \in \mathbb{Z} \backslash\{0\}}-(2 \pi i n)^{-k} \overline{-(2 \pi i n)^{-l}} \\
& =\sum_{n \in \mathbb{Z} \backslash\{0\}} i^{-k+l}(2 \pi n)^{-k-l} \\
& =i^{-k+l}(2 \pi)^{-k-l} \cdot 2 \cdot \zeta(k+l) .
\end{aligned}
$$

Thus if $k>s+\frac{1}{2}$ then $P_{k} \in H^{s}(\mathbb{T})$, and in particular $P_{k} \in H^{k-1}(\mathbb{T})$ for $k \geq 1$.
For $s>r+\frac{1}{2}$, if $f \in H^{s}(\mathbb{T})$ then there is some $g \in C^{r}(\mathbb{T})$ such that $g=f$ almost everywhere. Thus if $r+\frac{1}{2}<s<k-\frac{1}{2}$, i.e. $k>r+1$, then there is some $g \in C^{r}(\mathbb{T})$ such that $g=P_{k}$ almost everywhere. But for $k \neq 1, P_{k}$ is continuous, so in fact $g=P_{k}$. In particular, $P_{k} \in C^{k-2}(\mathbb{T})$ for $k \geq 2$.

6 Reproducing kernel Hilbert spaces

For $x \in \mathbb{T}$ and $f: \mathbb{T} \rightarrow \mathbb{C}$, define $\left(\tau_{x} f\right)(y)=f(y-x)$. We calculate

$$
\begin{aligned}
\widehat{\tau_{x} f}(n) & =\int_{\mathbb{T}} f(y-x) e^{-2 \pi i n y} d y \\
& =e^{-2 \pi i n x} \int_{\mathbb{T}} f(y) e^{-2 \pi i n y} d y \\
& =e^{-2 \pi i n x} \widehat{f}(n)
\end{aligned}
$$

Let $r \geq 1$. For $x \in \mathbb{T}$, define $F_{x}: \mathbb{T} \rightarrow \mathbb{R}$ by

$$
F_{x}=1+(-1)^{r-1}(2 \pi)^{2 r} \tau_{x} P_{2 r}
$$

For $n \in \mathbb{Z}$,

$$
\widehat{F_{x}}(n)=\delta_{0}(n)+(-1)^{r-1}(2 \pi)^{2 r} \cdot e^{-2 \pi i n x} \widehat{P}_{2 r}(n)
$$

$\widehat{F_{x}}(0)=1$, and for $n \neq 0$,

$$
\widehat{F_{x}}(n)=(-1)^{r-1}(2 \pi)^{2 r} \cdot e^{-2 \pi i n x} \cdot-(2 \pi i n)^{-2 r}=|n|^{-2 r} e^{-2 \pi i n x} .
$$

For $f \in H^{r}(\mathbb{T})$,

$$
\begin{aligned}
\left\langle f, F_{x}\right\rangle_{H^{r}(\mathbb{T})} & =\widehat{f}(0) \overline{\widehat{F_{x}}(0)}+\sum_{n \in \mathbb{Z} \backslash\{0\}} \widehat{f}(n) \overline{\widehat{F_{x}}(n)}|n|^{2 r} \\
& =\widehat{f}(0)+\sum_{n \in \mathbb{Z} \backslash\{0\}} \widehat{f}(n)|n|^{-2 r} e^{2 \pi i n x}|n|^{2 r} \\
& =\widehat{f}(0)+\sum_{n \in \mathbb{Z} \backslash\{0\}} \widehat{f}(n) e^{2 \pi i n x} \\
& =f(x)
\end{aligned}
$$

This shows that $H^{r}(\mathbb{T})$ is a reproducing kernel Hilbert space.
Define $F: \mathbb{T} \times \mathbb{T} \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
F(x, y) & =\left\langle F_{x}, F_{y}\right\rangle_{H^{r}(\mathbb{T})} \\
& =F_{x}(y) \\
& =1+(-1)^{r-1}(2 \pi)^{2 r} P_{2 r}(y-x) .
\end{aligned}
$$

Thus the reproducing kernel of $H^{r}(\mathbb{T})$ is ${ }^{7}$

$$
F(x, y)=1+(-1)^{r-1}(2 \pi)^{2 r} P_{2 r}(y-x) .
$$

[^4]
[^0]: ${ }^{1}$ cf. http://www.math.umn.edu/~garrett/m/mfms/notes_c/bernoulli.pdf
 ${ }^{2}$ Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical Theory, p. 499, Theorem B.2.

[^1]: ${ }^{3}$ Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical Theory, p. 500, Theorem B.5.
 ${ }^{4}$ Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I: Classical Theory, p. 503, Eq. B. 25 .

[^2]: ${ }^{5}$ Kazuya Kato, Nobushige Kurokawa, and Takeshi Saito, Number Theory 1: Fermat's Dream, p. 96.

[^3]: ${ }^{6}$ See http://www.math.umn.edu/~garrett/m/mfms/notes/09_sobolev.pdf

[^4]: ${ }^{7}$ cf. Alain Berlinet and Christine Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability and Statistics, p. 318, who use a different inner product on $H^{r}(\mathbb{T})$ and consequently have a different expression for the reproducing kernel.

