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1 Introduction

In this note I am writing out proofs of some facts about Fourier series, Bergman
spaces, and Hardy spaces. §§1–3 follow the presentation in Stein and Shakarchi’s
Real Analysis and Fourier Analysis. The questions in Halmos’s Hilbert Space
Problem Book that deal with Hardy spaces are: §§24–35, 67, 116–117, 124–125,
127, 193–199, and I present solutions to some of these in §§4–5, on Bergman
spaces, and §6, on Hardy spaces.

2 Poisson kernel

Let T = R/2πZ. Let

∥f∥Lp =

(
1

2π

∫ 2π

0

|f(t)|pdt
)1/p

.

If f ∈ L1(T), let

f̂(k) =
1

2π

∫ 2π

0

f(t)e−iktdt.

Define

Pr(t) =
∑
n∈Z

r|n|eint =
1− r2

1− 2r cos t+ r2
, 0 ≤ r < 1, t ∈ T.

One checks that Pr is an approximation to the identity, which implies that for
f ∈ L1(T), for almost all θ ∈ T we have (f ∗ Pr)(θ) → f(θ) as r → 1−.1

For f ∈ L1(T), for any θ we have∥∥∥∥∥∥f(t)
∑

|n|≤N

r|n|ein(θ−t)

∥∥∥∥∥∥
L1

≤ 1 + r

1− r
∥f∥L1 ,

1If f is continuous, then f ∗ Pr converges to f uniformly on T as r → 1−. This is proved
for example in Lang’s Complex Analysis, fourth ed., chapter VIII, §5.
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hence by the dominated convergence theorem we have

lim
N→∞

∑
|n|≤N

r|n|
∫ 2π

0

f(t)ein(θ−t)dt = lim
N→∞

∫ 2π

0

f(t)
∑

|n|≤N

r|n|ein(θ−t)dt

=

∫ 2π

0

f(t)
∑
n∈Z

r|n|ein(θ−t)dt,

and so

(f ∗ Pr)(θ) =
1

2π

∫ 2π

0

f(t)Pr(θ − t)dt

=
1

2π

∫ 2π

0

f(t)
∑
n∈Z

r|n|ein(θ−t)dt

=
∑
n∈Z

r|n|
1

2π

∫ 2π

0

f(t)ein(θ−t)dt

=
∑
n∈Z

r|n|einθf̂(n).

3 Harmonic functions

For f ∈ L1(T), define uf on |z| < 1 by

uf (re
iθ) = (f ∗ Pr)(θ).

In polar coordinates, the Laplacian is

∆ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
.

Then

(∆uf )(re
iθ) = ∆

∑
n<0

r−neinθf̂(n) +
∑
n≥0

rneinθf̂(n)


=

∑
n<0

f̂(n)∆
(
r−neinθ

)
+
∑
n≥0

f̂(n)∆
(
rneinθ

)
=

∑
n<0

f̂(n) · 0 +
∑
n≥0

f̂(n) · 0

= 0.

Hence uf is harmonic on the open unit disc.
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4 Fatou’s theorem

Let D = {z : |z| < 1}. If F : D → C is holomorphic, let it have the power series

F (z) =
∑
n≥0

anz
n, an ∈ C.

By the Cauchy integral formula, for n ≥ 0 and for any 0 < r < 1, γr(θ) = reiθ,
we have

F (n)(0) =
n!

2πi

∫
γr

F (ζ)

ζn+1
dζ

=
n!

2πi

∫ 2π

0

F (reiθ)

(reiθ)n+1
rieiθdθ

=
n!

2πrn

∫ 2π

0

F (reiθ)e−inθdθ.

Hence, for n ≥ 0 and for 0 < r < 1,

1

2π

∫ 2π

0

F (reiθ)e−inθdθ = anr
n.

On the other hand, for n < 0, we have

n!

2πrn

∫ 2π

0

F (reiθ)e−inθdθ =
n!

2πi

∫
γr

F (ζ)

ζn+1
dζ,

and because F (ζ)
zn+1 is holomorphic on D for n < 0, by the residue theorem the

right-hand side of the above equation is equal to 0. Hence, for n < 0 and for
0 < r < 1,

1

2π

∫ 2π

0

F (reiθ)e−inθdθ = 0.

Let F : D → C be holomorphic, and suppose there is some M such that
|F (z)| ≤ M for all z ∈ D. For 0 < r < 1, define fr : T → C by fr(θ) = F (reiθ).
From our above work, we have

f̂r(n) =

{
anr

n n ≥ 0,

0 n < 0.

For 0 < r < 1, note that ∥fr∥L2 ≤ ∥fr∥L∞ ≤ M , so, by Parseval’s identity,∑
n∈Z

|f̂r(n)|2 ≤ M2.

On the other hand, ∑
n∈Z

|f̂r(n)|2 =
∑
n≥0

|an|2r2n.
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It follows that ∑
n≥0

|an|2 ≤ M2.

Define f ∈ L2(T) by

f̂(n) =

{
an n ≥ 0,

0 n < 0;

this defines an element of L2(T) if and only if
∑

n∈Z |f̂(n)|2 < ∞, and indeed∑
n∈Z

|f̂(n)|2 ≤ M2.

As f ∈ L2(T), f ∈ L1(T). Then by our work in §2, for almost all θ ∈ T we have

lim
r→1−

∑
n∈Z

r|n|einθf̂(n) = f(θ),

which means here that for almost all θ ∈ T,

lim
r→1−

∑
n≥0

anr
neinθ = f(θ).

Thus, for almost all θ ∈ T,

lim
r→1−

F (reiθ) = f(θ).

In words, we have proved that if F is a bounded holomorphic function on the
unit disc, then it has radial limits at almost every angle. This is Fatou’s theorem.

5 Bergman spaces

This section somewhat follows Problem 24 of Halmos. Let µ be Lebesgue mea-
sure on D. dµ(z) = dx ∧ dy = dz∧dz

−2i .
If U is a nonempty bounded open subset of C and 1 ≤ p < ∞, let Ap(U)

denote the set of functions f : U → C that are holomorphic and that satisfy

∥f∥Ap(U) =

(∫
U

|f(z)|pdµ(z)
)1/p

< ∞,

and let A∞(U) denote the set of functions f : U → C that are holomorphic and
that satisfy

∥f∥A∞(U) = sup
z∈U

|f(z)| < ∞.

It is apparent that Ap(U) is a vector space over C. By Minkowski’s inequality,
∥·∥Ap(U) is a norm, and thus Ap(U) is a normed space. If p ≤ q then by Jensen’s
inequality we have

∥f∥Ap(U) ≤ µ(D)
1
p−

1
q ∥f∥Aq(U) ,
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and so
Aq(U) ⊆ Ap(U).

Ap(U) is called a Bergman space. It is not apparent that it is a complete metric
space. We show this using the following lemmas. We use the following lemma
to prove the lemma after it, and use that lemma to prove the theorem.

Lemma 1. If z0 ∈ C, R > 0, and f ∈ A1(D(z0, R)), then

f(z0) =
1

πR2

∫
D(z0,R)

f(z)dµ(z).

Proof. Put Fn(z) =
∑n

k=0 ak(z−z0)
k, with ak = f(k)(z0)

k! . For 0 < r < R, define

∥g∥r = sup
|z−z0|≤r

|g(z)|.

We have ∥Fn − f∥r → 0 as n → ∞. Then,∣∣∣∣∣
∫
D(z0,r)

f(z)dµ(z)−
∫
D(z0,r)

Fn(z)dµ(z)

∣∣∣∣∣ =

∣∣∣∣∣
∫
D(z0,r)

f(z)− Fn(z)dµ(z)

∣∣∣∣∣
≤

∫
D(z0,r)

|f(z)− Fn(z)|dµ(z)

≤
∫
D(z0,r)

∥f − Fn∥r dµ(z)

= ∥f − Fn∥r · πr
2,

which tends to 0 as n → ∞. Thus∫
D(z0,r)

f(z)dµ(z) = lim
n→∞

∫
D(z0,r)

Fn(z)dµ(z)

= lim
n→∞

∫
D(z0,r)

n∑
k=0

ak(z − z0)
kdµ(z)

= lim
n→∞

n∑
k=0

ak

∫
D(z0,r)

(z − z0)
kdµ(z)

= lim
n→∞

n∑
k=0

ak

∫
D(0,r)

zkdµ(z).

For k ≥ 1, using polar coordinates we have∫
D(0,r)

zkdµ(z) =

∫ r

0

∫ 2π

0

(ρeiθ)kρdθdρ

=

∫ r

0

∫ 2π

0

ρk+1eikθdθdρ

=

∫ r

0

ρk+1 · 0
k
dρ

= 0.
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Therefore ∫
D(z0,r)

f(z)dµ(z) = lim
n→∞

a0 · πr2

= a0 · πr2.

That is, for each 0 < r < R we have

f(z0) =
1

πr2

∫
D(z0,r)

f(z)dµ(z). (1)

Because f ∈ L1(D(z0, R)),

lim
r→R

∫
D(z0,r)

f(z)dµ(z) =

∫
D(z0,R)

f(z)dµ(z).

Thus, taking the limit as r → R of (1), we obtain

f(z0) =
1

πR2

∫
D(z0,R)

f(z)dµ(z).

If z0 ∈ C and S ⊆ C, denote

d(z0, S) = inf
z∈S

|z0 − z|,

and for z0 ∈ U , let
r(z0) = d(z0, ∂U).

This is the radius of the largest open disc centered at z0 that is contained in
U (it is equal to the union of all open discs centered at z0 that are contained
in U , and thus makes sense). As U is open, r(z0) > 0, and as U is bounded,
r(z0) < ∞.

Lemma 2. If 1 ≤ p ≤ ∞, z0 ∈ U , and f ∈ Ap(U), then

|f(z0)| ≤
(

1

πr(z0)2

)1/p

∥f∥Ap(U) .

Proof. As f ∈ Ap(U) we have f ∈ Ap(D(z0, r(z0))) ⊆ A1(D(z0, r(z0))). Using
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Lemma 1 and Hölder’s inequality, we get, with 1
p +

1
q = 1 (q is infinite if p = 1),

|f(z0)| =

∣∣∣∣∣ 1

πr(z0)2

∫
D(z0,r(z0))

f(z)dµ(z)

∣∣∣∣∣
≤ 1

πr(z0)2

∫
D(z0,r(z0))

|f(z)|dµ(z)

≤ 1

πr(z0)2
µ(D(z0, r(z0)))

1/q ∥f∥Ap(D(z0,r(z0)))

=
1

πr(z0)2
(πr(z0)

2)1/q ∥f∥Ap(D(z0,r(z0)))

≤ 1

πr(z0)2
(πr(z0)

2)1/q ∥f∥Ap(U)

=
1

πr(z0)2
(πr(z0)

2)1−
1
p ∥f∥Ap(U)

=

(
1

πr(z0)2

)1/p

∥f∥Ap(U) .

Now we prove that Ap(U) is a complete metric space, showing that it is a
Banach space.

Theorem 3. If 1 ≤ p ≤ ∞, then Ap(U) is a Banach space.

Proof. Suppose that fn ∈ Ap(U) is a Cauchy sequence. We have to show that
there is some f ∈ Ap(U) such that fn → f in Ap(U). The space H(U) of
holomorphic functions on U is a Fréchet space: there is an increasing sequence
of compact sets Ki ⊂ U whose union is U , and the pKi

seminorms on H(U)
are the supremum of a function on Ki. (See Henri Cartan, Elementary Theory
of Analytic Functions of One or Several Complex Variables, §V.1.3.) For each
of these compact sets Ki, let ri be the distance between Ki and ∂U , which are
both compact sets. If z0 ∈ Ki then r(z0) ≥ ri. Thus if z0 ∈ Ki and g ∈ Ap(U),
using Lemma 2 we get

|g(z0)| ≤
(

1

πr(z0)2

)1/p

∥g∥Ap(U) ≤
(

1

πr2i

)1/p

∥g∥Ap(U) .

From this and the fact that ∥fn − fm∥Ap(U) → 0 as m,n → ∞, we get that

pKi(fn − fm) → 0, m, n → ∞.

That is, fn is a Cauchy sequence in each of the seminorms pKi , and as H(U)
is a Fréchet space it follows that there is some f ∈ H(U) such that fn → f in
H(U). In particular, for all z0 ∈ U we have fn(z0) → f(z0) as n → ∞ (because
each z0 is included in one of the compact sets Ki, on which the fn converge
uniformly to f and hence pointwise to f).
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On the other hand, Lp(U) is a Banach space, and hence there is some g ∈
Lp(U) such that ∥fn − g∥Lp(U) → 0 as n → ∞. This implies that there is some

subsequence fa(n) such that for almost all z0 ∈ U , fa(n)(z0) → g(z0). Thus, for
almost all z0 ∈ U we have f(z0) = g(z0). Therefore, in Lp(U) we have f = g
and so

∥fn − f∥Ap(U) = ∥fn − f∥Lp(U) → 0, n → ∞.

6 Inner products

In this section we follow Problem 25 of Halmos. In this section we restrict our
attention to the Bergman space A2(D), where D is the open unit disc, on which
we define the inner product

⟨f, g⟩ =
∫
D

fg∗dµ =

∫
D

f(z)g(z)dµ(z).

As ⟨f, f⟩ = ∥f∥2A2(D), it follows that A2(D) is a Hilbert space with this inner
product. If we have a Hilbert space we would like to find an explicit orthonormal
basis.

Theorem 4. If n ≥ 0 and z ∈ D, define en : D → C by

en(z) =

√
n+ 1

π
· zn.

Then en are an orthonormal basis for A2(D).

Proof. If E is a subset of a Hilbert space and v ∈ H, we write v ⊥ E if ⟨v, e⟩ = 0
for all e ∈ E. If E is an orthonormal set in H, E is an orthonormal basis if and
only if v ⊥ E implies that v = 0. This is proved in John B. Conway, A Course
in Functional Analysis, second ed., p. 16, Theorem 4.13. For n ̸= m,

⟨en, em⟩ =

∫
D

√
n+ 1

π
zn
√

m+ 1

π
zmdµ(z)

=

√
(n+ 1)(m+ 1)

π

∫
D

znzmdµ(z)

=

√
(n+ 1)(m+ 1)

π

∫ 1

0

∫ 2π

0

(reiθ)n(re−iθ)mrdθdr

=

√
(n+ 1)(m+ 1)

π

∫ 1

0

∫ 2π

0

rn+m+1eiθ(n−m)dθdr

=

√
(n+ 1)(m+ 1)

π

∫ 1

0

∫ 2π

0

rn+m+1eiθ(n−m)dθdr

= 0,
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while

⟨en, en⟩ =
n+ 1

π

∫ 1

0

∫ 2π

0

r2n+1dθdr

= 2(n+ 1)

∫ 1

0

r2n+1dr

= 1.

Therefore en is an orthonormal set. Hence, to show that it is an orthonormal
basis for A2(D) we have to show that if ⟨f, en⟩ = 0 for all n ≥ 0 then f = 0.

For 0 < r < 1, let Dr be the open disc centered at 0 of radius r, and let
∥g∥r = sup|z|≤r |g(z)|. Let f(z) =

∑∞
n=0 anz

n, and for each 0 < r < 1 this
power series converges uniformly in Dr. Then∫

Dr

fe∗mdµ =

∫
Dr

∞∑
n=0

anz
nzmdµ(z)

=

∞∑
n=0

an

∫
Dr

znzmdµ(z)

=

∞∑
n=0

an

∫ r

0

∫ 2π

0

ρn+m+1eiθ(n−m)dθdρ

=

∞∑
n=0

an

∫ r

0

ρn+m+1 · 2π · δn,mdρ

= 2πam

∫ r

0

ρ2m+1dρ

= 2πam
r2m+2

2m+ 2

One checks that fe∗m ∈ A1(D), and hence

lim
r→1

∫
Dr

fe∗mdµ(z) =

∫
D

fe∗mdµ(z).

Therefore

⟨f, em⟩ = πam
1

m+ 1
.

As ⟨f, em⟩ = 0 for each m, this gives us that am = 0 for all m and hence f = 0.
This shows that en is an orthonormal basis for A2(D).

Steven G. Krantz, Geometric Function Theory: Explorations in Complex
Analysis, p. 9, §1.2, writes about the Bergman space A2(Ω), where Ω is a
connected open subset of C, not necessarily bounded.
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7 Hardy spaces

In a Hilbert space H, if Sα, α ∈ I are subsets of H, let
∨

α∈I Sα denote the
closure in H of

⋃
α∈I Sα. Thus, to say that a set {vα} is an orthonormal basis

for a Hilbert spaceH is to say that {vα} is orthonormal and that
∨

α∈I{vα} = H.
Let S1 = {z ∈ C : |z| = 1}, and let µ be normalized arc length, so that

µ(S1) = 1. Define en : S1 → C by en(z) = zn, for n ∈ Z. It is a fact that
en, n ∈ Z are an orthonormal basis for the Hilbert space L2(S1), with inner
product

⟨f, g⟩ =
∫
S1

fg∗dµ.

We define the Hardy space H2(S1) to be
∨

n≥0{en}. As it is a closed subspace

of the Hilbert space L2(S1), it is itself a Hilbert space. For f ∈ L2(S1), we
denote f∗(z) = f(z).

The following is Problem 26 of Halmos. Note f∗(z) = f(z).

Theorem 5. If f ∈ H2(S1) and f∗ = f , then f is constant.

Proof. If gn ∈ L2(S1) and gn → g ∈ L2(S1), then

∥g∗n − g∗∥ = ∥gn − g∥ → 0.

Thus g 7→ g∗ is continuous L2(S1) → L2(S1).
If g ∈ L2(S1), then, as en, n ∈ Z is an orthonormal basis for L2(S1), we have

g = limN→∞
∑

|n|≤N ⟨g, en⟩ en, and so, as e∗n = e−n,

g∗ = lim
N→∞

∑
|n|≤N

(⟨g, en⟩ en)∗ = lim
N→∞

∑
|n|≤N

⟨g, en⟩e−n = lim
N→∞

∑
|n|≤N

⟨g, e−n⟩en.

Therefore if n ∈ Z then
⟨g∗, en⟩ = ⟨g, e−n⟩. (2)

For n > 0,
⟨f, en⟩ = ⟨f∗, en⟩ = ⟨f, e−n⟩ = 0;

the first equality is because f∗ = f , the second equality is by what we showed
for any element of L2(S1), and the third equality is because f ∈ H2(S1). It
follows that f ∈ span{e0}, and thus that f is constant.

If g ∈ L2(S1), define Re g ∈ L2(S1) by

Re g =
g + g∗

2

and Re g ∈ L2(S1) by

Im g =
g − g∗

2i
.
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g =
∑

n∈Z ⟨g, en⟩ en and, by (2), g∗ =
∑

n∈Z ⟨g∗, en⟩ en =
∑

n∈Z ⟨g, e−n⟩en, so

Re g =
1

2

(∑
n∈Z

⟨g, en⟩ en +
∑
n∈Z

⟨g, en⟩e∗n

)
=

1

2

∑
n∈Z

(
⟨g, en⟩+ ⟨g, e−n⟩

)
en,

and

Im g =
1

2i

(∑
n∈Z

⟨g, en⟩ en −
∑
n∈Z

⟨g, e−n⟩en

)
=

1

2i

∑
n∈Z

(
⟨g, en⟩ − ⟨g, e−n⟩

)
en.

(3)
g = Re g + iIm g, and we have (Re g)∗ = Re g and (Im g)∗ = Im g; that is,
both Re g and Im g are real valued, like how the real and imaginary parts of a
complex number are both real numbers.

The following is Problem 35 of Halmos. In words, it states that a real
valued L2 function u has a corresponding real valued L2 function v (made
unique by demanding that v have 0 constant term) such that the sum u + iv
is an element of the Hardy space H2. This v is called the Hilbert transform of
u. This is analogous to how if u is harmonic on an open subset Ω of R2, then
g(x+ iy) = ux(x, y)− iuy(x, y) satisfies the Cauchy-Riemann equations at every
point in Ω and hence is holomorphic on Ω. Since g is holomorphic on Ω, for
every z0 ∈ Ω there is some open neighborhood of z on which g has a primitive f
(g might not have a primitive defined on Ω, e.g. g(z) = 1

z on Ω = C \ {0}), and
there is a constant c such that u(x, y) = Re f(x + iy) + c for all (x, y) in this
neighborhood. u and v(x, y) = Im f(x+ iy) + c are called harmonic conjugates.

Theorem 6. If u ∈ L2(S1) and u∗ = u, then there is a unique v ∈ L2(S1) such
that v∗ = v, ⟨v, e0⟩ = 0, and u+ iv ∈ H2(S1).

Proof. Define D : {u ∈ L2(S1) : u∗ = u} → H2(D) by

⟨Du, en⟩ =


⟨u, e0⟩ n = 0,

⟨u, en⟩+ ⟨u, e−n⟩ n > 0,

0 n < 0.

As |a+ b|2 ≤ 2|a|2 + 2|b|2, and using Parseval’s identity,∑
n≥0

| ⟨Du, en⟩ |2 = | ⟨u, e0⟩ |2 +
∑
n>0

| ⟨u, en⟩+ ⟨u, e−n⟩|2

≤ | ⟨u, e0⟩ |2 + 2
∑
n>0

| ⟨u, en⟩ |2 + |⟨u, e−n⟩|2

= | ⟨u, e0⟩ |2 + 2
∑
n̸=0

| ⟨u, en⟩ |2

≤ 2 ∥u∥2 .

This is finite, hence Du ∈ H2(S1).
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For any g ∈ L2(S1) and n ∈ Z, by (2) we have ⟨g∗, en⟩ = ⟨g, e−n⟩. As
u∗ = u, if n ∈ Z then ⟨u, en⟩ = ⟨u, e−n⟩. Using this, we check that ReDu = u.

Put v = ImDu, hence Du = u + iv. ⟨u, e0⟩ = ⟨u, e0⟩ gives ⟨Du, e0⟩ =
⟨Du, e0⟩, and applying this and (3) we get ⟨v, e0⟩ = 0. Thus v satisfies the
conditions v∗ = v, ⟨v, e0⟩ = 0, and u + iv ∈ H2(S1). We are not obliged to
do so, but let’s write out the Fourier coefficients of v. If n ∈ Z then, using
⟨u, en⟩ = ⟨u, e−n⟩,

⟨v, en⟩ = ⟨ImDu, en⟩

=
1

2i

(
⟨Du, en⟩ − ⟨Du, e−n⟩

)

=


0 n = 0
1
2i

(
⟨u, en⟩+ ⟨u, e−n⟩

)
n > 0

− 1
2i

(
⟨u, e−n⟩+ ⟨u, en⟩

)
n < 0

=


0 n = 0
1
2i

(
⟨u, en⟩+ ⟨u, e−n⟩

)
n > 0

− 1
2i

(
⟨u, en⟩+ ⟨u, e−n⟩

)
n < 0

=


0 n = 0
1
i ⟨u, en⟩ n > 0

− 1
i ⟨u, en⟩ n < 0.

Thus ⟨v, en⟩ = −isgn(n) ⟨u, en⟩.
If f ∈ H2(S1), then, as ⟨Re f, en⟩ = ⟨f,en⟩+⟨f,e−n⟩

2 ,

⟨DRe f, en⟩ =


⟨f,e0⟩+⟨f,e0⟩

2 n = 0
⟨f,en⟩+⟨f,e−n⟩

2 + ⟨f,e−n⟩+⟨f,en⟩
2 n > 0

0 n < 0.

=


⟨f,e0⟩+⟨f,e0⟩

2 n = 0

⟨f, en⟩ n > 0

0 n < 0

=

{
⟨f,e0⟩+⟨f,e0⟩

2 n = 0

⟨f, en⟩ n ̸= 0

Thus

⟨f −DRe f, en⟩ =

{
⟨f,e0⟩−⟨f,e0⟩

2 n = 0

0 n ̸= 0

=

{
i · ⟨Im f, e0⟩ n = 0

0 n ̸= 0

12



13


