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1 Introduction

This note is a collection of results on Banach algebras whose proofs do not
require the machinery of integrating functions that take values in Banach spaces,
and that do not require the algebra to be commutative.

2 Banach algebras and ideals

Unless we say otherwise, every vector space we talk about is taken to be over C.
A Banach algebra is a Banach space A that is also an algebra satisfying ∥AB∥ ≤
∥A∥ ∥B∥ for A,B ∈ A. We say that A is unital if there is a nonzero element
I ∈ A such that AI = A and IA = A for all A ∈ A, called a identity element.
If X is a Banach space, let B(X) denote the set of bounded linear operators
X → X, and let B0(X) denote the set of compact linear operators X → X (to
be compact means that the image of each bounded set is precompact). B(X)
is a unital Banach algebra. B0(X) is a Banach algebra, but it is unital if and
only if X is finite dimensional.

An ideal of a Banach algebra A is a vector subspace I such that

IA ⊆ I, AI ⊆ I.

We define the algebra quotient A/I by

A/I = {A+ I : A ∈ A} ,

and define
(A+ I)(B + I) = AB + I;

this makes sense because I is an ideal. We define a seminorm on A/I by

∥A+ I∥ = inf
S∈I

∥A− S∥ ;

we call this the quotient seminorm. In the following theorem we show that if
the ideal is closed then this seminorm is a norm.

Theorem 1. If I is a closed ideal in a Banach algebra A, then A/I is a Banach
algebra with the quotient norm.
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Proof. Suppose that ∥A+ I∥ = 0. This means

inf
S∈I

∥A− S∥ = 0.

Let Sn ∈ I with ∥A− Sn∥ → 0. That is, Sn → A. Since I is closed we get
A ∈ I, and hence A+ I = 0+ I, showing that the seminorm on the quotient is
in fact a norm.

Let zn ∈ A/I be a Cauchy sequence and let za(n) be a subsequence with∥∥za(n+1) − za(n)
∥∥ < 2−n for all n ∈ N. We shall use the fact that A is complete

to prove that the sequence zn converges and therefore that A/I is complete.
We define a sequence An in A inductively as follows. Let A1 be any element of
za(1). Suppose that za(n) = An + I, and let T be any element of za(n+1). We
have ∥∥za(n+1) − za(n)

∥∥ = inf
S∈I

∥T −An − S∥ ,

hence
inf
S∈I

∥T −An − S∥ < 2−n.

As this is an infimum and the inequality is strict, there is some S ∈ I for which
∥T −An − S∥ < 2−n, and we define An+1 = T −S. Thus defined, the sequence
An satisfies ∥An+1 −An∥ < 2−n for all n and hence is a Cauchy sequence (as
the consecutive differences are summable). Thus An converges to some A ∈ A,
as A is a Banach space. We have∥∥za(n) − (A+ I)

∥∥ = inf
S∈I

∥An −A− S∥ ≤ inf
S∈I

∥An −A∥+ inf
S∈I

∥S∥ = ∥An −A∥ ,

which tends to 0 as n → ∞. Therefore za(n) → A + I. As zn is a Cauchy
sequence a subsequence of which converges to A+I, it follows that zn → A+I.
We have shown that each Cauchy sequence in A/I converges, and hence A/I is
complete.

If X is a Banach space, then B0(X) is a closed ideal of the Banach algebra
B(X). Hence with the quotient norm, the quotient algebra B(X)/B0(X) is
a Banach algebra. Let B00(X) denote the set of bounded finite rank linear
operators X → X (to be finite rank means to have a finite dimensional image).
B00(X) is an ideal of B(X), but it is closed if and only ifX is finite dimensional.
The closure of B00(X) is contained in B0(X). (If the closure is equal to B0(X)
we say that the Banach space X has the approximation property.)

3 Left regular representation

A Banach algebra A is in particular a Banach space, and thus B(A) is itself a
Banach algebra with the operator norm. The left regular representation is the
map L : A → B(A) defined by

L(A)B = AB, A,B ∈ A.
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It is apparent that L is an algebra homomorphism, and for A,B ∈ A,

∥L(A)B∥ = ∥AB∥ ≤ ∥A∥ ∥B∥ ,

showing that ∥L(A)∥ ≤ ∥A∥. If A has identity element I, then ∥I∥ = ∥I · I∥ ≤
∥I∥ ∥I∥, and as ∥I∥ ≠ 0 we get ∥I∥ ≥ 1. We’d like the norm on A to satisfy
∥I∥ = 1, and we define

∥A∥0 = ∥L(A)∥ = sup
∥B∥≤1

∥L(A)B∥ ≤ ∥A∥ .

Check that L is injective, from which it follows that ∥·∥0 is nondegenerate and
is thus a norm on A. On the other hand,

∥A∥ = ∥L(A)I∥ ≤ ∥L(A)∥ ∥I∥ = ∥A∥0 ∥I∥ .

Therefore,
∥A∥0 ≤ ∥A∥ ≤ ∥I∥ ∥A∥0 ,

so ∥·∥ and ∥·∥0 are equivalent norms on A, and thus for most purposes anything
we say using one can be said just as well using the other. We decree that if we
are talking about a unital Banach algebra then its norm is such that ∥I∥ = 1.
Then, L is an isometry.

4 Invertible elements

If A is a unital Banach algebra, we say that A ∈ A is invertible if there is some
B ∈ A such that AB = I and BA = I, and we call A−1 = B the inverse of A.
We denote by GL(A) the set of invertible elements of A, and we call GL(A) the
multiplicative group of the Banach algebra. We now prove that a perturbation
of norm < 1 of the identity element in a unital Banach algebra remains in the
multiplicative group.1

Theorem 2. If A is a unital Banach algebra, A ∈ A, and ∥A∥ < 1, then
I −A ∈ GL(A), and

∥∥(I −A)−1 − I −A
∥∥ ≤ ∥A∥2

1− ∥A∥
.

Proof. Define Sn =
∑n

k=0 A
k. For n > m we have

∥Sn − Sm∥ ≤
n∑

k=m+1

∥A∥k = ∥A∥m+1 1− ∥A∥n−m

1− ∥A∥
≤ ∥A∥m+1

1− ∥A∥
.

1Walter Rudin, Functional Analysis, second ed., p. 249, Theorem 10.7.
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Thus Sn is a Cauchy sequence and so has a limit S ∈ A. Because Sn(I − A) =
I −An+1, we have

∥Sn(I −A)− I∥ =
∥∥An+1

∥∥ ≤ ∥A∥n+1 → 0,

so Sn(I −A) → I. But

∥Sn(I −A)− S(I −A)∥ ≤ ∥Sn − S∥ ∥I −A∥ → 0,

so Sn(I − A) → S(I − A). Therefore S(I − A) = I. One similarly shows that
(I−A)S = I, and hence that I−A ∈ GL(A), with (I−A)−1 = S. Furthermore,

∥S − I −A∥ = lim
n→∞

∥Sn − I −A∥ = lim
n→∞

∥∥∥∥∥
n∑

k=2

Ak

∥∥∥∥∥ ≤ lim
n→∞

n∑
k=2

∥A∥k =
∥A∥2

1− ∥A∥
.

In the above theorem we found that if ∥A∥ < 1 then (I −A)−1 =
∑∞

n=0 A
n.

This is an analog of the geometric series, and is called a Neumann series.
If A is a Banach algebra and ϕ : A → C is a linear map satisfying

ϕ(AB) = ϕ(A)ϕ(B), A,B ∈ A,

then ϕ is called a complex homomorphism on A. That is, a complex homomor-
phism on A is an algebra homomorphism A → C. It is straightforward to prove
that if A is a unital Banach algebra and ϕ is a complex homomorphism on A,
then ϕ(I) = 1 and ϕ(A) ̸= 0 for all A ∈ GL(A). A linear functional on a Banach
algebra need not be continuous, but in the following we prove that a nonzero
complex homomorphism has operator norm 1, and in particular is continuous.

Corollary 3. If A is a unital Banach algebra and ϕ is a nonzero complex
homomorphism on A, then ∥ϕ∥ = 1.

Proof. Let A ∈ A with ∥A∥ < 1. If λ ∈ C with |λ| ≥ 1 then
∥∥λ−1A

∥∥ =
|λ|−1 ∥A∥ < 1, and by Theorem 2 we have I − λ−1A ∈ GL(A). Then,

1− λ−1ϕ(A) = ϕ(I)− ϕ(λ−1A) = ϕ(I − λ−1A) ̸= 0,

hence 1 ̸= λ−1ϕ(A), i.e. ϕ(A) ̸= λ. This shows that |ϕ(A)| < 1.

The Gleason-Kahane-Zelazko theorem2 states that if A is a unital Banach
algebra and ϕ is a linear functional on A satisfying ϕ(I) = 1 and ϕ(A) ̸= 0 for
A ∈ GL(A), then ϕ is a complex homomorphism.

In Theorem 2 we proved that a perturbation of the identity element remains
in the multiplicative group. We now prove that for any element of the multi-
plicative group, a sufficiently small perturbation of this element remains in the
multiplicative group, i.e. that the multiplicative group is an open set.3

2Walter Rudin, Functional Analysis, second ed., p. 251, Theorem 10.9
3Walter Rudin, Functional Analysis, second ed., p. 253, Theorem 10.11.
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Theorem 4. If A is a unital Banach algebra, A ∈ GL(A), h ∈ A, and ∥h∥ <
1
2

∥∥A−1
∥∥−1

, then A+ h ∈ GL(A), and∥∥(A+ h)−1 −A−1 +A−1hA−1
∥∥ < 2

∥∥A−1
∥∥3 ∥h∥2 .

Proof.
∥∥A−1h

∥∥ ≤
∥∥A−1

∥∥ ∥h∥ < 1
2 , so by Theorem 2 we get I +A−1h ∈ GL(A).

Therefore
A+ h = A(I +A−1h) ∈ GL(A).

Furthermore,

(A+ h)−1 −A−1 +A−1hA−1 =
(
(I +A−1h)−1 − I +A−1h

)
A−1,

and by Theorem 2,∥∥((I +A−1h)−1 − I +A−1h
)
A−1

∥∥ ≤
∥∥(I +A−1h)−1 − I +A−1h

∥∥∥∥A−1
∥∥

≤
∥∥A−1h

∥∥2
1− ∥A−1h∥

∥∥A−1
∥∥

≤
∥∥A−1

∥∥3 ∥h∥2
1− ∥A−1h∥

< 2
∥∥A−1

∥∥3 ∥h∥2 ;
the final inequality is because

∥∥A−1h
∥∥ ≤

∥∥A−1
∥∥ ∥h∥ < 1

2 and hence 1 −∥∥A−1h
∥∥ > 1

2 .

5 Spectrum

If A is a unital Banach algebra and A ∈ A, the spectrum of A is the set

σ(A) = {λ ∈ C : λI −A ̸∈ GL(A)},

and the spectral radius of A is

r(A) = sup
λ∈σ(A)

|λ|.

If |λ| > ∥A∥ then
∥∥A

λ

∥∥ < 1 and so by Theorem 2,

λI −A = λ

(
I − A

λ

)
∈ GL(A),

so λ ̸∈ σ(A). Therefore,
r(A) ≤ ∥A∥ .

For λ ̸∈ σ(A), we define the resolvent of A by

R(A, λ) = (A− λI)−1 ∈ GL(A).

The following is the resolvent identity.
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Theorem 5 (Resolvent identity). If A is a unital Banach algebra, A ∈ A, and
λ, µ ̸∈ σ(A), then

R(A, λ)−R(A,µ) = (λ− µ)R(A, λ)R(A,µ).

Proof. We have

(A− λI)(R(A, λ)−R(A,µ))(A− µI) = (A− λI)R(A, λ)(A− µI)

−(A− λI)R(A,µ)(A− µI)

= (A− µI)− (A− λI)

= (λ− µ)I.

The resolvent set of A is ρ(A) = C \ σ(A). The following theorem implies
that the resolvent set of A is open, and therefore that the spectrum of A is
closed. Because r(A) ≤ ∥A∥, it follows that σ(A) is a compact set.

Theorem 6. If A is a unital Banach algebra, A ∈ A, and λ ∈ ρ(A), then

|µ− λ| < ∥R(A, λ)∥−1
implies that µ ∈ ρ(A).

Moreover, σ(A) is nonempty, and although r(A) may be strictly less than
∥A∥, the spectral radius is equal to a limit of norms.4

Theorem 7. If A is a unital Banach algebra and A ∈ A, then σ(A) is nonempty,
and

r(A) = lim
n→∞

∥An∥1/n .

Using the fact that the spectrum of any element of a unital Banach algebra
is nonempty, one can prove the Gelfand-Mazur theorem, which states that if A
is a unital Banach algebra for which every nonzero element is invertible, then
there is an isometric algebra isomorphism A → C.5

The following theorem shows that λ 7→ R(A, λ) is a continuous function
ρ(A) → A. From this and the resolvent identity it follows that for any λ ∈ ρ(A),

lim
µ→λ

R(A,µ)−R(A, λ)

µ− λ
= R(A, λ)2,

i.e.
R′(A, λ) = R(A, λ)2.

4Gert K. Pedersen, Analysis Now, revised printing, p. 131, Theorem 4.1.13. This proof
does not use the holomorphic functional calculus, while Walter Rudin, Functional Analysis,
second ed., p. 253, Theorem 10.13 does. That is, to read Pedersen’s proof one does not have
to make sense of integrals of functions taking values in a Banach space, while to read Rudin’s
one does.

5Walter Rudin, Functional Analysis, second ed., p. 255, Theorem 10.14.
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Theorem 8. If A is a unital Banach algebra and A ∈ A, then λ 7→ R(A, λ) is
a continuous function ρ(A) → A.

Proof. From Theorem 5, if λ, µ ∈ ρ(A) then

∥Rµ −Rλ∥ ≤ |µ− λ| ∥Rλ∥ ∥Rµ∥ , (1)

where we write Rλ = R(A, λ). As

∥Rµ −Rλ∥ ≥ ∥Rµ∥ − ∥Rλ∥ ,

we get
∥Rµ∥ ≤ |λ− µ| ∥Rλ∥ ∥Rµ∥+ ∥Rλ∥ ,

which is
∥Rµ∥ (1− |λ− µ| ∥Rλ∥) ≤ ∥Rλ∥ . (2)

If λ ∈ ρ(A) and |µ−λ| ≤ 1
2 · ∥Rλ∥−1

, then from Theorem 6 we get µ ∈ ρ(A),
and combined with (2) this gives

∥Rµ∥ ≤ 2 ∥Rλ∥ .

Applying this to (1) we have that if λ ∈ ρ(A) and |µ− λ| ≤ 1
2 · ∥Rλ∥−1

then

∥Rµ −Rλ∥ ≤ 2|µ− λ| ∥Rλ∥2 ,

from which it follows that λ 7→ Rλ is a continuous function ρ(A) → A.

The following theorem tells us that if the spectrum of an element of a unital
Banach algebra is contained in an open set, then the spectrum of a sufficiently
small perturbation of that element is contained in the same open set.6

Theorem 9. If A is a unital Banach algebra, A ∈ A, and Ω is an open subset
of C containing σ(A), then there is some δ > 0 such that ∥h∥ < δ implies that
σ(A+ h) ⊂ Ω.

Proof. If |λ| > ∥A∥, then

R(A, λ) = (A− λI)
−1

=
1

λ
·
(
A

λ
− I

)−1

= − 1

λ
·

∞∑
n=0

(
A

λ

)n

,

hence

∥R(A, λ)∥ ≤ 1

|λ|

∞∑
n=0

(
∥A∥
|λ|

)n

=
1

|λ|
· 1

1− ∥A∥
|λ|

=
1

|λ| − ∥A∥
.

Hence lim|λ|→∞ ∥R(A, λ)∥ = 0. By Theorem 8, λ 7→ ∥R(A, λ)∥ is a continuous
function ρ(A) → R. It follows that there is some M > 0 such that λ ̸∈ Ω implies
that ∥R(A, λ)∥ < M . If ∥h∥ < 1

M and λ ̸∈ Ω, then

∥R(A, λ)h∥ ≤ ∥R(A, λ)∥ ∥h∥ < 1,

6Walter Rudin, Functional Analysis, second ed., p. 257, Theorem 10.20.
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which implies that R(A, λ)h+ I ∈ GL(A). From this we obtain that

A+ h− λI = (A− λI)(R(A, λ)h+ I) ∈ GL(A),

which means that λ ̸∈ σ(A+h). We have shown that if ∥h∥ < 1
M then σ(A+h) ⊂

Ω.

The following theorem gives conditions under which we can evaluate a holo-
morphic function at an element of a unital Banach algebra, and shows that the
image of the spectrum is contained in the spectrum of the image.

Theorem 10. If A is a unital Banach algebra, A ∈ A, ∥A∥ ≤ r, and f(z) =∑∞
n=0 αnz

n is holomorphic on a domain that contains the closed disc Br(0),
then

f(A) =

∞∑
n=0

αnA
n ∈ A,

and if λ ∈ σ(A) then f(λ) ∈ σ(f(A)).

Proof. For N > M ,∥∥∥∥∥
N∑

n=0

αnA
n −

M∑
n=0

αnA
n

∥∥∥∥∥ =

∥∥∥∥∥
N∑

n=M+1

αnA
n

∥∥∥∥∥
≤

N∑
n=M+1

|αn| ∥An∥

≤
N∑

n=M+1

|αn| ∥A∥n

≤
N∑

n=M+1

|αn|rn.

Because the radius of convergence of
∑∞

n=0 αnz
n is > r, it follows that the above

sums tend to 0 as M → ∞, showing that f(A) ∈ A. Define

Pn(A, λ) =

n∑
k=0

λkAn−k,

giving

(A− λI)Pn(A, λ) =

n∑
k=0

(
λkAn−k+1 − λk+1An−k

)
= An+1 − λn+1I.

We have

f(A)− f(λ)I =

∞∑
n=1

αn(A
n − λnI) = (A− λI)

∞∑
n=1

αnPn−1(A, λ).
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But if |λ| ≤ r then

∥Pn(A, λ)∥ ≤
n∑

k=0

|λ|k
∥∥An−k

∥∥ ≤
n∑

k=0

|λ|k ∥A∥n−k ≤
n∑

k=0

rn = (n+ 1)rn,

and if N > M then∥∥∥∥∥
N∑

n=1

αnPn−1(A, λ)−
M∑
n=1

αnPn−1(A, λ)

∥∥∥∥∥ =

∥∥∥∥∥
N∑

n=M+1

αnPn−1(A, λ)

∥∥∥∥∥
≤

N∑
n=M+1

|αn| ∥Pn−1(A, λ)∥

≤
N∑

n=M+1

|αn|nrn−1,

and as
∑∞

n=0 αnz
n has radius of convergence > r this tends to 0 as M → ∞.

Therefore
∞∑

n=1

αnPn−1(A, λ) ∈ A,

and hence

f(A)− f(λ)I = (A− λI)

∞∑
n=1

αnPn−1(A, λ) ∈ A.

If λ ∈ σ(A) then A − λI ̸∈ GL(A), and as we have written f(A) − f(λ)I as a
product of A − λI and another element of A, it follows that f(A) − f(λ)I ̸∈
GL(A), and thus f(λ) ∈ σ(f(A)).

Theorem 11. If A is a unital Banach algebra, A ∈ A, and z0 ∈ C, then

σ(A− z0I) = σ(A)− z0.

Proof. Let f(z) = z − z0. If λ ∈ σ(A) then by Theorem 10,

λ− z0 = f(λ) ∈ σ(f(A)) = σ(A− z0I),

so
σ(A)− z0 ⊆ σ(A− z0I).

Let B = A− z0I and g(z) = z + z0. If λ ∈ σ(B) then by Theorem 10,

λ+ z0 = g(λ) ∈ σ(g(B)) = σ(A),

so
σ(B) + z0 ⊆ σ(A),

i.e.
σ(A− z0) ⊆ σ(A)− z0.

9


