
The singular value decomposition of compact

operators on Hilbert spaces

Jordan Bell

April 3, 2014

1 Preliminaries

The purpose of these notes is to present material about compact operators on
Hilbert spaces that is special to Hilbert spaces, rather than what applies to all
Banach spaces. We use statements about compact operators on Banach spaces
without proof. For instance, any compact operator from one Banach space to
another has separable image; the set of compact operators from one Banach
space to another is a closed subspace of the set of all bounded linear operators;
a Banach space is reflexive if and only if the closed unit ball is weakly compact
(Kakutani’s theorem); etc. We do however state precisely each result that we
are using for Banach spaces and show that its hypotheses are satisfied.

Let N be the set of positive integers. We say that a set is countable if it is
bijective with a subset of N. In this note I do not presume unless I say so that
any set is countable or that any Hilbert space is separable. A neighborhood of
a point in a topological space is a set that contains an open set that contains
the point; one reason why it can be handy to speak about neighborhoods of
a point rather than just open sets that contain the point is that the set of all
neighborhoods of a point is a filter, whereas it is unlikely that the set of all open
sets that contain a point is a filter. If z ∈ C, we denote z∗ = z.

2 Bounded linear operators

An advantage of working with normed spaces rather than merely topological
vector spaces is that continuous linear maps between normed spaces have a
simple characterization. If X and Y are normed spaces and T : X → Y is
linear, the operator norm of T is

∥T∥ = sup
∥x∥≤1

∥Tx∥ .

If ∥T∥ < ∞, then we say that T is bounded.

Theorem 1. If X and Y are normed spaces, a linear map T : X → Y is
continuous if and only if it is bounded.
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Proof. Suppose that T is continuous. In particular T is continuous at 0, so there
is some δ > 0 such that if ∥x∥ ≤ δ then ∥Tx∥ = ∥Tx− T0∥ ≤ 1. If x ̸= 0 then,
as T is linear,

∥Tx∥ =
1

δ
∥x∥

∥∥∥∥T ( δ

∥x∥
x

)∥∥∥∥ ≤ 1

δ
∥x∥ .

Thus ∥T∥ ≤ 1
δ < ∞, so T is bounded.

Suppose that T is bounded. Let x0 ∈ X, and let ϵ > 0. If ∥x− x0∥ ≤ ϵ
∥T∥ ,

then

∥Tx− Tx0∥ = ∥T (x− x0)∥ ≤ ∥T∥ ∥x− x0∥ ≤ ∥T∥ · ϵ

∥T∥
= ϵ.

Hence T is continuous at x0, and so T is continuous.

If X and Y are normed spaces, we denote by B(X,Y ) the set of bounded
linear maps X → Y . It is straightforward to check that B(X,Y ) is a normed
space with the operator norm. One proves that if Y is a Banach space, then
B(X,Y ) is a Banach space,1 and if X is a Banach space one then checks that
B(X) = B(X,X) is a Banach algebra. If X is a normed space, we define
X∗ = B(X,C), which is a Banach space, called the dual space of X.

If X and Y are normed spaces and T : X → Y is linear, we say that T has
finite rank if

rankT = dimT (X)

is finite. If X is infinite dimensional and Y ̸= {0}, let E be a Hamel basis for
X, let {en : n ∈ N} be a countable subset of E , and let y ∈ Y be nonzero. If we
define T : X → Y by Ten = n ∥en∥ y and Te = 0 if e ∈ E \ {en : n ∈ N}, then T
is a linear map with finite rank yet T is unbounded. Thus a finite rank linear
map is not necessarily bounded. We denote by B00(X,Y ) the set of bounded
finite rank linear maps X → Y , and check that B00(X,Y ) is a vector space. If
X is a Banach space, one checks that B00(X) is an ideal of the algebra B(X)
(if we either pre- or postcompose a linear map with a finite rank linear map,
the image will be finite dimensional).

If X and Y are Banach spaces, we say that T : X → Y is compact if the
image of any bounded set under T is precompact (has compact closure). One
checks that if a linear map is compact then it is bounded (unlike a finite rank
linear map, which is not necessarily bounded). There are several ways to state
that a linear map is compact that one proves are equivalent: T is compact if
and only if the image of the closed unit ball is precompact; T is compact if and
only if the image of the open unit ball is precompact; T is compact if and only if
the image under it of any bounded sequence has a convergent subsequence. In a
complete metric space, the Heine-Borel theorem asserts that a set is precompact
if and only if it is totally bounded (for any ϵ > 0, the set can be covered by a
finite number of balls of radius ϵ). We denote by B0(X,Y ) the set of compact
linear maps X → Y , and it is straightforward to check that this is a vector

1Walter Rudin, Functional Analysis, second ed., p. 92, Theorem 4.1.
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space. One proves that if an operator is in the closure of the compact operators
then the image of the closed unit ball under it is totally bounded, and from this
it follows that B0(X,Y ) is a closed subspace of B(X,Y ). B0(X) is an ideal of
the algebra B(X): if K ∈ B0(X) and T ∈ B(X), one checks that TK ∈ B0(X)
and KT ∈ B0(X).

Let X and Y be Banach spaces. Using the fact that a bounded set in a finite
dimensional normed vector space is precompact, we can prove that a bounded
finite rank operator is compact: B00(X,Y ) ⊆ B0(X,Y ). Also, it doesn’t take
long to prove that the image of a compact operator is separable: if T ∈ B0(X,Y )
then T (X) has a countable dense subset. (We can prove this using the fact that
a compact metric space is separable.)

If H is a Hilbert space and Si, i ∈ I are subsets of H, we define
∨

i∈I Si to
be the closure of the span of

⋃
i∈I Si. We say that E is an orthonormal basis

for H if ⟨e, f⟩ = δe,f and H =
∨

E .
A sesquilinear form on H is a function f : H ×H → C that is linear in its

first argument and that satisfies f(x, y) = f(y, x)∗. If f is a sesquilinear form
on H, we say that f is bounded if

sup{|f(x, y)| : ∥x∥ , ∥y∥ ≤ 1} < ∞.

The Riesz representation theorem2 states that if f is a bounded sesquilinear
form on H, then there is a unique B ∈ B(H) such that

f(x, y) = ⟨x,By⟩ , x, y ∈ H,

and ∥B∥ = sup{|f(x, y)| : ∥x∥ , ∥y∥ ≤ 1}. It follows from the Riesz representa-
tion that if A ∈ B(H), then there is a unique A∗ ∈ B(H) such that

⟨Ax, y⟩ = ⟨x,A∗y⟩ , x, y ∈ H,

and ∥A∗∥ = ∥A∥. B(H) is a C∗-algebra: if A,B ∈ B(H) and λ ∈ C then A∗∗ =

A, (A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗, (λA)∗ = λ∗A∗, and ∥A∗A∥ = ∥A∥2.
We say that A ∈ B(H) is normal if A∗A = AA∗, and self-adjoint if A∗ = A.

One proves using the parallelogram law that A ∈ B(H) is self-adjoint if and
only if ⟨Ax, x⟩ ∈ R for all x ∈ H. If A ∈ B(H) is self-adjoint, we say that A is
positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H.

3 Spectrum in Banach spaces

If X and Y are Banach spaces and T ∈ B(X,Y ) is a bijection, then its inverse
function T−1 : Y → X is linear, since the inverse of a linear bijection is itself
linear. Because T is a surjective bounded linear map, by the open mapping
theorem it is an open map: if U is an open subset of X then T (U) is an open
subset of Y , and it follows that T−1 ∈ B(Y,X). That is, if a bounded linear

2Walter Rudin, Functional Analysis, second ed., p. 310, Theorem 12.8.
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operator from one Banach space to another is bijective then its inverse function
is also a bounded linear operator.

If X is a Banach space and T ∈ B(X), the spectrum σ(T ) of T is the set
of those λ ∈ C such that the map T − λidX : X → X is not a bijection. One
proves that σ(T ) is nonempty (the proof uses Liouville’s theorem, which states
that a bounded entire function is constant). One also proves that if λ ∈ σ(T )
then |λ| ≤ ∥T∥. We define the spectral radius of T to be

r(T ) = sup
λ∈σ(T )

|λ|,

and so r(T ) ≤ ∥T∥. Because B0(X) is an ideal in the algebra B(X), if T ∈
B0(X) is invertible then idX is compact. One checks that if idX is compact
then X is finite dimensional (a locally compact topological vector space is finite
dimensional), and therefore, if X is an infinite dimensional Banach space and
T ∈ B0(X), then 0 ∈ σ(T ).

The resolvent set of T is ρ(T ) = C \ σ(T ). One proves that ρ(T ) is open,3

from which it then follows that σ(T ) is a compact set. For λ ∈ ρ(T ), we define

R(λ, T ) = (T − λidX)−1 ∈ B(X),

called the resolvent of T .
If X is a Banach space and T ∈ B0(X), then the point spectrum σpoint(T ) of

T is the set of those λ ∈ C such that T − λidX is not injective. In other words,
to say that λ ∈ σpoint(T ) is to say that

dimker(T − λidX) > 0.

If λ ∈ σpoint(T ), we say that λ is an eigenvalue of T , and call dimker(T −λidX)
its geometric multiplicity.4 It is a fact that each nonzero eigenvalue of T has
finite geometric multiplicity, and it is also a fact that if T ∈ B0(X), then
σpoint(T ) is a bounded countable set and that if σpoint(T ) has a limit point that
limit point is 0. The Fredholm alternative tells us that

σ(T ) ⊆ σpoint(T ) ∪ {0}.

If X is infinite dimensional then σ(T ) = σpoint(T )∪{0}, and σpoint(T ) might or
might not include 0. If T ∈ B00(X), check that σpoint(T ) is a finite set.

If H is a Hilbert space, using the fact that a bounded linear operator T ∈
B(H) is invertible T if and only if both TT ∗ and T ∗T are bounded below (S

3Gert K. Pedersen, Analysis Now, revised printing, p. 131, Theorem 4.1.13.
4There is also a notion of algebraic multiplicity of an eigenvalue: the algebraic multiplicity

of λ is defined to be
sup
n∈N

dimker((A− λidH)n).

For self-adjoint operators this is equal to the geometric multiplicity of λ, while for a operator
that is not self-adjoint the algebraic multiplicity of an eingevalue may be greater than its geo-
metric multiplicity. Nonzero elements of ker((A−λidH)n) are called generalized eigenvectors
or root vectors. See I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear
Nonselfadjoint Operators in Hilbert Space.
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is bounded below if there is some c > 0 such that ∥Sx∥ ≥ c ∥x∥ for all x ∈ X),
one can prove that the spectrum of a bounded self-adjoint operator is a set
of real numbers, and the spectrum of a bounded positive operator is a set of
nonnegative real numbers.

4 Numerical radius

If H is a Hilbert space and A ∈ B(H), the numerical range of A is the set
{⟨Ax, x⟩ : ∥x∥ = 1}.5 The closure of the numerical range contains the spectrum
of A.6 The numerical radius w(A) of A is the supremum of the numerical range
of A: w(A) = sup∥x∥=1 | ⟨Ax, x⟩ |. If A ∈ B(H) is self-adjoint, one can prove

that7

w(A) = ∥A∥ .

The following theorem asserts that a compact self-adjoint operator A has an
eigenvalue whose absolute value is equal to the norm of the operator. Thus in
particular, the spectral radius of a compact self-adjoint operator is equal to its
numerical radius. Since a self-adjoint operator has real spectrum, to say that
|λ| = ∥A∥ is to say that either λ = ∥A∥ or λ = −∥A∥. A compact operator on
a Hilbert space can have empty point spectrum (e.g. the Volterra operator on
L2([0, 1])) and a bounded self-adjoint operator can have empty point spectrum
(e.g. the multiplication operator Tϕ(t) = tϕ(t) on L2([0, 1])), but this theorem
shows that if an operator is compact and self-adjoint then its point spectrum is
nonempty.

Theorem 2. If A ∈ B(H) is compact and self-adjoint then at least one of
−∥A∥ , ∥A∥ is an eigenvalue of A.

Proof. Because A is self-adjoint, ∥A∥ = w(A) = sup∥x∥=1 | ⟨Ax, x⟩ |. Also, as A
is self-adjoint, ⟨Ax, x⟩ is a real number, and thus either ∥A∥ = sup∥x∥=1 ⟨Ax, x⟩
or ∥A∥ = − inf∥x∥ ⟨Ax, x⟩. In the first case, due to ∥A∥ being a supremum there
is a sequence xn, all with norm 1, such that ⟨Axn, xn⟩ → ∥A∥. Using that A
is compact, there is a subsequence xa(n) such that Axa(n) converges to some x,

5The Toeplitz-Hausdorff theorem states that the numerical range of any bounded linear
operator is a convex set. See Paul R. Halmos, A Hilbert Space Problem Book, Problem 166.

6Paul R. Halmos, A Hilbert Space Problem Book, Problem 169. If A is normal, then the
closure of its numerical range is the convex hull of the spectrum: Problem 171.

7John B. Conway, A Course in Functional Analysis, second ed., p. 34, Proposition 2.13.
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and ∥x∥ = 1 because each xn has norm 1. Using A = A∗,

⟨Axn − ∥A∥xn, Axn − ∥A∥xn⟩ = ⟨Axn, Axn⟩ − ⟨Axn, ∥A∥xn⟩
− ⟨∥A∥xn, Axn⟩+ ⟨∥A∥xn, ∥A∥xn⟩

= ∥Axn∥2 − 2 ∥A∥ ⟨Axn, xn⟩+ ∥A∥2 ∥xn∥2

≤ ∥A∥2 ∥xn∥2 − 2 ∥A∥ ⟨Axn, xn⟩+ ∥A∥2 ∥xn∥2

= 2 ∥A∥2 ∥xn∥2 − 2 ∥A∥ ⟨Axn, xn⟩
→ 2 ∥A∥2 ∥x∥2 − 2 ∥A∥ ∥A∥
= 0.

Therefore, as n → ∞, the sequence Axn−∥A∥xn tends to 0, so Ax−∥A∥x = 0,
i.e. x is an eigenvector for the eigenvalue ∥A∥. If ∥A∥ = − inf∥x∥=1 ⟨Ax, x⟩ the
argument goes the same.

5 Polar decomposition

If H is a Hilbert space and P ∈ B(H) is positive, there is a unique positive
element of B(H), denoted P 1/2, satisfying (P 1/2)2 = P , which we call the
positive square root of P .8 If A ∈ B(H) one checks that A∗A is positive, and
hence A∗A has a positive square root, which we denote by |A| and call the
absolute value of A. One proves that |A| is the unique positive operator in
B(H) satisfying

∥Ax∥ = ∥|A|x∥ , x ∈ H.

An element U of B(H) is said to be a partial isometry if there is a closed
subspace X of H such that the restriction of U to X is an isometry X → U(X)
and kerU = X⊥. One proves that U∗U is the orthogonal projection of H
onto X. It can be proved that if A ∈ B(H) then there is a unique partial
isometry U satisfying both kerU = kerA and A = U |A|.9 This is called the
polar decomposition of A. The polar decomposition satisfies

U∗U |A| = |A|, U∗A = |A|, UU∗A = A.

6 Spectral theorem

If e, f ∈ H, we define e⊗ f : H → H by e⊗ f(h) = ⟨h, f⟩ e. e⊗ f is linear, and

∥e⊗ f(h)∥ = ∥⟨h, f⟩ e∥ = | ⟨h, f⟩ | ∥e∥ ≤ ∥h∥ ∥f∥ ∥e∥ ,

so ∥e⊗ f∥ ≤ ∥e∥ ∥f∥. Depending on whether f = 0 the image of e ⊗ f is {0}
or the span of e, and in either case e ⊗ f ∈ B00(H). If either of e or f is 0

8Gert K. Pedersen, Analysis Now, revised printing, p. 92, Proposition 3.2.11.
9Gert K. Pedersen, Analysis Now, revised printing, p. 96, Theorem 3.2.17.
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then e⊗ f has rank 0, and otherwise e⊗ f has rank 1, and it is an orthogonal
projection precisely when f is a multiple of e.

If E is an orthonormal set in a Hilbert space H, then E is an orthonormal
basis for H if and only if the unordered sum∑

e∈E

e⊗ e

converges strongly to idH .10

Let’s summarize what we have stated so far about the spectrum and point
spectrum of a compact self-adjoint operator on a Hilbert space.

Theorem 3 (Spectrum of compact self-adjoint operators). If H is a Hilbert
space and A ∈ B0(H) is self-adjoint, then:

• σ(A) is a nonempty compact subset of R.

• If H is infinite dimensional, then 0 ∈ σ(A).

• σ(A) ⊆ σpoint(A) ∪ {0}.

• σpoint(A) is countable.

• If λ ∈ R is a limit point of σpoint(A), then λ = 0.

• At least one of ∥A∥ ,−∥A∥ is an element of σpoint(A).

• Each nonzero eigenvalue of A has finite geometric multiplicity: If λ ∈
σpoint(A) and λ ̸= 0, then dimker(A− λidH) < ∞.

• If A ∈ B00(H), then σpoint(A) is a finite set.

We say that A ∈ B(H) is diagonalizable if there is an orthonormal basis E
for H and a bounded set {λe ∈ C : e ∈ E } such that the unordered sum∑

e∈E

λee⊗ e

converges strongly to A.
The following is the spectral theorem for normal compact operators.11

Theorem 4 (Spectral theorem). If A ∈ B0(H) is normal, then A is diagonal-
izable.

The last assertion of Theorem 3 is that a bounded self-adjoint finite rank op-
erator on a Hilbert space has finitely many elements in its point spectrum. Using
the spectral theorem, we get that if A ∈ B0(H) is self-adjoint and σpoint(A)
is finite, then A is finite rank. In the notation we introduce in the following
definition, ν(A) < ∞ precisely when A has finite rank.

10John B. Conway, A Course in Functional Analysis, second ed., p. 16, Theorem 4.13.
11Gert K. Pedersen, Analysis Now, revised printing, p. 108, Theorem 3.3.8.
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Definition 5. If A ∈ B0(H) is self-adjoint, define 0 ≤ ν(A) ≤ ∞ to be the
sum of the geometric multiplicities of the nonzero eigenvalues of A:

ν(A) =
∑

λ∈σpoint(A)\{0}

dimker(A− λidH).

Define
(λn(A) : n ∈ N) ∈ RN

to be the sequence whose first term is the element of σpoint(A)\{0} with largest
absolute value repeated as many times as its geometric multiplicity. If λ,−λ are
both nonzero elements of σpoint(A), we put the positive one first. We repeat this
for the remaining elements of σpoint(A)\{0}. If ν(A) < ∞, we define λn(A) = 0
for n > ν(A).

Using the spectral theorem and the notation in the above definition we get
the following.

Theorem 6. If A ∈ B0(H) is self-adjoint, then there is an orthonormal set
{en : n ∈ N} in H such that ∑

n∈N
λn(A)en ⊗ en

converges strongly to A.

If A ∈ B0(H), then its absolute value |A| is a positive compact operator,
and λn(|A|) ≥ 0 for all n ∈ N.

Definition 7. If A ∈ B0(H) and λ is an eigenvalue of |A|, we call λ a singular
value of A, and we define

σn(A) = λn(|A|), n ∈ N.

Because the absolute value of the absolute value of an operator is the absolute
value of the operator, if A ∈ B0(H) and n ∈ N then σn(|A|) = σn(A). If
A ∈ B0(H) and λ ̸= 0, one proves that λ is an eigenvalue of AA∗ if and only if
λ is an eigenvalue of A∗A and that they have the same geometric multiplicity.
From this we get that σn(A) = σn(A

∗) for all n ∈ N.

7 Finite rank operators

Theorem 8 (Singular value decomposition). If H is a Hilbert space and A ∈
B00(H) has rankA = N , then there is an orthonormal set {en : 1 ≤ n ≤ N}
and an orthonormal set {fn : 1 ≤ n ≤ N} such that

A =

N∑
n=1

σn(A)en ⊗ fn, Ah =

N∑
n=1

σn(A) ⟨h, fn⟩ en.
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Proof. |A| is a positive operator with rank |A| = N , and according to Theorem
6, there is an orthonormal set {fn : n ∈ N} in H such that

|A| =
∑
n∈N

λn(|A|)fn ⊗ fn =
∑
n∈N

σn(A)fn ⊗ fn.

Using the polar decomposition A = U |A|,

A = U |A| =
N∑

n=1

σn(A)(Ufn)⊗ fn.

Define en = Ufn. As U∗U |A| = |A| and as |A| fm
σm(A) = fm,

⟨en, em⟩ = ⟨Ufn, Ufm⟩
= ⟨fn, U∗Ufm⟩

=

〈
fn, U

∗U |A| fm
σm(A)

〉
=

〈
fn, |A| fm

σm(A)

〉
= ⟨fn, fm⟩
= δn,m,

showing that {en : 1 ≤ n ≤ N} is an orthonormal set.

If e, f, x, y ∈ H, then

⟨e⊗ f(x), y⟩ = ⟨⟨x, f⟩ e, y⟩ = ⟨x, f⟩ ⟨e, y⟩ = ⟨y, e⟩∗ ⟨x, f⟩ = ⟨x, ⟨y, e⟩ f⟩ = ⟨x, f ⊗ e(y)⟩ ,

so (e⊗ f)∗ = f ⊗ e.

Theorem 9. If A ∈ B00(H) then A∗ ∈ B00(H).

Proof. Let A have the singular value decomposition

A =

N∑
n=1

σn(A)en ⊗ fn.

Taking the adjoint, and because σn ∈ R,

A∗ =

N∑
n=1

σn(A)fn ⊗ en.

A∗ is a sum of finite rank operators and is therefore itself a finite rank operator.
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8 Compact operators

If X and Y are Banach spaces, B00(X,Y ) ⊆ B0(X,Y ). But if H is a Hilbert
space we can say much more: B00(H) is a dense subset of B0(H). In other
words, any compact operator on a Hilbert space can be approximated by a
sequence of bounded finite rank operators.12 As the adjoint A∗

n of each of these
finite rank operators An is itself a bounded finite rank operator,

∥A∗ −A∗
n∥ = ∥(A−An)

∗∥ = ∥A−An∥ → 0,

so A∗
n → A∗. Because each bounded finite rank operator is compact and B0(H)

is closed, this establishes that A∗ ∈ B0(H). (In fact, it is true that the adjoint
of a compact linear operator between Banach spaces is itself compact, but there
we don’t have the tool of showing that the adjoint is the limit of the adjoints of
finite rank operators.)

If H is a Hilbert space, the weak topology is the topology on H such that a
net xα converges to x weakly if for all h ∈ H the net ⟨xα, h⟩ converges to ⟨x, h⟩
in C. Let B be the closed unit ball in H, and let it be a topological space with
the subspace topology inherited from H with the weak topology. Thus, a net
xα ∈ B converges to x ∈ B if and only if for all h ∈ H the net ⟨xα, h⟩ converges
to ⟨x, h⟩.

Theorem 10. If H is a Hilbert space, A ∈ B(H), and B is the closed unit ball
in H with the subspace topology inherited from H with the weak topology, then
A is compact if and only if A|B : B → H is continuous.

Proof. Suppose that A is compact and let xα be a net inB that converges weakly
to some x ∈ B. If ϵ > 0, then there is some B ∈ B00(H) with ∥A−B∥ < ϵ.
Let B have the singular value decomposition

B =

N∑
n=1

σn(B)en ⊗ fn.

We have, using that the en are orthonormal,

∥Bxα −Bx∥2 =

∥∥∥∥∥
N∑

n=1

σn(B) ⟨xα, fn⟩ en −
N∑

n=1

σn(B) ⟨x, fn⟩ en

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑

n=1

σn(B) ⟨xα − x, fn⟩ en

∥∥∥∥∥
2

=

N∑
n=1

σn(B)2| ⟨xα − x, fn⟩ |2.

12John B. Conway, A Course in Functional Analysis, second ed., p. 41, Theorem 4.4.
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Eventually this is < ϵ
3 , and for such α,

∥Axα −Ax∥ ≤ ∥Axα −Bxα∥+ ∥Bxα −Bx∥+ ∥Bx−Ax∥
≤ ∥A−B∥ ∥xα∥+ ∥Bxα −Bx∥+ ∥B −A∥ ∥x∥
≤ ∥A−B∥+ ∥Bxα −Bx∥+ ∥B −A∥

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ.

We have shown that Axα → Ax in the no rm of H, and this shows that A|B :
B → H is continuous.

Suppose that A|B : B → H is continuous. Kakutani’s theorem states that a
Banach space is reflexive if and only if the closed unit ball is weakly compact. A
Hilbert space is reflexive, hence B, the closed unit ball with the weak topology,
is a compact topological space.13 Since A|B : B → H is continuous and B
is compact, the image A(B) is compact (the image of a compact set under a
continuous map is a compact set). We have shown that the image of the closed
unit ball is a compact subset of H, and this shows that A is compact; in fact,
to have shown that A is compact we merely needed to show that the image of
the closed unit ball is precompact, and H is a Hausdorff space so a compact set
is precompact.

A compact linear operator on an infinite dimensional Hilbert space H is not
invertible, lest idH be compact. However, operators of the form A− λidH may
indeed be invertible.14

Theorem 11. If A ∈ B0(H) is a normal operator with diagonalization

A =

∞∑
n=1

λnen ⊗ en

and 0 ̸= λ ̸∈ σpoint(A), then A− λidH is invertible and

(A− λidH)−1 = − 1

λ
+

1

λ

∞∑
n=1

λn

λn − λ
en ⊗ en,

where the series converges in the strong operator topology.

Proof. As λn → 0 we have α = supn |λn| < ∞, and as λ ̸= 0 we have β =
infn |λn − λ| > 0. Define

TN = − 1

λ
+

1

λ

N∑
n=1

λn

λn − λ
en ⊗ en ∈ B00(H),

13cf. Paul R. Halmos, A Hilbert Space Problem Book, Problem 17.
14Ward Cheney, Analysis for Applied Mathematics, p. 94, Theorem 2.
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and if N > M , then, for any h ∈ H,

∥TNh− TMh∥2 =
1

|λ|2

∥∥∥∥∥
N∑

n=M+1

λn

λn − λ
⟨h, en⟩ en

∥∥∥∥∥
2

=
1

|λ|2
N∑

n=M+1

|λn|2

|λn − λ|2
| ⟨h, en⟩ |2

≤ 1

|λ|2
N∑

n=M+1

α2| ⟨h, en⟩ |2

β2

=
α2

|λ|2β2

N∑
n=M+1

| ⟨h, en⟩ |2.

By Bessel’s inequality,
∑∞

n=1 | ⟨h, en⟩ |2 ≤ ∥h∥2, hence
∑∞

n=N | ⟨h, en⟩ |2 → 0 as
N → ∞; this N depends on h, and this is why the claim is stated merely for
the strong operator topology and not the norm topology. We have shown that
TNh is a Cauchy sequence in H and hence TNh converges. We define Bh to be
this limit. For h ∈ H,∥∥∥∥∥ 1λ

∞∑
n=1

λn

λn − λ
⟨h, en⟩ en

∥∥∥∥∥
2

=
1

|λ|2
∞∑

n=1

|λn|2

|λn − λ|2
| ⟨h, en⟩ |2

≤ α2

|λ|2β2

∞∑
n=1

| ⟨h, en⟩ |2

≤ α2

|λ|2β2
∥h∥2 ,

whence

∥Bh∥ ≤
∥∥∥∥− 1

λ
h

∥∥∥∥+
∥∥∥∥∥ 1λ

∞∑
n=1

λn

λn − λ
⟨h, en⟩ en

∥∥∥∥∥
≤ 1

|λ|
∥h∥+ α

|λ|β
∥h∥ ,

showing that ∥B∥ ≤ 1
|λ| +

α
|λ|β . It is straightforward to check that B is linear,

thus B ∈ B(H). (Thus B is a strong limit of finite rank operators. But if H is
infinite dimensional then B is in fact not the norm limit of the sequence: for if
it were it would be compact, and we will show that B is invertible, which would
tell us that idH is compact, contradicting H being infinite dimensional.)

12



For h ∈ H,

(A− λidH)Bh = − 1

λ
(Ah− λh) +

1

λ

∞∑
n=1

λn

λn − λ
⟨h, en⟩ (Aen − λen)

= h− 1

λ
Ah+

1

λ

∞∑
n=1

λn

λn − λ
⟨h, en⟩ (λnen − λen)

= h− 1

λ
Ah+

1

λ

∞∑
n=1

λn ⟨h, en⟩ en

= h,

where the final equality is because the series is the diagonalization of A. On the
other hand,

B(A− λidH)h = − 1

λ
(A− λidH)h+

1

λ

∞∑
n=1

λn

λn − λ
⟨(A− λidH)h, en⟩ en

= h− 1

λ
Ah+

1

λ

∞∑
n=1

λn

λn − λ
⟨Ah− λh, en⟩ en

= h− 1

λ

∞∑
n=1

λn ⟨h, en⟩ en +
1

λ

∞∑
n=1

λn

λn − λ
⟨Ah, en⟩ en

−
∞∑

n=1

λn

λn − λ
⟨h, en⟩ en

= h− 1

λ

∞∑
n=1

λn ⟨h, en⟩ en +
1

λ

∞∑
n=1

λn

λn − λ
λn ⟨h, en⟩ en

−
∞∑

n=1

λn

λn − λ
⟨h, en⟩ en

= h+
1

λ

∞∑
n=1

−λn(λn − λ) + λ2
n − λnλ

λn − λ
⟨h, en⟩ en

= h,

showing that B = (A− λidH)−1.

We can start with a function and ask what kind of series it can be expanded
into, or we can start with a series and ask what kind of function it defines.
The following theorem does the latter. It shows that if en and fn are each
orthonormal sequences and λn is a sequence of complex numbers whose limit of
0, then the series

∞∑
n=1

λnen ⊗ fn

converges and is an element of B0(H).

13



Theorem 12. If H is a Hilbert space, {en : n ∈ N} is an orthonormal set,
{fn : n ∈ N} is an orthonormal set, and λn ∈ C is a sequence tending to 0, then
the sequence

AN =

N∑
n=1

λnen ⊗ fn ∈ B00(H).

converges to an element of B0(H).

Proof. Let ϵ > 0 and let N0 be such that if n ≥ N0 then |λn| < ϵ. If N > M ≥
N0 and h ∈ H, then, as the en are orthonormal,

∥(AN −AM )h∥2 =

∥∥∥∥∥
N∑

n=M+1

λnen ⊗ fn(h)

∥∥∥∥∥
2

=

∥∥∥∥∥
N∑

M+1

λn ⟨h, fn⟩ en

∥∥∥∥∥
2

=

N∑
n=M+1

∥λn ⟨h, fn⟩ en∥2

=

N∑
n=M+1

|λn|2| ⟨h, fn⟩ |2

< ϵ2
N∑

n=M+1

| ⟨h, fn⟩ |2.

By Bessel’s inequality,
∑N

n=M+1 | ⟨h, fn⟩ |2 ≤ ∥h∥2, and hence

∥(AN −AM )h∥ < ϵ ∥h∥ .

As this holds for all h ∈ H,

∥AN −AM∥ ≤ ϵ,

showing that AN is a Cauchy sequence, which therefore converges in B(H). As
each term in the sequence is finite rank and so compact, the limit is a compact
operator.

Continuing the analogy we used with the above theorem, now we start with
a function and ask what kind of series it can be expanded into. This is called the
singular value decomposition of a compact operator. Helemskii calls the series
in the following theorem the Schmidt series of the operator.15 We have already
presented the singular value decomposition for finite rank operators in Theorem
8.

15A. Ya. Helemskii, Lectures and Exercises on Functional Analysis, p. 215, Theorem 1.
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Theorem 13 (Singular value decomposition). If H is a Hilbert space and

A ∈ B0(H) \ B00(H),

then there is an orthonormal set {en : n ∈ N} and an orthonormal set {fn : n ∈
N} such that AN → A, where

AN =

N∑
n=1

σn(A)en ⊗ fn.

Proof. As |A| is self-adjoint and compact, by Theorem 6 there is an orthonormal
set {fn : n ∈ N} such that

|A| =
∞∑

n=1

λn(|A|)fn ⊗ fn =

∞∑
n=1

σn(A)fn ⊗ fn.

That is, with |A|N ∈ B00(H) defined by

|A|N =

N∑
n=1

σn(A)fn ⊗ fn,

we have |A|N → |A|.
Let A = U |A| be the polar decomposition of A, and define en = Ufn.

As U∗U |A| = |A| and as σm(A) > 0 (because A is not finite rank), we have
|A| fm

σm(A) = fm, and hence

⟨en, em⟩ = ⟨Ufn, Ufm⟩
= ⟨fn, U∗Ufm⟩

=

〈
fn, U

∗U |A| fm
σm(A)

〉
=

〈
fn, |A| fm

σm(A)

〉
= ⟨fn, fm⟩
= δn,m,

showing that {en : n ∈ N} is an orthonormal set. Define

AN =

N∑
n=1

σn(A)en ⊗ fn,

and we have AN = U |A|N . As A = U |A| and AN = U |A|N , we get

∥A−AN∥ = ∥U |A| − U |A|N∥ ≤ ∥U∥ ∥|A| − |A|N∥ = ∥|A| − |A|N∥ → 0,

showing that AN → A.
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9 Courant min-max theorem

Theorem 14 (Courant min-max theorem). Let H be an infinite dimensional
Hilbert space and let A ∈ B0(H) be a positive operator. If k ∈ N then

max
dimS=k

min
x∈S,∥x∥=1

⟨Ax, x⟩ = λk(A) = σk(A)

and
min

dimS=k−1
max

x∈S⊥,∥x∥=1
⟨Ax, x⟩ = λk(A) = σk(A).

Proof. |A| is compact and positive, so according to Theorem 6 there is an or-
thonormal set {en : n ∈ N} such that

A =

∞∑
n=1

σn(A)en ⊗ en.

For k ∈ N, let Sk =
∨∞

n=k{en}. S⊥
k =

∨n−1
k=1{en}, so Sk has codimension k − 1.

(The codimension of a closed subspace of a Hilbert space is the dimension of its
orthogonal complement.) If S is a k dimensional subspace of H, then there is
some x ∈ Sk ∩ S with ∥x∥ = 1. This is because if V is a closed subspace with
codimension k− 1 of a Hilbert space and W is a k dimensional subspace of the
Hilbert space, then their intersection is a subspace of nonzero dimension. As
x ∈ Sk, there are αn ∈ C, n ≥ k, with

x =

∞∑
n=k

αnen, ∥x∥2 =

∞∑
n=k

|αn|2.

16



As the sequence σn(A) is nonincreasing,

⟨Ax, x⟩ =

〈 ∞∑
n=1

σn(A) ⟨x, en⟩ en, x

〉

=

〈 ∞∑
n=1

σn(A)

〈 ∞∑
m=k

αmem, en

〉
en,

∞∑
m=k

αmem

〉

=

〈 ∞∑
n=1

σn(A)

∞∑
m=k

αmδm,nen,

∞∑
m=k

αmem

〉

=

〈 ∞∑
n=1

σn(A)αnχ≥k(n)en,

∞∑
m=k

αmem

〉

=

〈 ∞∑
n=k

σn(A)αnen,

∞∑
m=k

αmem

〉

=

∞∑
n=k

σn(A)|αn|2

≤ σk(A)

∞∑
n=k

|αn|2

= σk(A),

where we write

χ≥k(n) =

{
1 n ≥ k

0 n < k.

This shows that if dimS = k then

inf
x∈S,∥x∥=1

⟨Ax, x⟩ ≤ σk(A).

Let M = infx∈S,∥x∥=1 ⟨Ax, x⟩, and let xn ∈ S, ∥xn∥ = 1, with ⟨Axn, xn⟩ → M .
As S is a finite dimensional Hilbert space, the unit sphere in it is compact, so
there a a subsequence xa(n) that converges to some z ∈ S, ∥z∥ = 1. We have

| ⟨Az, z⟩ − ⟨Axn, xn⟩ | ≤ | ⟨Az, z⟩ − ⟨Axn, z⟩ |+ ⟨Axn, z⟩ − ⟨Axn, xn⟩ |
= | ⟨A(z − xn, z⟩ |+ | ⟨Axn, z − xn⟩ |
≤ ∥A∥ ∥z − xn∥ ∥z∥+ ∥A∥ ∥xn∥ ∥z − xn∥
= 2 ∥A∥ ∥z − xn∥ .

As xa(n) → z, we get
〈
Axa(n), xa(n)

〉
→ ⟨Az, z⟩. As ⟨Axn, Axn⟩ → M , we get

⟨Az, z⟩ = M = inf
x∈S,∥x∥=1

⟨Ax, x⟩ .

As z ∈ S and ∥z∥ = 1, we have in fact

min
x∈S,∥x∥=1

⟨Ax, x⟩ = inf
x∈S,∥x∥=1

⟨Ax, x⟩ ≤ σk(A).
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This is true for any k dimensional subspace of H, so

sup
dimS=k

min
x∈S,∥x∥=1

⟨Ax, x⟩ ≤ σk(A).

If S = S⊥
k+1 then ek ∈ S, ∥ek∥ = 1, and

⟨Aek, ek⟩ = ⟨σk(A)ek, ek⟩ = σk(A),

so in fact
max

dimS=k
min

x∈S,∥x∥=1
⟨Ax, x⟩ = σk(A),

which is the first of the two formulas that we want to prove.
For k ≥ 1, let Sk =

∨k
n=1{en}. If S is a k − 1 dimensional subspace of H,

then S⊥ is a closed subspace with codimension k − 1, so the intersection of Sk

and S⊥ has nonzero dimension, and so there is some x ∈ Sk ∩S⊥ with ∥x∥ = 1.

As x ∈ Sk there are α1, . . . , αk with x =
∑k

n=1 αnen, giving

⟨Ax, x⟩ =

〈 ∞∑
n=1

σn(A) ⟨x, en⟩ en, x

〉

=

〈 ∞∑
n=1

σn(A)

〈
k∑

m=1

αmem, en

〉
en,

k∑
m=1

αmem

〉

=

〈 ∞∑
n=1

σn(A)

k∑
m=1

αmδm,nen,

k∑
m=1

αmem

〉

=

〈 ∞∑
n=1

σn(A)αnχ≤k(n)en,

k∑
m=1

αmem

〉

=

〈
k∑

n=1

σn(A)αnen,

k∑
m=1

αmem

〉

=

k∑
n=1

σn(A)|αn|2

≥ σk(A)

k∑
n=1

|αn|2

= σk(A).

This shows that
sup

x∈S⊥,∥x∥=1

⟨Ax, x⟩ ≥ σk(A).

Define M = supx∈S⊥,∥x∥=1. Because M is a supremum, there is a sequence xn

on the unit sphere in Sk−1 such that ⟨Axn, xn⟩ → M . The unit sphere in Sk−1

is compact because Sk−1 is finite dimensional, so this sequence has a convergent
subsequence xa(n) → z. As

| ⟨Az, z⟩ − ⟨Axn, xn⟩ | ≤ 2 ∥A∥ ∥z − xn∥
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and xa(n) → z, we get

⟨Az, z⟩ = M = sup
x∈S⊥,∥x∥=1

⟨Ax, x⟩ ,

whence
max

x∈S⊥,∥x∥=1
⟨Ax, x⟩ = sup

x∈S⊥,∥x∥=1

⟨Ax, x⟩ ≥ σk(A).

As this is true for any k − 1 dimensional subspace S,

inf
dimS=k−1

max
x∈S⊥,∥x∥=1

⟨Ax, x⟩ ≥ σk(A).

But for S = Sk−1 we have ek ∈ S⊥, ∥ek∥ = 1, and

⟨Aek, ek⟩ = ⟨σk(A)ek, ek⟩ = σk(A),

which implies that

min
dimS=k−1

max
x∈S⊥,∥x∥=1

⟨Ax, x⟩ = σk(A).

If A ∈ B(H) is compact, then the eigenvalues of |A| are equal to the singular
values of |A|. Therefore the Courant min-max theorem gives expressions for the
singular values of a compact linear operator on a Hilbert space, whether or not
the operator is itself self-adjoint.

Allahverdiev’s theorem16 gives an expression for the singular values of a
compact operator that does not involve orthonormal sets, unlike Courant’s min-
max theorem. Thus this formula makes sense for a compact operator from one
Banach space to another.

Theorem 15 (Allahverdiev’s theorem). Let H be a Hilbert space and let Fn(H)
be the set of bounded finite rank operators of rank ≤ n. If A ∈ B0(H) and n ∈ N,
then

σn(A) = inf
T∈Fn−1

∥A− T∥ .

10 Schatten class operators

If 1 ≤ p < ∞ and A ∈ B0(H), we define

∥A∥p =

(∑
n∈N

σn(A)p

)1/p

,

16I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint
Operators in Hilbert Space, p. 28, Theorem 2.1; cf. J. R. Retherford, Hilbert Space: Compact
Operators and the Trace Theorem, p. 75 and p. 106.
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and define Bp(H) to be those A ∈ B0(H) with ∥A∥p < ∞. In other words, an
element of Bp(H) is a compact operator whose sequence of singular values is an
element of ℓp. We call an element of Bp(H) a Schatten class operator. We call
elements of B1(H) trace class operators and elements of B2(H) Hilbert-Schmidt
operators.

If A ∈ B0(H) is positive, then, according to Theorem 6, there is an or-
thonormal set {en : n ∈ N} such that

A =
∑
n∈N

λn(A)en ⊗ en,

where the series converges in the strong operator topology. As the en are or-
thonormal, we have

Ap =
∑
n∈N

λn(A)pen ⊗ en,

which is itself a positive compact operator, and thus σn(A
p) = σn(A)p for n ∈ N.

Therefore, if A is a positive compact operator, then ∥A∥p = ∥Ap∥1/p1 .
If A ∈ B0(H) and n ∈ N, then σn(|A|) = σn(A) and σn(A

∗) = σn(A).
Hence, if 1 ≤ p < ∞ then

∥|A|∥p = ∥A∥p , ∥A∗∥p = ∥A∥p .

As |A| is compact and self-adjoint, it has an eigenvalue with absolute value
∥A∥, from which it follows that if 1 ≤ p < ∞ then ∥A∥ ≤ ∥A∥p.

Theorem 16. If A ∈ B1(H), B ∈ B(H), and k ∈ N, then

σk(BA) ≤ ∥B∥σk(A).

Proof. For all x ∈ H,

⟨(BA)∗BAx, x⟩ = ⟨BAx,BAx⟩
= ∥BAx∥2

≤ ∥B∥2 ∥Ax∥2

= ∥B∥2 ⟨Ax,Ax⟩
= ∥B∥2 ⟨A∗Ax, x⟩ .

Applying the Courant min-max theorem to the positive operators (BA)∗BA
and A∗A, if k ∈ N then

σk((BA)∗BA) = max
dimS=k

min
x∈S,∥x∥=1

⟨(BA)∗BAx, x⟩

≤ ∥B∥2 max
dimS=k

min
x∈S,∥x∥=1

⟨A∗Ax, x⟩

= ∥B∥2 σk(A
∗A).
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But
σk((BA)∗BA) = σk(|BA|2) = σk(|BA|)2 = σk(BA)2

and
σk(A

∗A) = σk(|A|2) = σk(|A|)2 = σk(A)2,

so taking the square root,

σk(BA) ≤ ∥B∥σk(A).

Using Theorem 16, if 1 ≤ p < ∞ then

∥BA∥p =

(∑
n∈N

σn(BA)p

)1/p

≤

(∑
n∈N

∥B∥p σk(A)p

)1/p

= ∥B∥ ∥A∥p .

The following theorem states that the Schatten class operators are Banach
spaces.17

Theorem 17. If 1 ≤ p < ∞, then Bp(H) is a Banach space with the norm
∥·∥p.

11 Weyl’s inequality

Weyl’s inequality relates the eigenvalues of a self-adjoint compact operator with
its singular values.18 We use the notation from Definition 5. For N > ν(A) the
left hand side is equal to 0 so the inequality is certainly true then.

Theorem 18 (Weyl’s inequality). If A ∈ B0(H) is self-adjoint and N ≤ ν(A),
then

N∏
n=1

|λn(A)| ≤
N∏

n=1

σn(A).

Proof. Let

EN =

N∨
n=1

ker(A− λn(A)idH),

which is finite dimensional. Check that EN is an invariant subspace of A, and
let AN : EN → EN be the restriction of A to EN . AN is a positive operator.
As EN is spanned by eigenvectors for nonzero eigenvalues of A it follows that
kerAN = {0}, and as EN is finite dimensional, we get that AN is invertible. If
AN has polar decomposition AN = UN |AN |, then UN is invertible; if a partial
isometry is invertible then it is unitary, so UN is unitary, and therefore the

17Gert K. Pedersen, Analysis Now, revised printing, p. 124, E 3.4.4
18Peter D. Lax, Functional Analysis, p. 336, chapter 30, Lemma 7.
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eigenvalues of UN all have absolute value 1. As the determinant of a linear
operator on a finite dimensional vector space is the product of its eigenvalues
counting algebraic multiplicity,

det |AN | = 1

|detUN |
|detAN | = |detAN | =

N∏
n=1

|λn(A)|. (1)

Let PN be the orthogonal projection onto EN . If v ∈ EN , then APNv =
ANv, and if v ∈ E⊥

N then APNv = A(0) = 0. We get that

|APN |v =

{
|AN |v v ∈ EN

0 v ∈ E⊥
N ,

and it follows that if 1 ≤ n ≤ N then σn(AN ) = σn(APN ). Using Theorem 16
we get

σn(APN ) ≤ ∥P∥σn(A) ≤ σn(A);

the second inequality is an equality unless PN = 0. We have shown that if
1 ≤ n ≤ N then σn(AN ) ≤ σn(A), and combining this with (1) gives us

N∏
n=1

|λn(A)| = det |AN | =
N∏

n=1

σn(AN ) ≤
N∏

n=1

σn(A).

Theorem 19. If 0 < p < ∞, A ∈ B0(H) is self-adjoint, and N ∈ N, then

N∑
n=1

|λn(A)|p ≤
N∑

n=1

σn(A)p.

Proof. Schur’s majorization inequality19 states that if a1 ≥ a2 ≥ · · · and b1 ≥
b2 ≥ · · · are nonincreasing sequences of real numbers satisfying, for each N ∈ N,

N∑
n=1

an ≤
N∑

n=1

bn,

and ϕ : R → R is a convex function with limx→−∞ ϕ(x) = 0, then for every
N ∈ N,

N∑
n=1

ϕ(an) ≤
N∑

n=1

ϕ(bn).

With the hypotheses of Theorem 18, for 1 ≤ n ≤ ν(A), define an = log |λn(A)|
and bn = log σn(A) and let ϕ(x) = epx. By Theorem 18 these satisfy the

19Peter D. Lax, Functional Analysis, p. 337, chapter 30, Lemma 8; cf. J. Michael Steele,
The Cauchy-Schwarz Master Class, p. 201, Problem 13.4.
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conditions of Schur’s majorization inequality, which then gives us for 1 ≤ N ≤
ν(A) that

N∑
n=1

|λn(A)|p ≤
N∑

n=1

σn(A)p.

If n > ν(A) then λn(A) = 0.

12 Rayleigh quotients for self-adjoint operators

If A ∈ B(H) is self-adjoint, we define the Rayleigh quotient of A by

f(x) =
⟨Ax, x⟩
⟨x, x⟩

, x ∈ H,x ̸= 0, f : H \ {0} → R.

Let X and Y be normed spaces, U an open subset of X, and f : U → Y a
function. If x ∈ U and there is some T ∈ B(X,Y ) such that

lim
h→0

∥f(x+ h)− f(x)− Th∥
∥h∥

= 0, (2)

then f is said to be Fréchet differentiable at x, and T is called the Fréchet
derivative of f at x;20 it does not take long to prove that if T1, T2 ∈ B(X,Y )
both satisfy (2) then T1 = T2. We denote the Fréchet derivative of f at x by
(Df)x. Df is a map from the set of all points at which f is Fréchet differentiable
to B(X,Y ).

To say that x is a stationary point of f is to say that f is Fréchet differentiable
at x and that the Fréchet derivative of f at x is the zero map. One proves that
if T1, T2 are Fréchet derivatives of f at x then T1 = T2, and thus speak about
the Fréchet derivative of f at x

Theorem 20. If A ∈ B(H) is self-adjoint, then each eigenvector of A is a
stationary point of the Rayleigh quotient of A.

Proof. If λ is an eigenvalue of A then, as A is self-adjoint, λ ∈ R. Let v ̸= 0
satisfy Av = λv. We have

f(v) =
⟨Av, v⟩
⟨v, v⟩

=
⟨λv, v⟩
⟨v, v⟩

= λ.

20Ward Cheney, Analysis for Applied Mathematics, p. 149.
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For h ̸= 0, using that A is self-adjoint and that λ ∈ R,

|f(v + h)− f(v)− 0v|
∥h∥

=
1

∥h∥
·
∣∣∣∣ ⟨A(v + h), v + h⟩

⟨v + h, v + h⟩
− λ

∣∣∣∣
=

1

∥h∥ ∥v + h∥2
|⟨A(v + h), v + h⟩ − λ ⟨v + h, v + h⟩|

=
1

∥h∥ ∥v + h∥2
∣∣ ⟨Av, v⟩+ ⟨Av, h⟩+ ⟨Ah, v⟩+ ⟨Ah, h⟩

−λ ⟨v, v⟩ − λ ⟨v, h⟩ − λ ⟨h, v⟩ − λ ⟨h, h⟩
∣∣

=
1

∥h∥ ∥v + h∥2
∣∣ ⟨λv, v⟩+ ⟨λv, h⟩+ ⟨h, λv⟩+ ⟨Ah, h⟩

−λ ⟨v, v⟩ − λ ⟨v, h⟩ − λ ⟨h, v⟩ − λ ⟨h, h⟩
∣∣

=
1

∥h∥ ∥v + h∥2
|⟨Ah, h⟩ − λ ⟨h, h⟩|

=
1

∥h∥ ∥v + h∥2
| ⟨Ah− λh, h⟩ |.

Therefore

|f(v + h)− f(v)− 0v|
∥h∥

≤ ∥Ah− λh∥ ∥h∥
∥h∥ ∥v + h∥2

=
∥(A− λidH)h∥

∥v + h∥2

=
∥A− λidH∥ ∥h∥

∥v + h∥2
.

As h → 0 the right-hand side tends to 0 (one of the terms tends to 0, one
doesn’t depend on h, and the denominator is bounded below in terms just of v
for sufficiently small h), showing that 0 is the Fréchet derivative of f at v.
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