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1 Pontryagin duality

Write S1 = {z ∈ C : |z| = 1}. A character of a locally compact abelian group

G is a continuous group homomorphism G → S1. We denote by Ĝ the set
of characters of G, where for ϕ1, ϕ2 ∈ Ĝ and x ∈ G, we define (ϕ1ϕ2)(x) =

ϕ1(x)ϕ2(x). We assign Ĝ the final topology for the family of functions {ϕ 7→
ϕ(x) : x ∈ G}, i.e., the coarsest topology on Ĝ so that for each x ∈ G, the

function ϕ 7→ ϕ(x) is continuous Ĝ→ S1. With this topology, it is a fact that Ĝ
is itself a locally compact abelian group, called the Pontryagin dual of G. It is
a fact that the Pontryagin dual of a discrete abelian group is compact and that
the Pontryagin dual of compact abelian group is discrete.1 The Pontryagin
duality theorem states that in the category of locally compact abelian groups,
there is a natural isomorphism from the double dual functor to the identity
functor.2

With the subspace topology inherited from R, one checks that a compact
subset of Q has empty interior, and therefore Q is not locally compact. Thus,
to work with the rational numbers in the category of locally compact abelian
groups, we cannot use the subspace topology inherited from R. Rather, we
assign Q the discrete topology. (Any abelian group is a locally compact abelian
group when assigned the discrete topology.) From now on, when we speak about
Q, unless we say otherwise it has the discrete topology.

Because we use the discrete topology with Q, its Pontryagin dual Q̂ is a
compact abelian group, which we wish to describe in a tractable way.

2 The p-adic integers

For a prime p and for n ≥ 1, Z/pn with the discrete topology is a compact
abelian group. For n ≥ m, let πn,m : Z/pn → Z/pm be the projection map.
The compact abelian groups Z/pn and the continuous group homomorphisms

1Markus Stroppel, Locally Compact Groups, p. 175, Theorem 20.6.
2Markus Stroppel, Locally Compact Groups, p. 193, Theorem 22.6.
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πn,m are an inverse system in the category of locally compact abelian groups.
The inverse limit is a compact abelian group denoted by Zp, called the p-adic
integers.

3 Q/Z and its Pontryagin dual

Let G be an abelian group. The the torsion subgroup TG of G is the collection
of those elements of G with finite order. We say that G is a torsion group
if TG = G. Said differently, for n a nonnegative integer, let G[n] be the set of
those x ∈ G such that nx = 0. For m|n, let im,n : G[m] → G[n] be the inclusion
map; indeed, if x ∈ G[m] then

nx =
n

m
·mx =

m

n
· 0 = 0.

The groups G[n] and the group homomorphisms are a direct system in the
category of abelian groups, whose direct limit one checks is isomorphic to TG.

For p prime, the p-primary subgroup Gp of G is the set of those x ∈ G
such that for some n ≥ 1, x ∈ G[pn]. We can also express Gp in the following
way. For m ≤ n, let ιm,n : G[pm] → G[pn] be the inclusion map; indeed, for
x ∈ G[pm],

pnx = pn−mpmx = pn−m · 0 = 0.

The groups G[pn] and the group homomorphisms ιm,n are a direct system in the
category of abelian groups, and one checks that the direct limit is isomorphic
to Gp.

Let x ∈ TG and call its order m. Write m = pe11 · · · perr and put mi =
m
p
ei
i

.

Then gcd(m1, . . . ,mr) = 1, so there are integers l1, . . . , lr such that

l1m1 + · · ·+ lrmr = 1.

Thus

x =

(
r∑

i=1

limi

)
x =

r∑
i=1

li(mix) =

r∑
i=1

lixi,

where xi = mix. Because xi has order m
mi

= peii , it belongs to Gpi
and so

lixi ∈ Gpi
, showing that every element of TG is a finite sum of elements of

the p-primary components of G. Furthermore, one proves that if xp ∈ Gp and
yp ∈ Gp, with only finitely many xp, yp nonzero, then

∑
p xp =

∑
p yp implies

that xp = yp for each p. Therefore, TG is isomorphic to the direct sum⊕
p

Gp.

The statement that TG is isomorphic to the direct sum of the p-primary com-
ponents of G is called the primary decomposition theorem.3

3Derek Robinson, A Course in the Theory of Groups, second ed., p. 94, Theorem 4.1.1.
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It is straightforward to check that Q/Z is the torsion subgroup of the abelian
group R/Z. It can thus be modeled as the group of roots of unity in S1. Writing
G = Q/Z, for p prime and for n ≥ 1 it is apparent that G[pn] is isomorphic to
the subgroup {exp(2πim/pn) : 0 ≤ m < pn−1} of S1, and thus to Z/pn. Define
ιm,n : Z/pm → Z/pn, m ≤ n, by ιm,n(x) = pn−mx. The groups Z/pn and
the group homomorphisms ιm,n are a direct system in the category of abelian
groups, whose direct limit is denoted by Z(p∞), called the Prüfer p-group.
Thus, the p-primary component of Q/Z is isomorphic to the Prüfer p-group
Z(p∞). Now applying the primary decomposition theorem, we get that Q/Z is
isomorphic to the direct sum of all the Prüfer p-groups:

Q/Z ∼=
⊕
p

Z(p∞). (1)

We assign Q/Z the discrete topology; indeed, the direct sum of discrete abelian
groups is a discrete abelian group.

It is a fact that the Pontryagin dual of a direct sum of discrete abelian groups
is isomorphic to the direct product of the Pontryagin duals of the summands.
Also, we take as known that the Pontryagin dual of the compact abelian group
Zp is the discrete abelian group Z(p∞):

Ẑp
∼= Z(p∞).

Thus, in the category of locally compact abelian groups,

Q̂/Z ∼=
∏
p

Zp.

On the other hand, we stated above that if G is an abelian group then TG is
isomorphic to the direct limit of the direct system of groups G[n] and inclusion
maps im,n : G[m] → G[n] for m|n. Thus, Q/Z is isomorphic to the direct
limit of the direct system of groups Z/n and maps im,n : Z/m → Z/n for m|n,
im,n(x) =

n
m ·x. The dual of the discrete abelian group Z/n is isomorphic to the

compact abelian group Z/n, and the dual of the map im,n : Z/m → Z/n, for
m|n, is the projection map πn,m : Z/n→ Z/m. The dual of the direct system of
groups Z/n and maps im,n is the inverse system of groups Z/n and maps πn,m,
whose limit is a compact abelian group Z∧ called the profinite completion
of the integers. It follows that

Q̂/Z ∼= Z∧

as locally compact abelian groups, and thus also that∏
p

Zp
∼= Z∧

as locally compact abelian groups.
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4 The p-adic integers

In this section we give a construction of the ring Zp. We have already defined
Zp as an inverse limit of compact abelian groups, and it can be proved that the
additive group of the ring we construct here is indeed isomorphic as an abelian
group to this inverse limit.4 (In this section we do not assign a topology to our
construction of Zp.) Our presentation in this section follows Robert.5

We start by defining objects, then put a group operation on the set of these
objects.6 Let p be prime. A p-adic integer is a formal series of the form∑

i≥0

aip
i, 0 ≤ ai ≤ pi − 1.

We denote the set of p-adic integers by Zp. As sets,

Zp =
∏
i≥0

{0, 1, . . . , p− 1} = {0, 1, . . . , p− 1}Z≥0 .

For a =
∑

i≥0 aip
i, b =

∑
i≥0 bip

i ∈ Zp, we define c = a + b inductively as
follows. Define ϵ0 = 0 and define

c0 =

{
a0 + b0 a0 + b0 ≤ p− 1

a0 + b0 − p a0 + b0 > p− 1.

Suppose that cn and ϵn have been defined. Now define

ϵn+1 =

{
0 an + bn ≤ p− 1

1 an + bn > p− 1,

and

cn+1 =

{
an+1 + bn+1 + ϵn+1 an+1 + bn+1 + ϵn+1 ≤ p− 1

an+1 + bn+1 + ϵn+1 − p an+1 + bn+1 + ϵn+1 > p− 1.

For example, let a = 1p0+0p+0p2+ · · · and b = (p− 1)p0+(p− 1)p+(p−
1)p2 + · · · , and put c = a + b. Then, ϵ0 = 0 and c0 = a0 + b0 − p = 0. Next,
ϵ1 = 1, with which a1 + b1 + ϵ1 = 0+ (p− 1)+ 1 = p > p− 1, so c1 = p− p = 0.
Inductively, for any n ≥ 1 we get that ϵn = 1 and cn = 0. Thus

a+ b = 0p0 + 0p1 + 0p2 + · · · .
4See Alain M. Robert, A Course in p-adic Analysis, p. 33, §4.7.
5Alain M. Robert, A Course in p-adic Analysis, Chapter 1.
6Although constructing p-adic integers as formal series is concrete, one must then be cau-

tious lest one does things with these series that seem reasonable because of experience working
with series but that are not yet justified; defining p-adic integers as a completion of a metric
space or as an inverse limit gives one abstract objects about which one only knows universal
properties, and thus is not susceptible to making moves that are not permitted.
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For a =
∑

i≥0 aip
i ∈ Zp, define

σ(a) =
∑
i≥0

(p− 1− ai)p
i.

We check that this satisfies a + σ(a) + 1 = 0, where 1 ∈ Zp means 1p0 + 0p +
0p2 + · · · . Thus, 1 + σ(a) is the additive inverse of a, i.e.,

−a = 1 + σ(a).

With addition thus defined, Zp is an abelian group, with identity 0 = 0p0 +
0p+ 0p2 + · · · . We define ι : Z → Zp as follows. For n ∈ Z≥0, there are unique
0 ≤ ai ≤ p − 1, all but finitely many 0, such that n =

∑
i≥0 aip

i; this is a
finite sum of nonnegative integers because all but finitely many of the ai are
0. We define ι(n) ∈ Zp to be the formal series

∑
i≥0 aip

i. On the other hand,

for a =
∑

i≥0 aip
i ∈ Zp with all but finitely many of the ai equal to 0, we have∑

i≥0 aip
i ∈ Z≥0 and ι(

∑
i≥0 aip

i) = a. For n ∈ Z<0, we define

ι(n) = −ι(−n) = 1 + σ(ι(−n)).

ι : Z → Zp is a group homomorphism.
For example, take n = −4 and p = 3. Then ι(−n) = ι(4) = 1 · 30 + 1 · 31 +

0 · 32 + · · · , so σ(ι(4)) = 1 · 30 + 1 · 31 + 2 · 32 + · · · . Then

ι(−4) = (1 · 30 + 0 · 31 + 0 · 32 + · · · ) + (1 · 30 + 1 · 31 + 2 · 32 + · · · )
= 2 · 30 + 1 · 31 + 2 · 32 + 2 · 33 + 2 · 34 + · · ·

Multiplication of p-adic integers is defined similarly to addition of p-adic
integers.7 For example, take p = 5 and let a = ι(2 · 50 + 2 · 51 + 3 · 52) b =
ι(3 · 50 + 4 · 51). Then,

a · b = ι(1 · 50 + 0 · 51 + 0 · 52 + 1 · 53 + 3 · 54).

For any prime p, ι(1) = 1p0 + 0p1 + 0p2 + · · · and so

ι(−1) = 1 + σ(ι(1))

= (1p0 + 0p1 + 0p2 + · · · ) + ((p− 2)p0 + (p− 1)p1 + (p− 1)p2 + · · · )
= (p− 1)p0 + (p− 1)p1 + (p− 1)p2 + · · ·

= (p− 1)
∑
i≥0

pi.

One then checks that
ι(1) = (1− p)

∑
i≥0

pi.

7That it is cumbersome to define multiplication of elements of Zp shows that defining p-
adic integers as formal series invites sloppiness; one merely assumes that everything works out
like one wants it to.
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Thus, the multiplicative inverse of 1− p in Zp is
∑

i≥0 p
i.

We define the p-adic valuation vp : Zp → Z≥0 ∪ {∞} by vp(0) = ∞ and
defining vp(a) to be the least i such that ai ̸= 0. For example,

vp(0 · p0 + 0 · p1 + 3 · p2 + · · · ) = 2.

If a, b ∈ Zp are each nonzero, then for c = a · b we have 0 ≤ cvp(a)+vp(b) ≤ p− 1
and

cvp(a)+vp(b) ≡ avp(a)bvp(b) (mod p)

and because p ∤ avp(a) and p ∤ bvp(b), we have that cvp(a)+vp(b) ̸= 0. It follows
that

vp(a · b) = vp(a) + vp(b).

In particular, this shows that Zp is an integral domain.

5 Reduction modulo p, maximal ideals, and lo-
cal rings

Define ϵ : Zp → Z/p by

ϵ

∑
i≥0

aip
i

 = a0 + (p).

This is a homomorphism of unital rings called reduction modulo p. We have

ker ϵ =

∑
i≥0

aip
i ∈ Zp : a0 = 0

 = pZp.

Because ϵ is a surjective homomorphism of unital rings and Z/p is a field, ker ϵ
is a maximal ideal in the ring Zp. Denote by Z∗

p the set of invertible elements
of Zp. It can be proved8 that

Z∗
p = Zp \ pZp.

Because the set of noninvertible elements in Zp is a proper ideal, Zp is a local
ring, and hence the maximal ideal pZp is the unique maximal ideal of Zp. For
any nonzero a ∈ Zp, it is immediate that p−vp(a)a ∈ Z∗

p; in other words, for any

nonzero a ∈ Zp, there is some u ∈ Z∗
p such that a = pvp(a)u.

We now prove that Zp is a principal ideal domain.9

Theorem 1. The ideals in Zp are {0} and (pk) = pkZp, k ∈ Z≥0.

8Alain M. Robert, A Course in p-adic Analysis, p. 5, §1.5.
9Alain M. Robert, A Course in p-adic Analysis, p. 6, §1.6.
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Proof. It is straightforward to check that indeed these are ideals in Zp. Suppose
that I ̸= {0} is an ideal in Zp. Since I ̸= {0}, there is some element a ∈ I such
that

vp(a) = min{vp(x) : x ∈ I}.

Let k = vp(a). Then u = p−ka ∈ Z∗
p, i.e., p

k = u−1a. Since a ∈ I and I is an

ideal, this shows that pk ∈ I. This shows that pkZp ⊂ I. On the other hand,
let b ∈ I and write l = vp(b). There is some u′ ∈ Z∗

p such that b = plu′, and

then b = pkpl−ku′. But l − k ≥ 0 so pl−ku′ ∈ Zp, hence b ∈ pkZp. This shows
that I ⊂ pkZp, completing the proof.

6 Topology of the p-adic integers

As sets,

Zp =
∏
i≥0

{0, 1, . . . , p− 1} = {0, 1, . . . , p− 1}Z≥0 .

We assign Zp the product topology, with which it is a compact and metrizable
topological space. (It is compact because the set {0, 1, . . . , p − 1} with the
discrete topology is compact, and it is metrizable because it is a countable
product and {0, 1, . . . , p−1} is metrizable with the discrete metric.) One checks
that the product topology on Zp is induced by the p-adic metric dp defined by

dp(a, b) = p−vp(a−b).

The map a 7→ pa satisfies

dp(pa, pb) = p−vp(pa−pb) = p−vp(a−b)−1 =
1

p
dp(a, b),

which shows that a 7→ pa is continuous Zp → Zp.
We say that a groupG with a topology is a topological group if its topology

is Hausdorff, if (x, y) 7→ x + y is continuous G × G → G, and if x 7→ −x is
continuous G→ G. Because Zp is metrizable it is Hausdorff, and we now prove
that the group operations are continuous using its topology.

Theorem 2. (x, y) 7→ x + y is continuous Zp × Zp → Zp and x 7→ −x is
continuous Zp → Zp.

Proof. The product topology on Zp×Zp is induced by the metric ρ((x, y), (a, b)) =
dp(x, a) + dp(y, b). Let (a, b) ∈ Zp × Zp. If ρ((x, y), (a, b)) ≤ p−n, then
p−vp(x−a) = dp(x, a) ≤ p−n, hence vp(x−a) ≥ n, and likewise vp(y−b) ≥ n. But
vp(w+ z) ≥ min{vp(w), vp(z)} and vp(−w) = vp(w), so vp(x− a− (y− b)) ≥ n.
Thus

dp(x− a, y − b) = p−vp(x−a−(y−b)) ≤ p−n.

This shows that (x, y) 7→ x − y is continuous at (a, b), and since (a, b) was
arbitrary, (x, y) 7→ x − y is continuous Zp × Zp → Zp, showing that Zp is a
topological group.
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To prove that the multiplicative group Z∗
p is a topological group we use the

following lemma. We remind ourselves that if X is a topological space and
x ∈ X, a neighborhood of x is a subset N of X for which there is an open
subset satisfying x ∈ U ⊂ N . The collection of all neighborhoods of a point
x is called the neighborhood filter at x. A neighborhood base at x is a
collection B of neighborhoods of x such that if N is a neighborhood of x then
there is some B ∈ B such that B ⊂ N ; namely, a neighborhood base at x is a
filter base for the neighborhood filter at x.

Lemma 3. The collection {1 + pnZp : n ∈ Z>0} is a neighborhood base at 1.

Z∗
p is metrizable with the p-adic metric, so it is Hausdorff. Using the above

lemma, we can now prove that Z∗
p is a topological group, and then that Zp is a

topological ring.10

Theorem 4. (x, y) 7→ x · y is continuous Zp × Zp → Zp and x 7→ x−1 is
continuous Z∗

p → Z∗
p.

Proof. Let (a, b) ∈ Zp × Zp and suppose that x ∈ a + pnZp and y ∈ b + pnZp.
Thus, there are α, β ∈ Zp such that x = a+ pnα and y = b+ pnβ. Then

x · y = a · b+ pn(a+ b+ pnα · β) ∈ a · b+ pnZp.

This shows that (x, y) 7→ x ·y is continuous at (a, b), and therefore that (x, y) 7→
x · y is continuous Zp × Zp → Zp.

Let a ∈ Z∗
p and suppose that x ∈ a+ pnZp. There is some α ∈ Zp such that

x = a(1 + pnα), and then there is some β ∈ Zp such that

(1 + pnα)−1 =
∑
i≥0

(−pnα)i = 1 + pnβ.

Then
x−1 = a−1(1 + pnβ) ∈ a−1 + pnZp.

This shows that x 7→ x−1 is continuous at a, and therefore that it is continuous
Z∗
p → Z∗

p.

7 Rings of fractions and localization

Let R be an integral domain with unity 1. A subset S of R is said to be a
multiplicative set if 0 ̸∈ S, 1 ∈ S, and x, y ∈ S implies that xy ∈ S. The
rings of fractions of R with respect to S, denoted R[S−1], is defined as
follows.11 Define an equivalence relation ∼ on R×S by (r1, s1) ∼ (r2, s2) when

r1s2 − r2s1 = 0.

10Alain M. Robert, A Course in p-adic Analysis, p. 18, §3.1.
11See M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Chapter 3.
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It is immediate that ∼ is reflexive and symmetric. If (r1, s1) ∼ (r2, s2) and
(r2, s2) ∼ (r3, s3), then

r1s2 − r2s1 = 0, r2s3 − r3s2 = 0,

so, multiplying the first equation by s3 and the second equation by s1 we get
r1s2s3 − r2s1s3 = 0 and r2s3s1 − r3s2s1 = 0 respectively. Combining these we
get r1s2s3 = r3s2s1, i.e. s2(r1s3 − r3s1) = 0. Because s2 ∈ S, s2 ̸= 0, giving

r1s3 − r3s1 = 0,

showing that ∼ is transitive. We remark that ∼ being transitive does not use
that S is closed under multiplication.

For (r, s) ∈ R×S, let [(r, s)] be the equivalence class of (r, s), and we define

R[S−1] = (R× S)/ ∼= {[(r, s)] : (r, s) ∈ R× S}.

We define
[(r1, s1)] + [(r2, s2)] = [(r1s2 + r2s1, s1s2)].

Since S is a multiplicative set, s1s2 ∈ S. If [(r1, s1)] = [(r′1, s
′
1)] and [(r2, s2)] =

[(r′2, s
′
2)], then r1s

′
1 − r′1s1 = 0 and r2s

′
2 − r′2s2 = 0 and thus

(r1s2 + r2s1)(s
′
1s

′
2)− (r′1s

′
2 + r′2s

′
1)(s1s2) = r1s2s

′
1s

′
2 + r2s1s

′
1s

′
2

− r′1s
′
2s1s2 − r′2s

′
1s1s2

= s2s
′
2(r

′
1s1) + s1s

′
1(r

′
2s2)

− r′1s
′
2s1s2 − r′2s

′
1s1s2

= 0,

showing that this definition of addition of equivalence classes is well-defined.
One then checks that addition in R[S−1] is associative, that [(0, 1)] is the addi-
tive identity, that −[(r, s)] = [(−r, s)], and that addition is commutative.

We define
[(r1, s1)] · [(r2, s2)] = [(r1r2, s1s2)].

If [(r1, s1)] = [(r′1, s
′
1)] and [(r2, s2)] = [(r′2, s

′
2)], then r1s

′
1 − r′1s1 = 0 and

r2s
′
2 − r′2s2 = 0 and thus

r1r2s
′
1s

′
2 − r′1r

′
2s1s2 = r2s

′
2(r

′
1s1)− r′1s1(r2s

′
2) = 0,

showing that this definition of multiplication of equivalence classes is well-
defined. One then checks that multiplication in R[S−1] is associative, that
[(1, 1)] is the multiplicative identity, that multiplication is commutative, and
that multiplication distributes over addition. This establishes that R[S−1] is a
commutative ring with unity [(1, 1)]].

Furthermore, if [(r1, s1)] · [(r2, s2)] = [(0, 1)], i.e. if [(r1r2, s1s2)] = [(0, 1)],
then r1r2 · 1 − 0 · s1s2 = 0, so r1r2 = 0. Because R is an integral domain, at
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least one of r1, r2 is 0, and hence at least one of [(r1, s1)], [(r2, s2)] is 0, showing
that R[S−1] is an integral domain.

We define j : R→ R[S−1] by

j(x) = [(x, 1)], x ∈ R.

For x, y ∈ R,

j(x+ y) = [(x+ y, 1)] = [(x · 1 + y · 1, 1 · 1)] = [(x, 1)] + [(y, 1)] = j(x) + j(y),

and
j(xy) = [(xy, 1)] = [(xy, 1 · 1)] = [(x, 1)] · [(y, 1)] = j(x)j(y),

and
j(1) = [(1, 1)],

showing that j is a homomorphism of unital rings. If j(x) = j(y) then [(x, 1)] =
[(y, 1)], giving x · 1 − y · 1 = 0, i.e. x = y, showing that j is one-to-one. For
s ∈ S,

j(s) · [(1, s)] = [(s, 1)] · [(1, s)] = [(s, s)] = [(1, 1)].

That is, R is isomorphic as a ring to j(R), j(R) is a subring of R[S−1], and for
any s ∈ S, j(s) is invertible in R[S−1]. Elements of S need not be invertible in
R, but elements of j(S) are invertible in R[S−1].

Let R be an integral domain, let a ∈ R be nonzero, and let

S = {ak : k ∈ Z≥0}.

S is a multiplicative set, and we define

R[1/a] = R[S−1],

called the localization of R away from a. For example, for a ∈ Z nonzero,
the map

[(m, s)] 7→ m

s
, m ∈ Z, a ∈ S = {ak : k ∈ Z≥0},

is a ring homomorphism Z[1/a] → Q. We check that this map is one-to-one,
and thus Z[1/a] is isomorphic as a ring to the collection of those m

s ∈ Q for
which there is some k ∈ Z≥0 such that s = ak.

8 The field of p-adic numbers

We now construct Qp. A p-adic number is a formal series of the form, for
some i0 ∈ Z, ∑

i≥i0

aip
i, 0 ≤ ai ≤ pi − 1.

Thus, Zp ⊂ Qp, and, for example, p−1 belongs to Qp but does not belong to Zp.
We extend the p-adic valuation vp : Zp → Z≥0∪{∞} to vp : Qp → Z≥0∪{∞} by

10



defining vp(a) to be the least i such that ai ̸= 0; indeed restricted to Zp this is the
p-adic valuation Zp → Z≥0∪{∞}. For nonzero a ∈ Qp we have p

−vp(a)a = 0, and
hence we have that p−vp(a)a ∈ Zp. For a, b ∈ Qp, taking ν = min{vp(a), vp(b)},
we have p−νa + p−νb ∈ Zp, and we define a + b = pν(p−νa + p−νb) ∈ Qp;
that is, we have already established addition in Zp, and we define addition
in Qp using this addition in Zp. Likewise, for µ = vp(a) + vp(b), we have
(p−vp(a)a) ·(p−vp(b)b) ∈ Zp, and we define a ·b = pµ((p−vp(a)a) ·(p−vp(b)b)) ∈ Qp.
One then proves that with addition and multiplication thus defined, Qp is a
field.

For example, let us calculate the image of 5
6 ∈ Q in Q3. First, 5

6 = 3−1 · 5
2 ,

and 5
2 ∈ Z3. We figure out that

2−1 = 2 + 1 · 3 + 1 · 32 + 1 · 33 + 1 · 34 + 1 · 35 + · · · ∈ Z3,

and then that

5 · 2−1 = 1 + 2 · 3 + 1 · 32 + 1 · 33 + 1 · 34 + 1 · 35 + · · · ∈ Z3.

Thus
5

6
= 1 · 3−1 + 2 + 1 · 3 + 1 · 32 + 1 · 33 + 1 · 34 + · · · ∈ Q3.

It was not luck that the digits 5
6 in Q3 have a pattern: the digits of x ∈ Qp are

eventually periodic if and only if x is the image in Qp of some element of Q.12

One proves that as unital rings,

Qp
∼= Zp[1/p].

We define the p-adic absolute value | · |p : Qp → R≥0 by

|x|p = p−vp(x), x ∈ Qp.

Then we define the p-adic metric on Qp by

dp(x, y) = |x− y|p, x, y ∈ Qp;

it is immediate that this is an extension of the p-adic metric on Zp. It can be
proved that with the topology induced by the p-adic metric, Qp is a topological
field.13 That is, (x, y) 7→ x + y is continuous Qp × Qp → Qp is continuous,
x 7→ −x is continuous Qp → Qp, (x, y) 7→ x ·y is continuous Qp×Qp → Qp, and
x 7→ x−1 is continuous Q∗

p → Q∗
p. Zp is a compact neighborhood of 0 in Qp, and

because translation is a homeomorphism, it follows that each point in Qp has a
compact neighborhood, and thus that Qp is locally compact. Furthermore,

Qp =
⋃
n∈Z

pnZp,

showing that Qp is σ-compact.

12See Alain M. Robert, A Course in p-adic Analysis, p. 39, §5.3.
13We have defined Qp using Zp and then defined a metric on Qp and assigned Qp the

topology induced by this metric. Qp is more satisfyingly constructed as a direct limit whose
limitands are Zp, and this construction automatically gives Qp a topology without us having
to choose to use the p-adic metric. See Paul Garrett, Classical definitions of Zp and A,
http://www.math.umn.edu/~garrett/m/mfms/notes/05_compare_classical.pdf
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9 p-adic fractional parts

We identify the localization of Z away from p, Z[1/p], with the collection of
rational numbers whose denominator is of the form pk, k ∈ Z≥0. For example,
− 6

8 = − 3
4 ∈ Q belongs to Z[1/2] but does not belong to Z[1/3]. In particular,

Z ⊂ Z[1/p].
For x ∈ Qp, write

x =
∑

i≥vp(x)

xip
i =

∑
vp(x)≤i<0

xip
i +
∑
i≥0

xip
i = {x}p + [x]p.

[x]p is called the integral part of x and {x}p is called the fractional part of
x. We have [x]p ∈ Zp. The fractional part {x}p satisfies

0 ≤ {x}p ≤
∑

vp(x)≤i<0

(p− 1)pi < 1,

and also {x}p ∈ Z[1/p].
In the rest of this section we follow Conrad.14 We use that fact that if p, q

are distinct primes, then p ∈ Z∗
q and hence

Z[1/p] ⊂ Zq.

Theorem 5. If r ∈ Q, then

r −
∑
p

{r}p ∈ Z.

Proof. Let q be prime. For prime p ̸= q, we have {r}p ∈ Z[1/p] ⊂ Zq and also
r − {r}q = [r]q ∈ Zq. Therefore

r −
∑
p

{r}p = (r − {r}q)−
∑
p ̸=q

{r}p ∈ Zq.

Hence q does not divide the denominator of r −
∑

p{r}p ∈ Q. But this is true
for all prime q, which implies that r −

∑
p{r}p ∈ Z.

We define ψp : Qp → S1 by

ψp(x) = e2πi{x}p , x ∈ Qp,

and we define ψ∞ : R → S1 by

ψ∞(x) = e−2πix = e−2πi{x}, x ∈ R,
14Keith Conrad, The character group of Q, http://www.math.uconn.edu/~kconrad/

blurbs/gradnumthy/characterQ.pdf
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where [x] is the greatest integer ≤ x and {x} = x − [x]. It is immediate that
ψ∞ is a homomorphism of topological groups. It satisfies ψ∞(R) = S1 and
kerψ∞ = Z. The first isomorphism theorem for topological groups states
that if G and H are topological groups and f : G → H is a homomorphism of
topological groups that is onto and open, then G/ ker f ∼= H as topological
groups.15 The open mapping theorem for topological groups states that
if G and H are locally compact topological groups, f : G → H is an onto
homomorphism of topological groups, and G is σ-compact, then f is open.16

These conditions are satisfied for ψ∞ : R → S1, so ψ∞ is open and therefore by
the first isomorphism theorem,

R/Z ∼= S1

as topological groups.

Theorem 6. If p is prime then ψp : Qp → S1 is a homomorphism of topological
groups.

Proof. Let x, y ∈ Qp. We have

x− {x}p = [x]p, y − {y}p = [y]p, x+ y − {x+ y}p = [x+ y]p ∈ Zp.

So

{x}p + {y}p − {x+ y}p = (x− [x]p) + (y − [y]p)− (x+ y − [x+ y]p)

= [x+ y]p − [x]p − [y]p ∈ Zp.

But {x}p+ {y}p−{x+ y}p ∈ Q, so the fact that it belongs to Zp tells us that p
does not divide its denominator. On the other hand, because {x}p, {y}p, {x +
y}p ∈ Z[1/p], so {x}p + {y}p −{x+ y}p ∈ Z[1/p] and hence the denominator of
{x}p + {y}p − {x + y}p ∈ Q is of the form pk, k ∈ Z≥0. Thus its denominator
is 1, showing that {x}p + {y}p −{x+ y}p ∈ Z, say {x+ y}p = {x}p + {y}p + ν.
Therefore

ψp(x+y) = e2πi{x+y}p = e2πi{x}p+2πi{y}p+2πiν = e2πi{x}pe2πi{y}p = ψp(x)ψp(y),

showing that ψp is a homomorphism of groups.
Because ψp is a homomorphism of groups, to show that ψp : Qp → S1 is

continuous it suffices to show that ψp is continuous at 0 ∈ Qp. For |x|p ≤ 1 = p0,
we have vp(x) ≥ 0, so x ∈ Zp and hence {x}p = 0. Thus, for |x|p ≤ 1 we
have ψp(x) = 1 = ψp(0), showing that ψp is continuous at 0 and therefore that
ψp : Qp → S1 is continuous. (Namely, because ψp is a homomorphism of groups,
what we have established shows that it is locally constant.)

15Dikran Dikranjan, Introduction to Topological Groups, http://users.dimi.uniud.

it/~dikran.dikranjan/ITG.pdf, p. 21, Theorem 3.4.2; Karl Heinrich Hofmann, Intro-
duction to Topological Groups, http://www.mathematik.tu-darmstadt.de/lehrmaterial/

SS2006/CompGroups/topgr.pdf, p. 35, Chapter 3.
16Dikran Dikranjan, Introduction to Topological Groups, http://users.dimi.uniud.it/

~dikran.dikranjan/ITG.pdf, p. 42, Theorem 7.2.8.
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For x ∈ Qp we have {x}p ∈ Z[1/p], say {x}p = a
pk , for some a ∈ Z and

k ∈ Z≥0, which implies that

(ψp(x))
pk

= (e2πia/p
k

)p
k

= e2πia = 1 ∈ S1.

Therefore,
ψp(x) ∈ Z(p∞),

the Prüfer p-group. One checks that

ψp(Qp) = Z(p∞)

and that
kerψp = Zp.

Z(p∞) is a discrete abelian group and thus is locally compact. Qp is locally
compact (because x+Zp is a compact neighborhood of x ∈ Qp) and σ-compact
(becauseQp is equal to a countable union of dilations of Zp). Thus the conditions
of the open mapping theorem are satisfied for ψp : Qp → Z(p∞), so ψp is open.
Therefore by the first isomorphism theorem,

Qp/Zp
∼= Z(p∞)

as topological groups.

In Theorem 6 we proved that the map x 7→ e2πi{x}p belongs to Q̂p, the
Pontryagin dual of the additive locally compact abelian group Qp. For y ∈ Qp,
define

ξp,y : Qp → S1

by
ξp,y(x) = ψp(xy) = e2πi{xy}p , x ∈ Qp,

and we check that ξp,y ∈ Q̂p. It can in fact be proved that y 7→ ξp,y is an

isomorphism of topological groups Qp → Q̂p.
17

10 The ring of adeles

We define A to be the set of those x ∈ R ×
∏

p Qp such that {p : xp ̸∈ Zp}
is finite. This is an instance of a restricted direct product. For example,
x defined by x∞ =

√
3, x2 = 1

2 , and xp = 1 for p > 2 belongs to A, while
x∞ =

√
3, xp = 1

p does not belong to A. Elements of A are called adeles.
It is apparent that with addition and multiplication defined pointwise, A is a
commutative ring, with additive identity x∞ = 0, xp = 0 for all p and unity
x∞ = 1, xp = 1 for all p. We assign A the topology generated by the base of
subsets of A of the form

Ω∞ ×
∏
p∈S

Ωp ×
∏
p ̸∈S

Zp,

17Gerald B. Folland, A Course in Abstract Harmonic Analysis, p. 92, Theorem 4.12.
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where S is a finite set of primes, Ωp is an open subset of Qp, and Ω∞ is an open
subset of R.18 With this topology, A is a locally compact topological ring.19 In
particular, the additive group A is a locally compact abelian group.

The map s 7→ x ∈ A with x∞ = s, xp = s for all p, is a homomorphism of
topological unital rings Q → A. (It is immediate that it is a homomorphism
of unital rings, and it is continuous because Q is discrete.) We identify Q with
those elements x of A for which there is some s ∈ Q such that x∞ = s and
xp = s for all prime p, which are called rational adeles.

For x ∈ A, we define Ψx : Q → S1 by

Ψx(r) = ψ∞(rx∞) ·
∏
p

ψp(rxp), r ∈ Q.

This is a homomorphism of topological groups, because each factor is a homo-
morphism of topological groups and for any x ∈ A and r ∈ Q, the number of
factors that are not equal to 1 is finite.

Lemma 7. x 7→ Ψx is a homomorphism of topological groups A → Q̂.

Proof. Let x, y ∈ A. For r ∈ Q, because ψ∞ and the ψp are homomorphisms,

Ψx+y(r) = ψ∞(rx∞ + ry∞) ·
∏
p

ψp(rxp + ryp)

= ψ∞(rx∞)ψ∞(ry∞)
∏
p

(ψp(rxp)ψp(ryp))

= Ψx(r)Ψy(r),

showing that x 7→ Ψx is a homomorphism of groups.
To show that x 7→ Ψx is continuous A → Q̂, it suffices to show that it is

continuous at 0 ∈ A. Generally, if G is a locally compact abelian group, it is a
fact that a local base at 0 for the topology of Ĝ is the collection of sets of the
form

N(K, ϵ) = {γ ∈ Ĝ : if g ∈ K then |1− γ(g)| < ϵ},

where K is a compact subset of G and ϵ > 0.20 Let K be a compact subset
of Q and let ϵ > 0. Q is discrete so K is finite; take R = max{|r| : r ∈ K}
and let S be the set of those primes p for which there is some r ∈ K with
r ̸∈ Zp. Because ψ∞ : R → S1 is continuous and K is finite, there is an
open neighborhood Ω∞ of 0 ∈ R such that if x∞ ∈ Ω∞ and r ∈ K then
|1 − ψ∞(rx∞)| < ϵ. Furthermore, because K is finite, the set S is finite and

18It is not apparent why we ought to use this topology. A can instead be defined as a
direct limit of topological rings AS , where S is a finite subset of {∞} ∪ {prime numbers}.
See Paul Garrett, Classical definitions of Zp and A, http://www.math.umn.edu/~garrett/m/
mfms/notes/05_compare_classical.pdf

19cf. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, p. 519, Ap-
pendix I, Lemma 1; Anton Deitmar, Automorphic Forms, Chapter 5; Anthony W. Knapp,
Advanced Real Analysis, Chapter VI.

20Walter Rudin, Fourier Analysis on Groups, p. 10, §1.2.6.
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therefore for each p ∈ S there is some νp ∈ Z≥0 such that if r ∈ K then
pνpr ∈ Zp. Let Ωp = pνpZp. Then, for xp ∈ Ωp and r ∈ K we have rxp ∈ Zp.
It follows that if x ∈ Ω∞ ×

∏
p∈S Ωp ×

∏
p ̸∈S Zp then for all r ∈ K we have

then |1 − Ψx(r)| < ϵ. That is, x ∈ Ω∞ ×
∏

p∈S Ωp ×
∏

p ̸∈S Zp implies that
Ψx ∈ N(K, ϵ), showing that x 7→ Ψx is continuous at 0, and therefore that

x 7→ Ψx : A → Q̂ is continuous.

Theorem 8. For every χ ∈ Q̂ there is some x ∈ A such that χ = Ψx, and
kerΨ = Q.

Proof. There is a unique x∞ ∈ [0, 1) such that χ(1) = e−2πix∞ = ψ∞(x∞).
Define χ∞ : Q → S1 by

χ∞(r) = ψ∞(rx∞) = e−2πirx∞ , r ∈ Q.

Then χ∞ ∈ Q̂ and χ∞(1) = χ(1). Further, define γ : Q → S1 by

γ(r) =
χ(r)

χ∞(r)
, r ∈ Q.

Then γ ∈ Q̂, γ(1) = 1, and χ(r) = χ∞(r)γ(r). By Theorem 5, for any s ∈ Q we
have

e2πis =
∏
p

e2πi{s}p .

For r ∈ Q, let sr ∈ Q such that γ(r) = e2πisr . We define χp : Q → S1 by

χp(r) = ψp(sr) = e2πi{sr}p , r ∈ Q.

One checks that χp ∈ Q̂. For any r ∈ Q,

γ(r) = e2πisr =
∏
p

e2πi{sr}p =
∏
p

χp(r),

whence
χ(r) = χ∞(r) ·

∏
p

χp(r).

Let p be prime. For n ≥ 1, using χp(1) = e2πi{1}p = 1 we have χp(p
−n)p

n

=
χp(1) = 1, and hence there is a unique cn, 0 ≤ cn ≤ pn − 1, such that

χp

(
1

pn

)
= e

2πicn
pn .

For n ≥ m,

χp

(
1

pn

)pn−m

= χp

(
1

pm

)
= e

2πicm
pm ,

which yields cn
pm − cm

pm ∈ Z, i.e. cn − cm ∈ pmZ, i.e. |cn − cm|p ≤ p−m. It follows

that cn is a Cauchy sequence in (Z, dp), and therefore there is some xp ∈ Zp
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such that cn → xp in Zp. This limit xp satisfies xp − cn ∈ pnZp for all n, so
xp

pn − cn
pn ∈ Zp for all n, hence, as 0 ≤ cn ≤ pn − 1,{

xp
pn

}
p

=

{
cn
pn

}
p

=
cn
pn
, n ≥ 1. (2)

Let r = a
b ∈ Q, gcd(a, b) = 1 and let b = pnβ with n = vp(b). Then, because

χp ∈ Q̂ and by the definition of cn,

χp(r)
β = χp(βr) = χp

(
a

pn

)
= χp

(
1

pn

)a

=
(
e

2πicn
pn

)a
= exp

(
2πiacn
pn

)
.

Furthermore, by (2) we have

acn
pn

+ Z = a ·
{
xp
pn

}
p

+ Z =

{
axp
pn

}
p

+ Z = {βrxp}p + Z = β{rxp}p + Z,

so

χp(r)
β = exp

(
2πiacn
pn

)
= exp(2πiβ{rxp}p) = exp(2πi{rxp}p)β ,

giving (
χp(r)

exp(2πi{rxp}p)

)β

= 1.

But χp(r) and exp(2πi{rxp}p) are both pth roots of unity and gcd(β, p) = 1, so
this implies that

χp(r) = exp(2πi{rxp}p) = ψp(rxp), r ∈ Q.

Then x thus defined belongs to A, and for any r ∈ Q,

Ψx(r) = ψ∞(rx∞) ·
∏
p

ψp(rxp) = χ∞(r) ·
∏
p

χp(r) = χ(r).

Therefore Ψx = χ.
On the other hand, suppose that x, y ∈ [0, 1) ×

∏
p Zp and that Ψx = Ψy.

Because xp ∈ Zp for each prime p,

Ψx(1) = ψ∞(x∞) ·
∏
p

ψp(xp) = e−2πix∞ ·
∏
p

e2πi{xp}p = e−2πix∞ ,

and likewise Ψy(1) = e−2πiy∞ . As e−2πix∞ = e−2πiy∞ and x∞, y∞ ∈ [0, 1), it
follows that x∞ = y∞. Let p be prime and let n ≥ 0. On the one hand, for
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q ̸= p we have p−nxq ∈ Zq, whence, as x∞ = y∞,

Ψx(p
−n)

Ψy(p−n)
=
ψ∞(p−nx∞) ·

∏
q ψq(p

−nxp)

ψ∞(p−ny∞) ·
∏

q ψq(p−nyp)

=
ψ∞(p−nx∞) · ψp(p

−nxp)

ψ∞(p−ny∞) · ψp(p−nyp)

=
ψp(p

−nxp)

ψp(p−nyp)

= e2πi{p
−nxp}p−2πi{p−nyp}p .

But Ψx = Ψy, so {p−nxp}p − {p−nyp}p ∈ Z, and since 0 ≤ {·}p < 1 this means

{p−nxp}p = {p−nyp}p.

Because this is true for each n ≥ 0, it follows that xp = yp. Therefore, x = y.
Let x ∈ A and suppose that if p ̸∈ S then xp ∈ Zp. Define

s =
∑
p∈S

{xp}p.

Then for all prime p we have {xp − s}p = 0 and so xp − s ∈ Zp. Therefore
x−s ∈ R×

∏
p Zp. Let N = [x∞−s], with which x∞−(s+N) = (x∞−s)−N ∈

[0, 1). For any prime p we have N ∈ Zp and so, as xp − s ∈ Z, we have
xp − (s+N) = (xp − s)−N ∈ Zp. Thus

x− (s+N) ∈ [0, 1)×
∏
p

Zp,

and therefore
A = Q+ [0, 1)×

∏
p

Zp.

For s ∈ Q ⊂ A and r ∈ Q, then by Theorem 5,

Ψs(r) = ψ∞(rs) ·
∏
p

ψp(rs)

= e−2πirs ·
∏
p

e2πi{rs}p

= 1.

Hence Q ⊂ kerΨ.

A is a σ-compact locally compact abelian group and Ψ : A → Q̂ is an
onto homomorphism of topological groups, so by the open mapping theorem
for topological groups, Ψ is open. Then by the first isomorphism theorem for
topological groups, because kerΨ = Q, we have

Q̂ ∼= A/Q

as topological groups.
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