L^{p} norms of trigonometric polynomials

Jordan Bell

April 3, 2014

1 Introduction

A trigonometric polynomial of degree n is an expression of the form

$$
\sum_{k=-n}^{n} c_{k} e^{i k t}, \quad c_{k} \in \mathbb{C}
$$

Using the identity $e^{i t}=\cos t+i \sin t$, we can write a trigonometric polynomial of degree n in the form

$$
a_{0}+\sum_{k=1}^{n} a_{k} \cos k t+\sum_{k=1}^{n} b_{k} \sin k t, \quad a_{k}, b_{k} \in \mathbb{C} .
$$

For $1 \leq p<\infty$ and for a 2π-periodic function f, we define the L^{p} norm of f by

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{1 / p}
$$

For a continuous 2π-periodic function f, we define the L^{∞} norm of f by

$$
\|f\|_{\infty}=\max _{0 \leq t \leq 2 \pi}|f(t)| .
$$

If f is a continuous 2π-periodic function, then there is a sequence of trigonometric polynomials f_{n} such that $\left\|f-f_{n}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty[31$, p. 54, Corollary 5.4].

If $1 \leq p<\infty$ and f is a continuous 2π-periodic function, then

$$
\|f\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t\right)^{1 / p} \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\|f\|_{\infty}^{p} d t\right)^{1 / p}=\|f\|_{\infty}
$$

Jensen's inequality [16, p. 44, Theorem 2.2] (cf. [30, p. 113, Problem 7.5]) tells us that if $\phi:[0, \infty) \rightarrow \mathbb{R}$ is convex, then for any function $h:[0,2 \pi] \rightarrow[0, \infty)$ we have

$$
\phi\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} h(t) d t\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} \phi(h(t)) d t
$$

If $1 \leq p<q<\infty$, then $\phi:[0, \infty) \rightarrow \mathbb{R}$ defined by $\phi(x)=x^{q / p}$ is convex. Hence, if $1 \leq p<q<\infty$ then for any 2π-periodic function f,

$$
\begin{aligned}
\|f\|_{p} & =\left(\phi\left(\|f\|_{p}^{p}\right)\right)^{1 / q} \\
& =\left(\phi\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{p} d t\right)\right)^{1 / q} \\
& \leq\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \phi\left(|f(t)|^{p}\right) d t\right)^{1 / q} \\
& =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)|^{q} d t\right)^{1 / q} \\
& =\|f\|_{q}
\end{aligned}
$$

The Dirichlet kernel D_{n} is defined by

$$
D_{n}(t)=\sum_{k=-n}^{n} e^{i k t}=1+2 \sum_{k=1}^{n} \cos k t
$$

One can show [14, p. 71, Exercise 1.1] that

$$
\left\|D_{n}\right\|_{1}=\frac{4}{\pi^{2}} \cdot \log n+O(1)
$$

(On the other hand, it can quickly be seen that $\left\|D_{n}\right\|_{\infty}=2 n+1$, and it follows from Parseval's identity that $\left\|D_{n}\right\|_{2}=\sqrt{2 n+1}$.)

Pólya and Szegő [27, Part VI] present various problems about trigonometric polynomials together with solutions to them. A result on L^{∞} norms of trigonometric polynomials that Pólya and Szegő present is for the sum $A_{n}(t)=$ $\sum_{k=1}^{n} \frac{\sin k t}{k}$. The local maxima and local minima of A_{n} can be explicitly determined [27, p. 74, no. 23], and it can be shown that [27, p. 74, no. 25]

$$
\left\|A_{n}\right\|_{\infty} \sim \int_{0}^{\pi} \frac{\sin t}{t} d t
$$

$2 L^{p}$ norms

If $1 \leq p<q<\infty$, then [14, p. 123, Exercise 1.8] (cf. [7, p. 102, Theorem 2.6]) there is some $C(p, q)$ such that for any trigonometric polynomial f of degree n, we have

$$
\|f\|_{q} \leq C(p, q) n^{\frac{1}{p}-\frac{1}{q}}\|f\|_{p}
$$

This inequality is sharp [33, p. 230]: for $1 \leq p<q<\infty$ there is some $C^{\prime}(p, q)$ such that if $F_{n}(t)=\frac{1}{n} \sum_{k=0}^{n-1} D_{k}(t)\left(F_{n}\right.$ is called the Fejér kernel) then

$$
\left\|F_{n}\right\|_{q}>C^{\prime}(p, q) n^{\frac{1}{p}-\frac{1}{q}}\left\|F_{n}\right\|_{p}
$$

Theorem 1. Let $1 \leq p \leq q \leq \infty$. If $\hat{f}(j)=0$ for $|j|>n+1$ then

$$
\|f\|_{q} \leq 5(n+1)^{\frac{1}{p}-\frac{1}{q}}\|f\|_{p}
$$

Proof. Let $K_{n}(t)=\sum_{j=-n}^{n}\left(1-\frac{|j|}{n+1}\right) e^{i j t}$, the Fejér kernel. From this expression we get $\left|K_{n}(t)\right| \leq K_{n}(0)=n+1$. It's straightforward to show that $K_{n}(t)=$ $\frac{1}{n+1}\left(\frac{\sin \frac{n+1}{2} t}{\sin \frac{1}{2} t}\right)^{2}$. Since $\sin \frac{t}{2}>\frac{t}{\pi}$ for $0<t<\pi$, we get $\left|K_{n}(t)\right| \leq \frac{\pi^{2}}{(n+1) t^{2}}$, and thus we obtain

$$
\left|K_{n}(t)\right| \leq \min \left(n+1, \frac{\pi^{2}}{(n+1) t^{2}}\right)
$$

Then, for any $r \geq 1$,

$$
\begin{aligned}
\left\|K_{n}\right\|_{r}^{r} & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|K_{n}(t)\right|^{r} d t \\
& \leq \frac{1}{2 \pi} \int_{0}^{\frac{\pi}{n+1}}(n+1)^{r} d t+\frac{1}{2 \pi} \int_{\frac{\pi}{n+1}}^{2 \pi}\left(\frac{\pi^{2}}{(n+1) t^{2}}\right)^{r} d t \\
& =\frac{(n+1)^{r-1}}{2}+\frac{1}{2} \frac{1}{(n+1)^{r}} \frac{1}{2 r-1}\left((n+1)^{2 r-1}-\frac{1}{2^{2 r-1}}\right) \\
& \leq \frac{(n+1)^{r-1}}{2}+\frac{1}{2} \frac{1}{(n+1)^{r}} \frac{1}{2 r-1}(n+1)^{2 r-1} \\
& \leq(n+1)^{r-1} .
\end{aligned}
$$

Hence $\left\|K_{n}\right\|_{r} \leq(n+1)^{1-\frac{1}{r}}$.
Let $V_{n}(t)=2 K_{2 n+1}(t)-K_{n}(t)$, the de la Vallée Poussin kernel. Then

$$
\left\|V_{n}\right\|_{r} \leq 2\left\|K_{2 n+1}\right\|_{r}+\left\|K_{n}\right\|_{r} \leq 2(2 n+2)^{1-\frac{1}{r}}+(n+1)^{1-\frac{1}{r}} \leq 5(n+1)^{1-\frac{1}{r}} .
$$

For $|j| \leq n+1$ we have $\widehat{V_{n}}(j)=1$, and one thus checks that $V_{n} * f=f$. Take $\frac{1}{q}+1=\frac{1}{p}+\frac{1}{r}$. By Young's inequality we have

$$
\|f\|_{q}=\left\|V_{n} * f\right\|_{q} \leq\left\|V_{n}\right\|_{r}\|f\|_{p} \leq 5(n+1)^{\frac{1}{p}-\frac{1}{q}}\|f\|_{p}
$$

Let $X_{n}=\left\{a_{0}+\sum_{k=1}^{n} a_{k} \cos k t+b_{k} \sin k t: a_{k}, b_{k} \in \mathbb{R}\right\}$, the real vector space of real valued trigonometric polynomials of degree n, have norm

$$
\|f\|_{X_{n}}=\max \left\{\left|a_{0}\right|,\left|a_{1}\right|, \ldots,\left|a_{n}\right|,\left|b_{1}\right|, \ldots,\left|b_{n}\right|\right\}
$$

Let $Y_{n, p}$ be the same vector space with the L^{p} norm. Ash and Ganzburg [1] give upper and lower bounds on the operator norm of the map $i: X_{n} \rightarrow Y_{n, p}$ defined by $i(f)=f$.

Bernstein's inequality [14, p. 50, Exercise 7.16] states that for $1 \leq p \leq \infty$, if f is a trigonometric polynomial of degree n, then

$$
\left\|f^{\prime}\right\|_{p} \leq n\|f\|_{p}
$$

In the other direction, if $f \in C^{1}$ then

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) d s+\frac{1}{2 \pi} \int_{0}^{t} s f^{\prime}(s) d s+\frac{1}{2 \pi} \int_{t}^{2 \pi}(s-2 \pi) f^{\prime}(s) d s \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) d s+\frac{1}{2 \pi} \int_{0}^{2 \pi} s f^{\prime}(s) d s-\int_{t}^{2 \pi} f^{\prime}(s) d s \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) d s+\left.\frac{1}{2 \pi} s f(s)\right|_{0} ^{2 \pi}-\frac{1}{2 \pi} \int_{0}^{2 \pi} f(s) d s-\left.f(s)\right|_{t} ^{2 \pi} \\
= & f(t) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
|f(t)| & \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(s)| d s+\frac{1}{2 \pi} \int_{0}^{t} s\left|f^{\prime}(s)\right| d s+\frac{1}{2 \pi} \int_{t}^{2 \pi}(2 \pi-s)\left|f^{\prime}(s)\right| d s \\
& \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(s)| d s+\int_{0}^{t}\left|f^{\prime}(s)\right| d s+\int_{t}^{2 \pi}\left|f^{\prime}(s)\right| d s \\
& =\|f\|_{1}+2 \pi\left\|f^{\prime}\right\|_{1},
\end{aligned}
$$

so

$$
\|f\|_{\infty} \leq\|f\|_{1}+2 \pi\left\|f^{\prime}\right\|_{1}
$$

This is an instance of the Sobolev inequality [26].
It turns out that for a trigonometric polynomial the mass cannot be too concentrated. More precisely, the number of nonzero terms of a trigonometric polynomial restricts how concentrated its mass can be. Let $d \mu=\frac{d t}{2 \pi}$. Thus $\mu([0,2 \pi])=1$. A result of Turán [20, p. 89, Lemma 1] states that if $\lambda_{1}, \ldots, \lambda_{N} \in$ \mathbb{Z} and $T(t)=\sum_{n=1}^{N} b_{n} e^{i \lambda_{n} t}, b_{n} \in \mathbb{C}$, then for any closed arc $I \subset[0,2 \pi]$,

$$
\|T\|_{\infty} \leq\left(\frac{2 e}{\mu(I)}\right)^{N-1} \max _{t \in I}|T(t)|
$$

Nazarov [11, p. 452] shows that there is some constant A such that if E is a closed subset of $[0,2 \pi]$ (not necessarily an arc), then

$$
\|\hat{T}\|_{1} \leq\left(\frac{A}{\mu(E)}\right)^{N} \max _{t \in E}|f(T)|
$$

Nazarov [23] proves that there exists some constant C such that if $0 \leq q \leq 2$ and $\mu(E) \geq \frac{1}{3}$, then

$$
\|T\|_{q} \leq e^{C(N-1)\left(1-\frac{\mu(E)}{2 \pi}\right)}\left(\frac{1}{2 \pi} \int_{E}|T(t)|^{q} d t\right)^{1 / q}
$$

These results of Turan and Nazarov are examples of the uncertainty principle [9], which is the general principle that a constrain on the support of the Fourier transform of a function constrains the support of the function itself.

In [10], Hardy and Littlewood present inequalities for norms of 2π-periodic functions in terms of certain series formed from their Fourier coefficients. Let $c_{k} \in \mathbb{C}, k \in \mathbb{Z}$, be such that $c_{k} \rightarrow 0$ as $k \rightarrow \pm \infty$, and define $c_{0}^{*}, c_{1}^{*}, c_{-1}^{*}, c_{2}^{*}, c_{-2}^{*}, \ldots$ to be the absolute values of the c_{k} ordered in decreasing magnitude. For real $r>1$, define

$$
S_{r}^{*}(c)=\left(\sum_{k=-\infty}^{\infty} c_{k}^{* r}(|k|+1)^{r-2}\right)^{1 / r}
$$

For instance, if $c_{k}=1$ for $-N \leq k \leq N$ and $c_{k}=0$ for $|k|>N$, then $S_{r}^{*}(c)=\left(1+2 \sum_{k=2}^{N+1} k^{r-2}\right)^{1 / r}$. Hardy and Littlewood state the result [10, p. 164, Theorem 2] that if $1<p \leq 2$ then there is some constant $A(p)$ such that for any sequence c, with $c_{k} \rightarrow 0$ as $k \rightarrow \pm \infty$, if $f(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}$ and $\|f\|_{p}<\infty$ then

$$
S_{p}^{*}(c) \leq A(p)\|f\|_{p}
$$

A proof of this is given in Zygmund [35, vol. II, p. 128, chap. XII, Theorem 6.3]. Asking if this inequality holds for $p=1$ suggests the following question that Hardy and Littlewood pose at the end of their paper [10, p. 168]: Is there a constant A such that for all distinct positive integers $m_{k}, k=1, \ldots, N$, we have

$$
\left\|\sum_{k=1}^{N} \cos m_{k} t\right\|_{1}>A \log N ?
$$

McGehee, Pigno and Smith [18] prove that there is some K such that for all N, if n_{1}, \ldots, n_{N} are distinct integers and $c_{1}, \ldots, c_{N} \in \mathbb{C}$ satisfy $\left|c_{k}\right| \geq 1$, then

$$
\left\|\sum_{k=1}^{N} c_{k} e^{i n_{k} t}\right\|_{1}>K \log N
$$

Thus

$$
\left\|\sum_{k=1}^{N} \cos m_{k} t\right\|_{1}=\frac{1}{2} \cdot\left\|\sum_{k=1}^{N} e^{i m_{k} t}+e^{-i m_{k} t}\right\|_{1} \geq \frac{1}{2} \cdot K \log (2 N)
$$

For $k \geq 2$, define $T_{N}(t)=\sum_{n=1}^{N} e^{i n^{k} t}$. Since $\left\|T_{N}\right\|_{\infty}=N$, for each $p \geq 1$ we have $\left\|T_{N}\right\|_{p} \leq N$. Hua's lemma [22, p. 116, Theorem 4.6] states that if $\epsilon>0$, then

$$
\left\|T_{N}\right\|_{2^{k}}=O\left(N^{1-\frac{k}{2^{k}}+\epsilon}\right) .
$$

Hua's lemma is used in additive number theory. The number of sets of integer solutions of the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=N, \quad a_{r} \leq x_{r} \leq b_{r}
$$

is equal to (cf. [12, p. 151])

$$
\sum_{a_{1} \leq x_{1} \leq b_{1}} \ldots \sum_{a_{n} \leq x_{n} \leq b_{n}} \int_{0}^{1} e^{2 \pi i\left(f\left(x_{1}, \ldots, x_{n}\right)-N\right) t} d t
$$

Borwein and Lockhart [4]: what is the expected L^{p} norm of a trigonometric polynomial of order n ? Kahane [13, Chapter 6] also presents material on random trigonometric polynomials.

Nursultanov and Tikhonov [25]: the sup on a subset of \mathbb{T} of a trigonometric polynomial f of degree n being lower bounded in terms of $\|f\|_{\infty}, n$, and the measure of the subset.

$3 \ell^{p}$ norms

For a 2π-periodic function f, we define $\hat{f}: \mathbb{Z} \rightarrow \mathbb{C}$ by

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k t} f(t) d t
$$

For $1 \leq p<\infty$, we define the ℓ^{p} norm of \hat{f} by

$$
\|\hat{f}\|_{p}=\left(\sum_{k=-\infty}^{\infty}|\hat{f}(k)|^{p}\right)^{1 / p}
$$

and we define the ℓ^{∞} norm of \hat{f} by

$$
\|\hat{f}\|_{\infty}=\max _{k \in \mathbb{Z}}|\hat{f}(k)|
$$

Parseval's identity [31, p. 80, Theorem 1.3] states that $\|f\|_{2}=\|\hat{f}\|_{2}$. If $1 \leq p<\infty$, then

$$
\|\hat{f}\|_{\infty} \leq\left(\cdots+\|\hat{f}\|_{\infty}^{p}+\cdots\right)^{1 / p}=\|\hat{f}\|_{p}
$$

If $1 \leq p<q<\infty$, then, since for each $k, \frac{|\hat{f}(k)|}{\|\hat{f}\|_{q}} \leq 1$,

$$
1=\left(\sum_{k=-\infty}^{\infty}\left(\frac{|\hat{f}(k)|}{\|\hat{f}\|_{q}}\right)^{q}\right)^{1 / q} \leq\left(\sum_{k=-\infty}^{\infty}\left(\frac{|\hat{f}(k)|}{\|\hat{f}\|_{q}}\right)^{p}\right)^{1 / q}=\frac{\|\hat{f}\|_{p}^{p / q}}{\|\hat{f}\|_{q}^{p / q}}
$$

Hence for $1 \leq p<p \leq \infty$,

$$
\|\hat{f}\|_{q} \leq\|\hat{f}\|_{p}
$$

For $1 \leq p<\infty$, if f is a trigonometric polynomial of degree n then

$$
\|\hat{f}\|_{p}=\left(\sum_{k=-n}^{n}|\hat{f}(k)|^{p}\right)^{1 / p} \leq\left(\sum_{k=-n}^{n}\|\hat{f}\|_{\infty}^{p}\right)^{1 / p}=(2 n+1)^{1 / p}\|\hat{f}\|_{\infty}
$$

For $1 \leq p<q<\infty$, we have [30, p. 123, Problem 8.3] (this is Jensen's inequality for sums)

$$
\left(\sum_{k=-n}^{n} \frac{1}{2 n+1}|\hat{f}(k)|^{p}\right)^{1 / p} \leq\left(\sum_{k=-n}^{n} \frac{1}{2 n+1}|\hat{f}(k)|^{q}\right)^{1 / q}
$$

i.e.

$$
(2 n+1)^{-1 / p}\|\hat{f}\|_{p} \leq(2 n+1)^{-1 / q}\|\hat{f}\|_{q}
$$

Hence for $1<p<q<\infty$,

$$
\|\hat{f}\|_{p} \leq(2 n+1)^{\frac{1}{p}-\frac{1}{q}}\|\hat{f}\|_{q}
$$

For any t,

$$
|f(t)|=\left|\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{i k t}\right| \leq \sum_{k=-\infty}^{\infty}\left|\hat{f}(k) e^{i k t}\right|=\sum_{k=-\infty}^{\infty}|\hat{f}(k)|=\|\hat{f}\|_{1}
$$

Hence

$$
\|f\|_{\infty} \leq\|\hat{f}\|_{1}
$$

For any $k \in \mathbb{Z}$,

$$
|\hat{f}(k)|=\left|\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i k t} f(t) d t\right| \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}|f(t)| d t=\|f\|_{1}
$$

Hence

$$
\|\hat{f}\|_{\infty} \leq\|f\|_{1}
$$

The Hausdorff-Young inequality [32, p. 57, Corollary 2.4] states that for $1 \leq$ $p \leq 2$ and $\frac{1}{p}+\frac{1}{q}=1$, if $f \in L^{p}$ then

$$
\|\hat{f}\|_{q} \leq\|f\|_{p}
$$

The dual Hausdorff-Young inequality [32, p. 58, Corollary 2.5] states that for $1 \leq p \leq 2$ and $\frac{1}{p}+\frac{1}{q}=1$, if $f \in L^{q}$ then

$$
\|f\|_{q} \leq\|\hat{f}\|_{q}
$$

A survey on the Hausdorff-Young inequality is given in [6])
For $M+1 \leq k \leq M+N$, let $a_{k} \in \mathbb{C}$ and let $S(t)=\sum_{k=M+1}^{N+1} a_{k} e^{i k t}$. Let $t_{1}, \ldots, t_{R} \in \mathbb{R}$, and let δ be such that if $r \neq s$ then

$$
\left\|t_{r}-t_{s}\right\| \geq \delta
$$

where $\|t\|=\min _{k}|t-k|$ is the distance from t to a nearest integer. The large sieve [19] is an inequality of the form

$$
\sum_{r=1}^{R}\left|S\left(2 \pi t_{r}\right)\right|^{2} \leq \Delta(N, \delta) \sum_{k=M+1}^{M+N}\left|a_{k}\right|^{2}
$$

A result of Selberg [19, p. 559, Theorem 3] shows that the large sieve is valid for $\Delta=N-1+\delta^{-1}$.

Kristiansen [15]

Boas [2]
For $F: \mathbb{Z} / n \rightarrow \mathbb{C}$, its Fourier transform $\hat{F}: \mathbb{Z} / n \rightarrow \mathbb{C}$ (called the discrete Fourier transform) is defined by

$$
\hat{F}(k)=\frac{1}{n} \sum_{j=0}^{n-1} F(j) e^{-2 \pi i j k / n}, \quad 0 \leq k \leq n-1
$$

and one can prove [31, p. 223, Theorem 1.2] that

$$
F(j)=\sum_{k=0}^{n-1} \hat{F}(k) e^{2 \pi i k j / N}, \quad 0 \leq j \leq n-1
$$

One can also prove Parseval's identity for the Fourier transform on $\mathbb{Z} / n[31$, p. 223, Theorem 1.2]. It states

$$
\sum_{k=0}^{n-1}|\hat{F}(k)|^{2}=\frac{1}{n} \sum_{j=0}^{n-1}|F(j)|^{2}
$$

Let $P(t)=\sum_{k=0}^{n-1} a_{k} e^{i k t}$. Define $F: \mathbb{Z} / n \rightarrow \mathbb{C}$ by

$$
F(j)=\sum_{k=0}^{n-1} a_{k} e^{2 \pi i k j / n}, \quad 0 \leq j \leq n-1
$$

(That is, $\hat{F}(k)=a_{k}$.) We then have

$$
\sum_{k=0}^{n-1}\left|a_{k}\right|^{2}=\frac{1}{n} \sum_{j=0}^{n-1}|F(j)|^{2}=\frac{1}{n} \sum_{j=0}^{n-1}\left|P\left(\frac{2 \pi j}{n}\right)\right|^{2}
$$

Thus

$$
\|P\|_{2}=\left(\frac{1}{n} \sum_{j=0}^{n-1}\left|P\left(\frac{2 \pi j}{n}\right)\right|^{2}\right)^{1 / 2}
$$

The Marcinkiewicz-Zygmund inequalities [35, vol. II, p. 28, chap. X, Theorem 7.5] state that there is a constant A such that for $1 \leq p \leq \infty$, if f is a trigonometric polynomial of degree n then

$$
\left(\frac{1}{2 n+1} \sum_{k=0}^{2 n}\left|f\left(\frac{2 \pi k}{2 n+1}\right)\right|^{p}\right)^{1 / p} \leq A(2 \pi)^{1 / p}\|f\|_{p}
$$

and for each $1<p<\infty$ there exists some A_{p} such that if f is a trigonometric polynomial of degree n then

$$
\|f\|_{p} \leq A_{p}\left(\frac{1}{2 n+1} \sum_{k=0}^{2 n}\left|f\left(\frac{2 \pi k}{2 n+1}\right)\right|^{p}\right)^{1 / p}
$$

Máté and Nevai [17, p. 148, Theorem 6] prove that for $p>0$, if S_{n} is a trigonometric polynomial of degree n then

$$
\left\|S_{n}\right\|_{\infty} \leq\left(\frac{(1+n p) e}{2}\right)^{1 / p}\left\|S_{n}\right\|_{p}
$$

Máté and Nevai [17] prove a version of Bernstein's inequality for $0<p<1$, and their result can be sharpened to the following [34]: For $0<p<1$, if T_{n} is a trigonometric polynomial of order n then

$$
\left\|T_{n}^{\prime}\right\|_{p} \leq n\left\|T_{n}\right\|_{p}
$$

Let $\operatorname{supp} \hat{f}=\{k \in \mathbb{Z}: \hat{f}(k) \neq 0\}$. A subset Λ of \mathbb{Z} is called a Sidon set [28, p. 121, §5.7.2] if there exists a constant B such that for every trigonometric polynomial f with supp $\hat{f} \subseteq \Lambda$ we have

$$
\|\hat{f}\|_{1} \leq B\|f\|_{\infty}
$$

Let $B(\Lambda)$ be the least such B. A sequence of positive integers λ_{k} is said to be lacunary if there is a constant ρ such that $\lambda_{k+1}>\rho \lambda_{k}$ for all k. If λ_{k} is a lacunary sequence, then $\left\{\lambda_{k}\right\}$ is a Sidon set [21, p. 154, Corollary 6.17]. If $\Lambda \subset \mathbb{Z}$ is a Sidon set, then [28, p. 128, Theorem 5.7.7] (cf. [21, p. 157, Corollary 6.19]) for any $2<p<\infty$, for every trigonometric polynomial f with supp $\hat{f} \subseteq \Lambda$ we have

$$
\|f\|_{p} \leq B(\Lambda) \sqrt{p}\|f\|_{2}
$$

and

$$
\|f\|_{2} \leq 2 B(\Lambda)\|f\|_{1}
$$

Let $0<p<\infty$. A subset E of \mathbb{Z} is called a $\Lambda(p)$-set if for every $0<$ $r<p$ there is some $A(E, p)$ such that for all trigonometric polynomials f with $\operatorname{supp} \hat{f} \subset E$ we have

$$
\|f\|_{p} \leq A(E, p)\|f\|_{2}
$$

$\Lambda(p)$ sets were introduced by Rudin, and he discusses them in his autobiography [29, Chapter 28]. A modern survey of $\Lambda(p)$-sets is given by Bourgain [5].

Bochkarev [3] proves various lower bounds on the L^{1} norms of certain trigonometric polynomials. Let $c_{k} \in \mathbb{C}, k \geq 1$. If there are constants A and B such that

$$
A \frac{(\log k)^{s}}{\sqrt{k}} \leq\left|c_{k}\right| \leq B \frac{(\log k)^{s}}{\sqrt{k}}, \quad k \geq 1
$$

then [3, p. 58, Theorem 19]

$$
\left\|\sum_{k=1}^{n} c_{k} e^{i k^{2} t}\right\|_{1} \gg \begin{cases}(\log n)^{s-\frac{1}{2}}, & s>\frac{1}{2} \\ \log \log n, & s=\frac{1}{2}\end{cases}
$$

If $P(t)=\sum_{k=0}^{n} a_{k} e^{i k t}$ with $a_{k} \in\{-1,1\}$, then by the Cauchy-Schwarz inequality and Parseval's identity we have

$$
\|P\|_{1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} 1 \cdot|P(t)| d t \leq\|1\|_{2} \cdot\|P\|_{2}=1 \cdot\|\hat{P}\|_{2}=\sqrt{n+1}
$$

Newman [24] shows that in fact we can do better than what we get using the Cauchy-Schwarz inequality and Parseval's identity:

$$
\|P\|_{1}<\sqrt{n+0.97}
$$

A Fekete polynomial is a polynomial of the form $\sum_{k=1}^{l-1}\left(\frac{k}{l}\right) z^{k}, l$ prime, where $\left(\frac{k}{l}\right)$ is the Legendre symbol. Let $P_{l}(t)=\sum_{k=1}^{l-1}\left(\frac{k}{l}\right) e^{i k t}$. Erdélyi [8] proves upper and lower bounds on $\left(\frac{1}{|I|} \int_{I}\left|P_{l}(t)\right|^{q} d t\right)^{1 / q}, q>0$, where I is an arc in $[0,2 \pi]$.

References

[1] J. Marshall Ash and Michael Ganzburg. An extremal problem for trigonometric polynomials. Proc. Amer. Math. Soc., 127(1):211-216, 1999.
[2] R. P. Boas, Jr. Inequalities for the coefficients of trigonometric polynomials. II. Nederl. Akad. Wetensch., Proc., 50:759-762 = Indagationes Math. 9, 369-372 (1947), 1947.
[3] S. V. Bochkarev. Multiplicative inequalities for the L_{1}-norm: applications to analysis and number theory. Proc. Steklov Inst. Math., 255:49-64, 2006.
[4] Peter Borwein and Richard Lockhart. The expected L_{p} norm of random polynomials. Proc. Amer. Math. Soc., 129(5):1463-1472, 2001.
[5] Jean Bourgain. Λ_{p}-sets in analysis: results, problems and related aspects. In W. B. Johnson and J. Lindenstrauss, editors, Handbook of the Geometry of Banach Spaces, volume I, pages 195-232. North-Holland, Amsterdam, 2001.
[6] P. L. Butzer. The Hausdorff-Young theorems of Fourier analysis and their impact. J. Fourier Anal. Appl., 1(2):113-130, 1994.
[7] Ronald A. DeVore and George G. Lorentz. Constructive Approximation, volume 303 of Die Grundlehren der mathematischen Wissenschaften. Springer, 1993.
[8] Tamás Erdélyi. Upper bounds for the L_{q} norm of Fekete polynomials on subarcs. Acta Arith., 153(1):81-91, 2012.
[9] Gerald B. Folland and Alladi Sitaram. The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl., 3(3):207-238, 1997.
[10] G. H. Hardy and J. E. Littlewood. A new proof of a theorem on rearrangements. J. London Math. Soc., 23(3):163-168, 1948.
[11] Victor Havin and Burglind Jöricke. The Uncertainty Principle in Harmonic Analysis, volume 28 of Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. Springer, 1994.
[12] Loo Keng Hua. Introduction to number theory. Springer, 1982. Translated from the Chinese by Peter Shiu.
[13] Jean-Pierre Kahane. Some random series of functions. Cambridge University Press, second edition, 1985.
[14] Yitzhak Katznelson. An introduction to harmonic analysis. Cambridge Mathematical Library. Cambridge University Press, third edition, 2004.
[15] G. K. Kristiansen. Proof of an inequality for trigonometric polynomials. Proc. Amer. Math. Soc., 44:49-57, 1974.
[16] Elliott H. Lieb and Michael Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.
[17] Attila Máté and Paul G. Nevai. Bernstein's inequality in L^{p} for $0<$ $p<1$ and ($C, 1$) bounds for orthogonal polynomials. Ann. of Math. (2), 111(1):145-154, 1980.
[18] O. Carruth McGehee, Louis Pigno, and Brent Smith. Hardy's inequality and the L^{1} norm of exponential sums. Ann. of Math. (2), 113(3):613-618, 1981.
[19] Hugh L. Montgomery. The analytic principle of the large sieve. Bull. Amer. Math. Soc, 84(4):547-567, 1978.
[20] Hugh L. Montgomery. Ten lectures on the interface between analytic number theory and harmonic analysis. Number 84 in CBMS Regional Conference Series in Mathematics. American Mathematical Society, Providence, RI, 1994.
[21] Camil Muscalu and Wilhelm Schlag. Classical and Multilinear Harmonic Analysis, volume 1. Number 137 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2013.
[22] Melvyn B. Nathanson. Additive number theory: the classical bases, volume 164 of Graduate Texts in Mathematics. Springer, 1996.
[23] Fedor L. Nazarov. Complete version of Turan's lemma for trigonometric polynomials on the unit circumference. In Victor P. Havin and Nikolai K. Nikolski, editors, Complex analysis, operators, and related topics: the S. A. Vinogradov memorial volume, volume 113 of Operator Theory: Advances and Applications, pages 239-246. Birkhäuser, Basel, 2000.
[24] D. J. Newman. Norms of polynomials. Amer. Math. Monthly, 67:778-779, 1960.
[25] E. Nursultanov and S. Tikhonov. A Sharp Remez Inequality for Trigonometric Polynomials. Constr. Approx., 38(1):101-132, 2013.
[26] Tadahiro Oh and Árpád Bényi. The Sobolev inequality on the torus revisited. Publ. Math. Debrecen.
[27] George Pólya and Gábor Szegő. Problems and theorems in analysis, volume II, volume 216 of Die Grundlehren der mathematischen Wissenschaften. Springer, 1976. Translated from the German by C. E. Billigheimer.
[28] Walter Rudin. Fourier analysis on groups. Number 12 in Interscience Tracts in Pure and Applied Mathematics. Interscience Publishers, 1962.
[29] Walter Rudin. The way I remember it, volume 12 of History of Mathematics. American Mathematical Society, Providence, RI, 1997.
[30] J. Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities. MAA Problem Books Series. Cambridge University Press, 2004.
[31] Elias M. Stein and Rami Shakarchi. Fourier analysis: an introduction, volume I of Princeton Lectures in Analysis. Princeton University Press, 2003.
[32] Elias M. Stein and Rami Shakarchi. Functional analysis: introduction to further topics in analysis, volume IV of Princeton Lectures in Analysis. Princeton University Press, 2011.
[33] A. F. Timan. Theory of approximation of functions of a real variable, volume 34 of International Series of Monographs on Pure and Applied Mathematics. Pergamon Press, Oxford, 1963. Translated from the Russian by J. Berry.
[34] M. von Golitschek and G. G. Lorentz. Bernstein inequalities in $L_{p}, 0 \leq$ $p \leq+\infty$. Rocky Mountain J. Math., 19(1):145-156, 1989.
[35] Antoni Zygmund. Trigonometric series, volumes I 8 II combined. Cambridge Mathematical Library. Cambridge University Press, third edition, 2002.

