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1 Introduction

Using Egorov’s theorem, one proves that if a sequence of random variables Xn

converges almost surely to a random variable X then Xn converges in
probability to X.1

Let Xn be a sequence of L1 random variables, n ≥ 1. A weak law of large
numbers is a statement that

1

n

n∑
k=1

(Xk − E(Xk)) (1)

converges in probability to 0. A strong law of large numbers is a statement
that (1) converges almost surely to 0. Thus, if the hypotheses assumed on the
sequence of random variables are the same, a strong law implies a weak law.

We shall prove the weak law of large numbers for a sequence of independent
identically distributed L1 random variables, and the strong law of large for the
same hypotheses. We give separate proofs for these theorems as an occasion to
inspect different machinery, although to establish the weak law it thus suffices
to prove the strong law. One reason to distinguish these laws is for cases when
we impose different hypotheses.2

We also prove Markov’s weak law of large numbers, which states that
if Xn is a sequence of L2 random variables that are pairwise uncorrelated and

1

n2

n∑
n=k

Var(Xk) → 0,

then 1
n

∑n
k=1(Xk − E(Xk)) converges to 0 in L2, from which it follows using

Chebyshev’s inequality that it converges in probability to 0. (We remark that
a sequence of L2 random variables converging in L2 to 0 does not imply that

1V. I. Bogachev, Measure Theory, volume I, p. 111, Theorem 2.2.3; http://individual.
utoronto.ca/jordanbell/notes/L0.pdf, p. 3, Theorem 3.

2cf. Jordan M. Stoyanov, Counterexamples in Probability, third ed., p. 163, §15.3; Dieter
Landers and Lothar Rogge, Identically distributed uncorrelated random variables not fulfilling
the WLLN, Bull. Korean Math. Soc. 38 (2001), no. 3, 605–610.
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it converges almost surely to 0, although there is indeed a subsequence that
converges almost surely to 0.3)

If (Ω,F , P ) is a probability space, (Y,A ) is a measurable space, and T :
(Ω,F ) → (Y,A ) is measurable, the pushforward measure of P by T is

(T∗P )(A) = P (T−1(A)), A ∈ A .

Then (Y,A , T∗P ) is a probability space. We remind ourselves of the change
of variables theorem, which we shall use.4 Let f : Y → R be a function. On
the one hand, if f ∈ L1(T∗P ) then f ◦ T ∈ L1(P ) and∫

Y

fd(T∗P ) =

∫
Ω

f ◦ TdP. (2)

On the other hand, if f is T∗P -measurable and f ◦T ∈ L1(P ), then f ∈ L1(T∗P )
and ∫

Y

fd(T∗P ) =

∫
Ω

f ◦ TdP.

2 The weak law of large numbers

Suppose that Xn : (Ω,F , P ) → R, n ≥ 1, are independent identically dis-
tributed L1 random variables, and write

Sn =

n∑
k=1

Xk,

for which E(Sn) =
∑n

k=1 E(Xk) = nE(X1).

Lemma 1. If Xn are L2, then for any λ > 0 and for any n ≥ 1,

P

(∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ λ

)
≤ E(|X1 − E(X1)|2)

nλ2
.

Proof. Using

S2
n =

n∑
k=1

X2
k +

∑
j ̸=k

XjXk,

3http://individual.utoronto.ca/jordanbell/notes/L0.pdf, p. 4, Theorem 5.
4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-

hiker’s Guide, third ed., p. 485, Theorem 13.46.
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we have

E

(∣∣∣∣Sn

n
− E(X1)

∣∣∣∣2
)

= E

 n∑
k=1

X2
k

n2
+
∑
j ̸=k

XjXk

n2
− 2E(X1)

Sn

n
+ E(X1)

2


=

n∑
k=1

E(X2
k)

n2
+
∑
j ̸=k

E(XjXk)

n2
− 2E(X1)

2 + E(X1)
2

=

n∑
k=1

E(X2
1 )

n2
+
∑
j ̸=k

E(Xj)E(Xk)

n2
− E(X1)

2

=

n∑
k=1

E(X2
1 )

n2
+
∑
j ̸=k

E(X1)
2

n2
+ E(X1)

2

=
E(X2

1 )

n
+

E(X1)
2

n
.

On the other hand,

E(|X1 − E(X1)|2) = E(X2
1 − 2E(X1)X1 + E(X1)

2) = E(X2
1 ) + E(X1)

2.

So

E

(∣∣∣∣Sn

n
− E(X1)

∣∣∣∣2
)

=
1

n
E(|X1 − E(X1)|2).

Using this and Chebyshev’s inequality,

P

(∣∣∣∣Sn

n
− E(X1)

∣∣∣∣ ≥ λ

)
≤ 1

λ2
E

(∣∣∣∣Sn

n
− E(X1)

∣∣∣∣2
)

=
1

nλ2
E(|X1 − E(X1)|2),

proving the claim.

We now prove the weak law of large numbers, which states that if Xn are
independent identically distributed L1 random variables each with mean 0, then
Sn

n converges in probability to E(X1). Zn = Xn − E(Xn) = Xn − E(X1) are
independent and identically distributed L1 random variables with mean 0, and if
Zn converges in probability to 0 then Xn = Zn+E(X1) converges in probability
to E(X1), showing that it suffices to prove the theorem when E(X1) = 0.5

Theorem 2 (Weak law of large numbers). Suppose that E(X1) = 0. For each
ϵ > 0,

P

(∣∣∣∣Sn

n

∣∣∣∣ ≥ ϵ

)
→ 0, n → ∞.

5Allan Gut, Probability: A Graduate Course, second ed., p. 270, Theorem 6.3.1, and p. 121,
Theorem 3.1.5.
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Proof. For n ≥ 1 and 1 ≤ k ≤ n, let

Yn,k = 1{|Xk|≤nϵ3}Xk = f ◦Xk,

where f(x) = 1[−nϵ3,nϵ3](x) · x. Because X1, . . . , Xk are independent and iden-
tically distributed, so are Yn,1, . . . , Yn,n.

6 Moreover, E(Y 2
n,k) ≤ (nϵ3)2, so each

Yn,k belongs to L2. Let

Tn =

n∑
k=1

Yn,k,

for which E(Tn) = nE(Yn,1).
If ω ∈

⋂n
k=1{|Xk| ≤ nϵ3}, then

Tn(ω) =
n∑

k=1

Yn,k(ω) =

n∑
k=1

Xk(ω) = Sn(ω),

and using this and Lemma 1, for t > 0 we have

P (|Sn − E(Tn)| ≥ t) = P

(
{|Sn − E(Tn)| ≥ t} ∩

n⋂
k=1

{|Xk| ≤ nϵ3}

)

+ P

(
{|Sn − E(Tn)| ≥ t} ∩

n⋃
k=1

{|Xk| > nϵ3}

)

≤ P (|Tn − E(Tn)| ≥ t) + P

(
n⋃

k=1

{|Xk| > nϵ3}

)

= P

(∣∣∣∣Tn

n
− E(Yn,1)

∣∣∣∣ ≥ t

n

)
+ P

(
n⋃

k=1

{|Xk| > nϵ3}

)

≤ E(|Yn,1 − E(Yn,1)|2)
n ·
(
t
n

)2 +

n∑
k=1

P (|Xk| > nϵ3)

=
n

t2
· (E(Y 2

n,1)− E(Yn,1)
2) + nP (|X1| > nϵ3)

≤ n

t2
· E(Y 2

n,1) + nP (|X1| > nϵ3).

For t = nϵ this is

P (|Sn − E(Tn)| ≥ nϵ) ≤ 1

nϵ2
· E(Y 2

n,1) + nP (|X1| > nϵ3)

=
1

nϵ2
· E(1{|X1|≤nϵ3}X

2
1 ) + nP (|X1| > nϵ3)

≤ 1

nϵ2
· E(1{|X1|≤nϵ3}nϵ

3|X1|) + nP (|X1| > nϵ3)

≤ ϵE(|X1|) + nP (|X1| > nϵ3).

6Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 316, Proposition 10.2.
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Now,

nϵ3P (|X1| > nϵ3) = nϵ3
∫
(nϵ3,∞)

d(X1∗P )(y) ≤
∫
(nϵ3,∞)

yd(X1∗P )(y),

which tends to 0 as n → ∞ because∫
R
|y|d(X1∗P )(y) = E(|X1|) < ∞.

Therefore,
lim sup

n
P (|Sn − E(Tn)| ≥ nϵ) ≤ ϵE(|X1|),

that is,

lim sup
n

P

(∣∣∣∣Sn − E(Tn)

n

∣∣∣∣ ≥ ϵ

)
≤ ϵE(|X1|),

which implies that Sn−E(Tn)
n converges in probability to 0.

Because E(X1) = 0,

E(1{|X1|≤nϵ3}X1) + E(1{|X1|>nϵ3}X1) = 0,

and hence

|E(Tn)| = |nE(Yn,1)| = n|E(1{|X1|≤nϵ3}X1)| = n|E(1{|X1|>nϵ3}X1)|,

thus
|E(Tn)|

n
= |E(1{|X1|>nϵ3}X1)| ≤ E(1{|X1|>nϵ3}|X1|),

which tends to 0 as n → ∞, because E(|X1|) < ∞. Thus E(Tn)
n converges in

probability to 0, and therefore Sn

n converges in probability to 0, completing the
proof.

Lemma 3 (Bienaymé’s formula). If Xn, n ≥ 1, are L2 random variables that
are pairwise uncorrelated, then

Var

(
n∑

k=1

Xk

)
=

n∑
k=1

Var(Xk).

Proof. Let Yk = Xk −E(Xk). Using that the Xk are pairwise uncorrelated, for
j ̸= k we have

E(YjYk) = E(XjXk −XjE(Xk)−XkE(Xj) + E(Xj)E(Xk))

= E(Xj)E(Xk)− E(Xj)E(Xk)− E(Xk)E(Xj) + E(Xj)E(Xk)

= 0,
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showing that the Yk are pairwise uncorrelated. Then, because E(Sn) =
∑n

k=1 E(Xk),

Var(Sn) = E

(Sn −
n∑

k=1

E(Xk)

)2


= E

( n∑
k=1

Yk

)2


= E

 n∑
k=1

Y 2
k +

∑
j ̸=k

YjYk


=

n∑
k=1

E(Y 2
k ) +

∑
j ̸=k

E(Yj)E(Yk)

=

n∑
k=1

E(Y 2
k ),

and as E(Y 2
k ) = Var(Xk), we have

Var(Sn) =

n∑
k=1

Var(Xk).

We now prove a weak law of large numbers, that is sometimes attributed to
Markov, that neither supposes that the random variables are independent nor
supposes that they are identically distributed. We remind ourselves that if a
sequence Yn of L2 random variables converges to 0 in L2 then it converges in
probability to 0; this is proved using Chebyshev’s inequality.

Theorem 4 (Markov’s weak law of large numbers). If Xn, n ≥ 1, are L2

random variables that are pairwise uncorrelated and which satisfy

1

n2

n∑
n=k

Var(Xk) → 0,

then 1
n

∑n
k=1(Xk − E(Xk)) converges to 0 in L2 and thus in probability.

Proof. Because E (
∑n

k=1 Xk) =
∑n

k=1 E(Xk) and Var(X) = E((X − E(X))2),
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using Bienaymé’s formula we get

E

( 1

n

n∑
k=1

(Xk − E(Xk))

)2
 =

1

n2
E

( n∑
k=1

Xk −
n∑

k=1

E(Xk)

)2


=
1

n2
Var

(
n∑

k=1

Xk

)

=
1

n2

n∑
k=1

Var(Xk).

Thus

E

( 1

n

n∑
k=1

(Xk − E(Xk))

)2
 =

1

n2

n∑
k=1

Var(Xk) → 0

as n → ∞, namely, 1
n

∑n
k=1(Xk − E(Xk)) converges to 0 in L2 as n → ∞,

proving the claim.

3 Ergodic theory

We here assemble machinery and results that we will use to prove the strong law
of large numbers. For a probability space (Ω,F , P ), a function T : Ω → Ω is said
to be a measure-preserving transformation if (i) it is measurable, and (ii)
T∗P = P . To say that T∗P = P means that for any A ∈ F , (T∗P )(A) = P (A),
i.e. P (T−1(A)) = P (A).

A collection A of subsets of Ω is called an algebra of sets if (i) ∅ ∈ A , (ii)
Ω ∈ A , (iii) if A,B ∈ A then A ∪B,A \B ∈ A . If G is a nonempty collection
of subsets of Ω, it is a fact that there is a unique algebra of sets A(G ) that (i)
contains G and (ii) is contained in any algebra of sets that contains G . We call
A(G ) the algebra of sets generated by G .

A collection S of subsets of Ω is called a semialgebra of sets if (i) ∅ ∈ S ,
(ii) Ω ∈ S , (iii) if A,B ∈ S then A ∩ B ∈ S , (iv) if A,B ∈ S then there are
pairwise disjoint E1, . . . , En ∈ S such that

A \B =

n⋃
k=1

Ek.

It is a fact that A(S ) is equal to the collection of all unions of finitely many
pairwise disjoint elements of S .7

A nonempty collection M of subsets of Ω is called a monotone class if
whenever An ∈ M , An ⊂ An+1 (an increasing sequence of sets), implies
that

⋃
n An ∈ M and An ∈ M , An+1 ⊂ An (a decreasing sequence of sets),

implies that
⋂

n An ∈ M . In other words, a monotone class is a nonempty

7V. I. Bogachev, Measure Theory, volume I, p. 8, Lemma 1.2.14.
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collection of subsets of Ω such that if An is a monotone sequence in M then
limn→∞ An ∈ M . If G is a nonempty collection of subsets of Ω, it is a fact that
there is a unique monotone class M(G ) that (i) contains G and (ii) is contained
in any monotone class that contains G . We call M(G ) the monotone class
generated by G . Themonotone class theorem states that if A is an algebra
of sets then σ(A ) = M(A ).8

The following lemma gives conditions under which we can establish that a
function is measure-preserving.9

Lemma 5. Let T : Ω → Ω be a function and suppose that S is a semialgebra
of sets for which F is the σ-algebra generated by S . If (i) T−1(A) ∈ F for
each A ∈ S and (ii) P (T−1(A)) = P (A) for each A ∈ S , then T is measure-
preserving.

Proof. Let

C = {A ∈ F : T−1(A) ∈ F , P (T−1(A)) = P (A)};

we wish to prove that C = F .
If An ∈ C is an increasing sequence, let A =

⋃∞
n=1 An. Then, as T

−1(An) ∈
F for each n,

T−1(A) =

∞⋃
n=1

T−1(An) ∈ F

and as (i) T−1(An) is an increasing sequence, (ii) P is continuous from below,10

and (iii) P (T−1(An)) = P (An),

P (T−1(A)) = P

( ∞⋃
n=1

T−1(An)

)
= lim

n→∞
P (T−1(An))

= lim
n→∞

P (An)

= P

( ∞⋃
n=1

An

)
= P (A),

and hence A ∈ C . If An ∈ C is a decreasing sequence, let A =
⋂∞

n=1 An.
Because T−1(An) ∈ F ,

T−1(A) =

∞⋂
n=1

T−1(An) ∈ F ,

8V. I. Bogachev, Measure Theory, volume I, p. 33, Theorem 1.9.3.
9Peter Walters, An Introduction to Ergodic Theory, p. 20, Theorem 1.1.

10V. I. Bogachev, Measure Theory, volume I, p. 9, Proposition 1.3.3.
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and as (i) T−1(An) is a decreasing sequence, (ii) P is continuous from above,
and (iii) P (T−1(An)) = P (An),

P (T−1(A)) = P

( ∞⋂
n=1

T−1(An)

)
= lim

n→∞
P (T−1(An))

= lim
n→∞

P (An)

= P

( ∞⋂
n=1

An

)
= P (A),

and hence A ∈ C . Therefore, C is a monotone class.
S ⊂ C . If A ∈ A(S ), then there are pairwise disjoint A1, . . . , An ∈ S with

A =
⋃n

k=1 Ak. As T−1(Ak) ∈ F ,

T−1(A) =

n⋃
k=1

T−1(Ak) ∈ F .

As theAk are pairwise disjoint, so are the sets T−1(Ak), so, because P (T−1(Ak)) =
P (Ak),

P (T−1(A)) = P

(
n⋃

k=1

T−1(Ak)

)

=

n∑
k=1

P (T−1(Ak))

=

n∑
k=1

P (Ak)

= P

(
n⋃

k=1

Ak

)
= P (A).

Therefore A ∈ C . This shows that A(S ) ⊂ C .
The monotone class theorem tells us σ(A(S )) = M(A(S )). On the one

hand, F = σ(S ) and hence F = σ(A(S )). On the other hand, A(S ) ⊂ C
and the fact that C is a monotone class yield

M(A(S )) ⊂ M(C ) = C .

Therefore
F ⊂ C .

Of course C ⊂ F , so C = F , proving the claim.
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Let (Ω,F , P ) be a probability space. A measure-preserving transformation
T : Ω → Ω is called ergodic if A ∈ F and T−1(A) = A implies that P (A) = 0
or P (A) = 1. It is proved11 using the Birkhoff ergodic theorem that for a
measure-preserving transformation T : Ω → Ω, T is ergodic if and only if for all
A,B ∈ F ,

1

n

n−1∑
k=0

P (T−1(A) ∩B) → P (A)P (B).

A measure-preserving transformation T : Ω → Ω is called weak-mixing if
for all A,B ∈ F ,

1

n

n−1∑
k=0

|P (T−k(A) ∩B)− P (A)P (B)| → 0.

It is immediate that a weak-mixing transformation is ergodic.
A measure-preserving transformation T : Ω → Ω is called strong-mixing if

for all A,B ∈ F ,
P (T−n(A) ∩B) → P (A)P (B).

If a sequence of real numbers an tends to 0, then

1

n

n−1∑
k=0

|ak| → 0,

and using this we check that a strong-mixing transformation is weak-mixing.
The following statement gives conditions under which a measure-preserving

transformation is ergodic, weak-mixing, or strong-mixing.12

Theorem 6. Let (Ω,F , P ) be a probability space, let S be a semialgebra that
generates F , and let T : Ω → Ω be a measure-preserving transformation.

1. T is ergodic if and only if for all A,B ∈ S ,

1

n

n−1∑
k=0

P (T−k(A) ∩B) → P (A)P (B).

2. T is weak-mixing if and only if for all A,B ∈ S ,

1

n

n−1∑
k=0

|P (T−k(A) ∩B)− P (A)P (B)| → 0.

3. T is strong-mixing if and only if for all A,B ∈ S ,

P (T−n(A) ∩B) → P (A)P (B).

11Peter Walters, An Introduction to Ergodic Theory, p. 37, Corollary 1.14.2.
12Peter Walters, An Introduction to Ergodic Theory, p. 41, Theorem 1.17.
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4 The strong law of large numbers

Let µ be a Borel probability measure on R with finite first moment:∫
R
|x|dm(x) < ∞.

We shall specify when we use the hypothesis that µ has finite first moment; until
we say so, what we say merely supposes that it is a Borel probability measure
on R.

For n ≥ 0, let Ωn = R, let Bn = BR, the Borel σ-algebra of R, and let
µn = µ, for which (Ωn,Bn, µn) is a probability space. Let Ω =

∏∞
n=0 Ωn. A

cylinder set is a subset of Ω of the form

∞∏
n=0

An,

where An ∈ Bn for each n and where {n ≥ 0 : An ̸= Ωn} is finite. We denote
by C the collection of all cylinder sets. It is a fact that C is a semialgebra of
sets.13

The product σ-algebra is F = σ(C ), the σ-algebra generated by the
collection of all cylinder sets. The product measure,14 which we denote by P ,
is the unique probability measure on F such that for any cylinder set

∏∞
n=0 An,

P (

∞∏
n=0

An) =

∞∏
n=0

µn(An).

Let πn : Ω → Ωn, n ≥ 0, be the projection map. Define τ : Ω → Ω by

τ(ω0, ω1, . . .) = (ω1, ω2, . . .),

the left shift map. In other words, for n ≥ 0, τ satisfies πn ◦ τ = πn+1, and so
πn = π0 ◦ (τn).

Lemma 7. τ is measure-preserving.

Proof. For A =
∏∞

n=0 An ∈ C ,

τ−1(A) =

∞∏
n=0

Bn = B,

where B0 = Ω0 and for n ≥ 1, Bn = An−1. B is a cylinder set so a fortiori
belongs to F , and

P (B) =

∞∏
n=0

µn(Bn) = µ0(Ω0) ·
∞∏

n=1

µn(Bn) =

∞∏
n=1

µn(An−1) =

∞∏
n=1

µn−1(An−1),

13S. J. Taylor, Introduction to Measure Theory and Integration, p. 136, §6.1; http:

//individual.utoronto.ca/jordanbell/notes/productmeasure.pdf
14http://individual.utoronto.ca/jordanbell/notes/productmeasure.pdf
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so

P (τ−1(A)) =

∞∏
n=0

µn(An) = P (A).

Therefore by Lemma 5, because C is a semialgebra that generates F , it follows
that τ is measure-preserving.

Lemma 8. τ is strong-mixing.

Proof. Let A =
∏∞

n=0 An and B =
∏∞

n=0 Bn be cylinder sets. For n ≥ 0,

τ−n(A) =

∞∏
m=0

Cm,

where Cm = Ωm for 0 ≤ m ≤ n − 1 and Cm = Am−n for m ≥ n. Because A
and B are cylinder sets, there is some N such that when m ≥ N , Am = Ωm

and Bm = Ωm. Thus for n ≥ N ,

τ−n(A) ∩B) =

∞∏
m=0

Cm ∩
∞∏

m=0

Bm

=

∞∏
m=0

(Cm ∩Bm)

=

n−1∏
m=0

(Cm ∩Bm)×
∞∏

m=n

(Cm ∩Bm)

=

n−1∏
m=0

(Ωm ∩Bm)×
∞∏

m=n

(Am−n ∩ Ωm)

=

n−1∏
m=0

Bm ×
∞∏

m=n

Am−n.

Hence

P (τ−n(A) ∩B) =

n−1∏
m=0

µm(Bm) ·
∞∏

m=n

µm(Am−n)

=

n−1∏
m=0

µm(Bm) ·
∞∏

m=0

µm+n(Am)

=

n−1∏
m=0

µm(Bm) ·
∞∏

m=0

µm(Am)

= P (B) · P (A).

That is, there is some N such that when n ≥ N ,

P (τ−n(A) ∩B) = P (A)P (B),
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and so a fortiori,
lim

n→∞
P (τ−n(A) ∩B) = P (A)P (B).

Therefore, because the cylinder sets generate the σ-algebra F , by Theorem 3
we get that τ is strong-mixing.

We now use the hypothesis that µ has finite first moment.15

Lemma 9. π0 ∈ L1(P ).

Proof. T = π0 : Ω → Ω0 is measurable, and T∗P = µ0. The statement that
µ = µ0 has finite first moment means that f : Ω0 → R defined by f(x) = |x|
belongs to L1(µ0). Therefore by the change of variables theorem (2), we have
f ◦ T ∈ L1(P ).

Lemma 10. For almost all ω ∈ Ω,

1

n

n−1∑
k=0

πk(ω) →
∫
R
tdµ(t).

Proof. Because τ : Ω → Ω is ergodic and π0 ∈ L1(P ), the Birkhoff ergodic
theorem16 tells us that for almost all ω ∈ Ω,

1

n

n−1∑
k=0

π0(τ
k(ω)) →

∫
Ω

π0(ω)dP (ω),

i.e.,

1

n

n−1∑
k=0

πk(ω) →
∫
Ω0

ω0dµ0(ω0),

proving the claim.

We will use Lemma 10 to prove the strong law of large numbers. First we
prove two lemmas about joint distributions.17

Lemma 11. If X1, . . . , Xn : Ω → R and Y1, . . . , Yn : Ω′ → R are random vari-
ables with the same joint distribution and for each 1 ≤ k ≤ n, Φk : Rn → R is
a continuous function, then for Uk = Φk(X1, . . . , Xn) and Vk = Φk(Y1, . . . , Yn),
the random variables U1, . . . , Un and V1, . . . , Vn have the same joint distribution.

15Elias M. Stein and Rami Shakarchi, Functional Analysis, Princeton Lectures in Analysis,
volume IV, p. 208, chapter 5, §2.1.

16Peter Walters, An Introduction to Ergodic Theory, p. 34, Theorem 1.14.
17Elias M. Stein and Rami Shakarchi, Functional Analysis, Princeton Lectures in Analysis,

volume IV, p. 208, Lemma 2.2, Lemma 2.3.
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Proof. Write X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), U = (U1, . . . , Un), and
V = (V1, . . . , Vn), which are Borel measurable. Let Φ = (Φ1, . . . ,Φn), which
is continuous Rn → Rn, and for which

U = Φ(X), V = Φ(Y ).

To show that U1, . . . , Un and V1, . . . , Vn have the same joint distribution
means to show that U∗P = V∗P

′. Let A ∈ BRn , for which Φ−1(A) ∈ BRn and

(U∗P )(A) = P (U−1(A))

= P (X−1(Φ−1(A)))

= P ′(Y −1(Φ−1(A)))

= P ′(V −1(A))

= (V∗P
′)(A),

where, because X1, . . . , Xn and Y1, . . . , Yn have the same joint distribution,

P (X−1(Φ−1(A))) = (X∗P )(Φ−1(A)) = (Y∗P
′)(Φ−1(A)) = P ′(Y −1(Φ−1(A))).

Lemma 12. If sequences of random variables Xn : (Ω,F , P ) → R and Yn :
(Ω′,F ′, P ′) → R, n ≥ 1, have the same finite-dimensional distributions
and there is some a ∈ R such that Xn converges to a almost surely, then Yn

converges to a almost surely.

Proof. That the sequences Xn and Yn have the same finite-dimensional distri-
butions means that for each n ≥ 1,

(X1, . . . , Xn)∗P = (Y1, . . . , Yn)∗P
′,

i.e., for each n ≥ 1 and for each A ∈ BRn ,

P ((X1, . . . , Xn) ∈ A) = P ′((Y1, . . . , Yn) ∈ A).

Define

Ek,N,n =

{
ω ∈ Ω : |Xn(ω)− a| ≤ 1

k

}
Fk,N,n =

{
ω ∈ Ω′ : |Yn(ω)− a| ≤ 1

k

}
.

Then define

E =

∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

Ek,N,n =

∞⋂
k=1

∞⋃
N=1

Ek,N =

∞⋂
k=1

Ek

F =

∞⋂
k=1

∞⋃
N=1

∞⋂
n=N

Fk,N,n =

∞⋂
k=1

∞⋃
N=1

Fk,N =

∞⋂
k=1

Fk,
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and

Gk,N,n =

n⋂
m=N

Ek,N,m

Hk,N,n =

n⋂
m=N

Fk,N,m.

Because (X1, . . . , Xn) and (Y1, . . . , Yn) have the same distribution,

P (Gk,N,n) = P ′(Hk,N,n).

But

Ek,N =

∞⋂
n=N

Ek,N,n =

∞⋂
n=N

Gk,N,n = lim
n→∞

Gk,N,n

and
Fk,N = lim

n→∞
Hk,N,n,

so
P (Ek,N ) = P ′(Fk,N ).

Then
P (Ek) = lim

N→∞
P (Ek,N ) = lim

N→∞
P ′(Fk,N ) = P ′(Fk).

Then
P (E) = lim

k→∞
P (Ek) = lim

k→∞
P ′(Fk) = P ′(F ).

That the sequence Xn converges almost surely means that P (E) = 1, and
therefore P ′(F ) = 1, i.e. the sequence Yn converges almost surely.

We now use what we have established to prove the strong law of large
numbers.18 (We write (Ω′,F ′, P ′) for a probability space because (Ω,F , P )
denotes the product probability space constructed already.)

Theorem 13. If Xn : (Ω′,F ′, P ′) → R, n ≥ 1, are independent identically
distributed L1 random variables, then for almost all ω ∈ Ω′,

1

n

n∑
k=1

Xk(ω) → E(X1).

Proof. For n ≥ 0, let Yn = Xn+1; we do this to make the index set the same
as for Ωn. Let µn = Yn∗P

′ and set µ = µ0. Because the Yn are identically
distributed, µn = µ0 for each n.

Because Y0 is L1, µ has finite first moment. As µ0 = Y0∗P
′, applying the

change of variables theorem (2),∫
R
tdµ(t) =

∫
R
td(Y0∗P

′)(t) =

∫
Ω′

Y0(ω)dP
′(ω) = E(Y0).

18Elias M. Stein and Rami Shakarchi, Functional Analysis, Princeton Lectures in Analysis,
volume IV, p. 206, Theorem 2.1.
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With this, Lemma 10 says that for almost all ω ∈ Ω,

1

n

n−1∑
k=0

πk(ω) → E(Y0). (3)

For each n,
(π0, . . . , πn)∗P = µ0 × · · · × µn,

and because the Yn are independent,

(Y0, . . . , Yn)∗P
′ = Y0∗P

′ × · · · × Yn∗P
′ = µ0 × · · · × µn,

so the sequences πn and Yn have the same finite-dimensional distributions. For
n ≥ 1, define Φn : Rn → R by

Φn(t1, . . . , tn) =
1

n

n∑
k=1

tk.

Lemma 11 then tells us that the sequences

Un = Φn(Y0, . . . , Yn−1) =
1

n

n−1∑
k=0

Yk

and

Vn = Φn(π0, . . . , πn−1) =
1

n

n−1∑
k=0

πk,

n ≥ 1, have the same finite-dimensional distributions.
Now, (3) says that Vn converges to E(Y0) almost surely, and thus applying

Lemma 12 we get that Un converges to E(Y0) almost surely. That is,

1

n

n−1∑
k=0

Yk → E(Y0)

almost surely, and because Yk = Xk+1,

1

n

n∑
k=1

Xk → E(X1)

almost surely, completing the proof.

16


