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1 Introduction

These notes are a gloss on the first chapter of Walter Rudin’s Fourier Analysis
on Groups, and may be helpful to someone reading Rudin. The results I do
prove are proved in more detail than they are in Rudin. I caution that before
reading the first chapter of that book it is know about the Gelfand transform on
commutative Banach algebras because results from that are used without even
stating them by Rudin. I at least state them.

2 Locally compact abelian groups

Let G be a locally compact abelian (LCA) group. There is a Haar measure m
on G. It is a fact that if m and m′ are Haar measures on G, then there is a
positive constant λ such that m′ = λm.1 If G is compact then there is a unique
Haar measure with m(G) = 1, and if G is discrete then there is a unique Haar
measure with m({x}) = 1 for each x ∈ G.

Because Haar measures on G are positive multiples of each other, the ele-
ments of Lp(G) do not depend on the Haar measure we use, but the value of
∥f∥p will, where f : G→ C is a Borel function.

If X is a normed vector space and f : G→ X is a function, we say that f is
uniformly continuous if for every ϵ > 0 there is a neighborhood V of 0 in G
such that x− y ∈ V implies that ∥f(x)− f(y)∥X < ϵ.

If f : G→ C is a function and x ∈ G, we define fx : G→ C by

fx(y) = f(y − x), y ∈ G.

Theorem 1. If 1 ≤ p <∞ and f ∈ Lp(G), then

x 7→ fx

is uniformly continuous G→ Lp(G).

1Walter Rudin, Fourier Analysis on Groups, p. 2, §1.1.3.
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Proof. Let ϵ > 0. Because Cc(G) is dense in L
p(G), there is some g ∈ Cc(G) such

that ∥g−f∥p < ϵ. Let K = supp g, and because K is compact, m(K) <∞. g ∈
Cc(G) implies that g is uniformly continuous on G, so there is a neighborhood V
of 0 in G such that if x−y ∈ V then |g(x)−g(y)| < ϵ(2m(K))−1/p. Then, for all
x ∈ V and y ∈ G, as y− (y−x) ∈ V we have |g(y−x)− g(y)| < ϵ(2m(K))−1/p.
That is, for all x ∈ V we have

∥gx − g∥∞ < ϵ(2m(K))−1/p.

For x ∈ V , supp (gx−g) ⊂ (K+x)∪K and m(K+x) = m(K), so for all x ∈ V ,

∥gx − g∥p =

(∫
supp (gx−g)

|gx − g|pdm

)1/p

≤

(∫
supp (gx−g)

ϵp(2m(K))−1dm

)1/p

≤ ϵ.

Because ∥fx − gx∥p = ∥f − g∥p, for all x ∈ V we have

∥fx − f∥p ≤ ∥fx − gx∥p + ∥gx − g∥p + ∥g − f∥p < 3ϵ.

Then, let x, y ∈ G with y − x ∈ V . The above inequality tells us

∥fy−x − f∥p < 3ϵ.

But fx − fy = (f − fy−x)x and ∥hx∥p = ∥h∥p, so

∥fx − fy∥p = ∥f − fy−x∥p < 3ϵ,

showing that x 7→ fx is uniformly continuous.

If f and g are Borel functions on G, for x ∈ G such that the integral exists
we define

(f ∗ g)(x) =
∫
G

f(x− y)g(y)dm(y).

The operation of taking the convolution of functions is particularly suitable for
functions that belong to L1(G), because if f, g ∈ L1(G), then (f ∗g)(x) is defined
for almost all x ∈ G, and satisfies

∥f ∗ g∥1 ≤ ∥f∥1∥g∥1;

this is proved in Rudin, together with other properties of the convolution.2 From
the above inequality, it follows that L1(G) with convolution as multiplication
is a commutative Banach algebra. The map ∗ : L1(G) → L1(G) defined by
f∗(x) = f(−x) for f ∈ L1(G), x ∈ G, is an isometric involution.

2Walter Rudin, Fourier Analysis on Groups, p. 4, §1.1.6.
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If G is discrete, define e on G by e(0) = 1 and e(x) = 0 for x ̸= 0. Then
∥e∥1 =

∫
G
e(x)dm(x) =

∑
x∈G e(x) = 1, so e ∈ L1(G). For f ∈ L1(G) and

x ∈ G,

(f ∗ e)(x) =
∑
y∈G

f(x− y)e(y) = f(x)e(0) = f(x),

showing that f ∗ e = f . Hence e is unity in L1(G). It turns out that if G is not
discrete then L1(G) does not have a unity.3

3 Dual groups

Let T = {z ∈ C : |z| = 1} with the subspace topology inherited from C. If
G is a locally compact abelian group, we denote by Γ the set of continuous
homomorphisms G→ T. For γ ∈ Γ and x ∈ G, we write

⟨x, γ⟩ = γ(x).

We call a homomorphism G → T a character of G, so elements of Γ are the
continuous characters of G.

If A is a Banach algebra and ∆ is the set of algebra homomorphisms h :
A → C that are not identically zero, the Gelfand transform of x ∈ A is the
map x̂ : ∆ → C defined by

x̂(h) = h(x), h ∈ ∆.

∆ is called the maximal ideal space of A.
If f ∈ L1(G), we define f̂ : Γ → C by

f̂(γ) =

∫
G

f(x)⟨−x, γ⟩dm(x), γ ∈ Γ,

and call f̂ the Fourier transform of f .
The following theorem is from Rudin.4 It establishes a bijection between

the dual group Γ of G and the maximal ideal space ∆ of L1(G), and shows, if
Γ and ∆ are identified, that the Fourier transform is the same as the Gelfand
transform.

Theorem 2. For each γ ∈ Γ, the map h : L1(G) → C defined by h(f) = f̂(γ)

belongs to ∆. If h ∈ ∆, then there is a unique γ ∈ Γ such that h(f) = f̂(γ) for
all f ∈ L1(G).

Proof. For f, g ∈ L1(G) and k = f ∗ g, then for any γ ∈ Γ, using ⟨−x, γ⟩ =

3Walter Rudin, Fourier Analysis on Groups, p. 30, §1.7.3.
4Walter Rudin, Fourier Analysis on Groups, p. 7, §1.2.2.
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⟨−x+ y, γ⟩⟨−y, γ⟩,

k̂(γ) =

∫
G

(f ∗ g)(x)⟨−x, γ⟩dm(x)

=

∫
G

⟨−x, γ⟩
(∫

G

f(x− y)g(y)dm(y)

)
dm(x)

=

∫
G

g(y)⟨−y, γ⟩
(∫

G

f(x− y)⟨−x+ y, γ⟩dm(x)

)
dm(y)

=

∫
G

g(y)⟨−y, γ⟩f̂(x)dm(y)

= f̂(γ)ĝ(γ),

showing that f 7→ f̂(γ) is an algebra homomorphism. By Urysohn’s lemma,
for every neighborhood V of 0 ∈ G, there is some f ∈ Cc(G) with f(0) = 1,
0 ≤ f ≤ 1, and supp f ⊂ V . As ⟨0, γ⟩ = 1 and because x 7→ ⟨−x, γ⟩ is
continuous, it follows that there is some neighborhood V of 0 and some f as
above such that f̂(γ) =

∫
G
f(x)⟨−x, γ⟩dm(x) ̸= 0, showing that f 7→ f̂(γ) is

nonzero.
Now let h : L1(G) → C be a nonzero algebra homomorphism. A homomor-

phism from a Banach algebra to C is linear functional with norm 1. It is a fact
that for every bounded linear functional Λ on L1(G) there is some ϕ ∈ L∞(G)
such that Λ(f) =

∫
G
fϕdm for all f ∈ L1(G), and ∥ϕ∥∞ = ∥Λ∥.5 Therefore,

there is some ϕ ∈ L∞(G), ∥ϕ∥∞ = 1, such that

h(f) =

∫
G

fϕdm, f ∈ L1(G).

Then for f, g ∈ L1(G) we have

h(f)

∫
G

gϕdm = h(f)h(g)

= h(f ∗ g)

=

∫
G

(f ∗ g)ϕdm

=

∫
G

(∫
G

f(x− y)g(y)dm(y)

)
ϕ(x)dm(x)

=

∫
G

g(y)

(∫
G

f(x− y)ϕ(x)dm(x)

)
dm(y)

=

∫
G

g(y)h(fy)dm(y),

i.e. ∫
G

(h(f)ϕ(y)− h(fy))g(y)dm(y) = 0.

5Walter Rudin, Fourier Analysis on Groups, p. 268, E10.
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Because this is true for all g ∈ L1(G), it follows that for all f ∈ L1(G) and for
almost all y ∈ G,

h(f)ϕ(y) = h(fy).

Because h ̸= 0, there is some g ∈ L1(G) with h(g) ̸= 0. Then for almost all
(x, y) ∈ G×G,

h(g)ϕ(x+ y) = h(gx+y) = h((gx)y) = h(gx)ϕ(y) = h(g)ϕ(x)ϕ(y),

and as h(g) ̸= 0, for almost all (x, y) ∈ G×G,

ϕ(x+ y) = ϕ(x)ϕ(y).

We define ϕ1 : G → C by ϕ1(y) =
h(gy)
h(g) , which is continuous because y 7→ gy

is continuous and h is continuous. The function ϕ1 satisfies ϕ(y) = ϕ1(y) for
almost all y ∈ G, so for almost all (x, y) ∈ G×G,

ϕ1(x+ y) = ϕ1(x)ϕ1(y).

(x, y) 7→ ϕ1(x + y) and (x, y) 7→ ϕ1(x)ϕ1(y) are continuous and the above
equality holds for almost all (x, y) ∈ G×G, so the above equality in fact holds
for all (x, y) ∈ G × G. Hence ϕ1 ∈ Γ. Define γ : G → C by γ(x) = ϕ1(−x).
Then γ ∈ Γ, and γ(x) = ϕ(−x) for almost all x ∈ G, so for all f ∈ L1(G),

f̂(γ) =

∫
G

f(x)⟨−x, γ⟩dm(x)

=

∫
G

f(x)γ(−x)dm(x)

=

∫
G

f(x)ϕ(x)dm(x)

= h(f).

Suppose that γ1, γ2 ∈ Γ satisfy f̂(γ1) = f̂(γ2) for all f ∈ L1(G). Then
⟨−x, γ1⟩ = ⟨−x, γ2⟩ for almost all x ∈ G, and because these are continuous they
are in fact equal for all x ∈ G, i.e. γ1 = γ2.

Let A(Γ) = {f̂ : f ∈ L1(G)}. Elements of A(Γ) are functions Γ → C. So far
Γ has not been given a topology. We shall be interested in the initial topology on
Γ with respect to the family of functions A(Γ). That is, the topology on Γ is the
coarsest topology so that each element of A(Γ) is continuous. Furthermore, it is
a fact that the topology on Γ is equal to the subspace topology on Γ inherited
from L1(G)∗ with the weak-* topology. Finally, let the maximal ideal space ∆
of L1(G) have the subspace topology inherited from L1(G)∗ with the weak-*
topology. In Theorem 2 we presented a bijection Γ → ∆, and can be proved
that this bijection is a homeomorphism.

It is proved in Rudin6 that with this topology, Γ is a locally compact abelian
group. The proof constructs a basis for the topology of Γ, and because we will
use this basis later it will be useful to write out the proof.

6Walter Rudin, Fourier Analysis on Groups, p. 10, §1.2.6.
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Theorem 3. 1. (x, γ) 7→ ⟨x, γ⟩ is continuous G× Γ → C.

2. For r > 0 let Ur = {z ∈ C : |1 − z| < r}. If K is a compact subset of G
then

W (K, r) = {γ ∈ Γ : ⟨x, γ⟩ ∈ Ur for all x ∈ K}

is an open subset of Γ, and if C is a compact subset of Γ then

V (C, r) = {x ∈ G : ⟨x, γ⟩ ∈ Ur for all γ ∈ C}

is an open subset of G.

3. {γ0 +W (K, r) : γ0 ∈ Γ, K is a compact subset of Γ, r > 0} is a basis for
the topology of Γ.

4. Γ is a locally compact abelian group.

Proof. Let f ∈ L1(G). For x0 ∈ G, γ0 ∈ Γ and ϵ > 0, because x 7→ fx is
continuous there is a neighborhood V of x0 such that ∥fx − fx0∥1 < ϵ for all

x ∈ V , and because f̂x0
is continuous there is a neighborhoodW of γ0 such that

|f̂x0(γ)− f̂x0(γ0)| < ϵ for all γ ∈W . If (x, γ) ∈ V ×W , then

|f̂x(γ)− f̂x0
(γ0)| ≤ |f̂x(γ)− f̂x0

(γ)|+ |f̂x0
(γ)− f̂x0

(γ0)|
< ∥fx − fx0

∥1 + ϵ

< 2ϵ,

showing that (x, γ) 7→ f̂x(γ) is continuous. But

⟨x, γ⟩f̂(γ) = f̂x(γ), x ∈ G, γ ∈ Γ,

and it follows that (x, γ) 7→ ⟨x, γ⟩ is continuous.
Let K be a compact subset of G, r > 0, and γ0 ∈ W (K, r). For x0 ∈

K, |⟨x0, γ0⟩ − 1| = δ < r. Because (x, γ) 7→ ⟨x, γ⟩ is continuous there is
a neighborhood Vx0

of x0 and a neighborhood Wx0
of γ0 such that |⟨x, γ⟩ −

⟨x0, γ0⟩| < r − δ for (x, γ) ∈ Vx0
× Wx0

, and then ⟨x, γ⟩ ∈ Ur for (x, γ) ∈
Vx0×Wx0 . As K ⊂

⋃
x0∈K Vx0 and K is compact, there are x1, . . . , xn ∈ K such

thatK ⊂
⋃
Vxi . LetW =

⋂
Wxi , which is a finite intersection of neighborhoods

of γ0 and hence itself a neighborhood of γ0. It is apparent that W ⊂ W (K, r),
showing that W (K, r) is open.

Let C be a compact subset of G, r > 0, and x0 ∈ V (C, r). For γ0 ∈ C,
|⟨x0, γ0⟩ − 1| = δ < r, so there is a neighborhood Vγ0 of x0 and a neighborhood
Wγ0 of γ0 such that |⟨x, γ⟩ − ⟨x0, γ0⟩| < r − δ for (x, γ) ∈ Vγ0 ×Wγ0 , therefore
⟨x, γ⟩ ∈ Ur for (x, γ) ∈ Vγ0

×Wγ0
. There are γ1, . . . , γn ∈ C such that C ⊂⋃

Wγi
, and V =

⋂
Vγi

is a neighborhood of x0 that is contained in V (C, r),
showing that V (C, r) is open.

Let γ0 ∈ Γ and let W be a neighborhood of γ0. Because Γ has the initial
topology for A(Γ), a local subbasis at γ0 is given by sets of the form {γ ∈ Γ :
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|f̂(γ) − f̂(γ0)| < ϵ}, f ∈ L1(G) and ϵ > 0. Therefore, there are f1, . . . , fn ∈
L1(G) and ϵ1, . . . , ϵn > 0 such that⋂

{γ ∈ Γ : |f̂i(γ)− f̂i(γ0)| < ϵi} ⊂W. (1)

Let ϵ be the minimum of the ϵi, let gi ∈ C0(G) with ∥fi−gi∥1 < ϵ
3 , let K be the

union of the supports of gi, and let M be the maximum of ∥gi∥1. With r < ϵ
3M ,

for γ ∈ γ0 +W (K, r) we have

|f̂i(γ)− f̂i(γ0)| ≤ |f̂i(γ)− ĝi(γ)|+ |ĝi(γ)− ĝi(γ0)|+ |ĝi(γ0)− f̂i(γ0)|

≤ ∥fi − gi∥1 +
∣∣∣∣∫

K

gi(x)(⟨−x, γ⟩ − ⟨−x, γ0⟩)dm(x)

∣∣∣∣+ ∥fi − gi∥1

<
2

3
ϵ+

∫
K

|gi(x)||1− ⟨−x, γ − γ0⟩|dm(x)

≤ 2

3
ϵ+ r∥gi∥1

< ϵ.

Thus, if γ ∈ γ0+W (K, r) then γ belongs to the intersection (1), and this shows
that γ0+W (K, r) ⊂W . This establishes that the collection of those sets of the
form γ0 +W (K, r), for γ0 ∈ Γ, K a compact subset of Γ, and r > 0, is a basis
for the topology of Γ.

Let γ1, γ2 ∈ Γ, let K be a compact subset of Γ, and let r > 0. Because

(γ1 +W (K, r/2))− (γ2 +W (K, r/2)) ⊂ γ1 − γ2 +W (K, r),

for (γ′, γ′′) ∈ (γ1 +W (K, r/2))× (γ2 +W (K, r/2)) we have γ′ − γ′′ ∈ γ1 − γ2 +
W (K, r), and this shows that (γ′, γ′′) 7→ γ′−γ′′ is continuous, which shows that
Γ is a topological group. Γ is locally compact because it is homeomorphic to the
maximal ideal space ∆ of L1(G), and it is a fact that the maximal ideal space
of any commutative Banach algebra is a locally compact Hausdorff space. This
completes the proof.

A fact that Rudin uses but merely asserts is the following (he refers to it
being true for the Gelfand transform, and then merely asserts its truth there).

Theorem 4. A(Γ) ⊂ C0(Γ).

Proof. Let Γ′ be the weak-* closure of Γ in L1(G)∗. For Λ ∈ Γ′, there is a net
γi ∈ Γ that weak-* converges to Λ. For x, y ∈ G,

Λ(ab) = lim
i
γi(ab) = lim

i
γi(a)γi(b) =

(
lim
i
γi(a)

)(
lim
i
γi(b)

)
= Λ(a)Λ(b).

Similarly, Λ is linear, so Λ is an algebra homomorphism G → C. Hence taking
the closure of Γ in L1(G)∗ has added precisely the map that is identically 0:

Γ′ = Γ ∪ {0}.
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With K = {Λ ∈ L1(G)∗ : ∥Λ∥ ≤ 1}, the Banach-Alaoglu theorem tells us that
K is a weak-* compact subset of L1(G)∗. It is apparent that Γ′ ⊂ K, so Γ′ is a
weak-* compact subset of L1(G)∗.

If f ∈ L1(G) and ϵ > 0, then because f̂ : Γ → C is continuous,

K0 = {γ ∈ Γ : |f̂(γ)| ≥ ϵ}

is a closed subset of Γ. The only way K0 would fail to be a weak-* closed
subset of Γ′ is if 0 belonged to its weak-* closure, and it is straightforward to
see that this is not the case. So K0 is in fact a weak-* closed subset of the
weak-* compact set Γ′, and hence is itself weak-* compact. It follows that K0

is a compact subset of Γ, and this shows that f̂ ∈ C0(Γ).

Now that we know that A(Γ) ⊂ C0(Γ), it does not take long to verify that the
conditions of the Stone-Weierstrass theorem are satisfied (for distinct γ1, γ2 ∈ Γ

there is some f ∈ L1(G) with f̂(γ1) ̸= f̂(γ2); A(Γ) is self-adjoint; for each γ ∈ Γ

there is some f ∈ L1(G) with f̂(γ) ̸= 0), and hence that A(Γ) is dense in C0(Γ).

Theorem 5. If G is discrete then Γ is compact, and if G is compact then Γ is
discrete.

Proof. We remarked earlier that the bijection Γ → ∆ is a homeomorphism,
where ∆ is the maximal ideal space of L1(G) and has the subspace topology
inherited from L1(G)∗ with the weak-* topology. If G is discrete, then L1(G)
is unital, and it is a fact that the maximal ideal space of a unital commutative
Banach algebra is compact, so Γ is compact.

Suppose that G is compact, with Haar measure m satisfing m(G) = 1. If γ ∈
Γ and there is some x0 ∈ G with γ(x0) ̸= 1 (i.e. γ is not the 0 homomorphism),
then ∫

G

⟨x, γ⟩dm(x) = ⟨x0, γ⟩
∫
G

⟨x− x0, γ⟩dm(x) = ⟨x0, γ⟩
∫
G

⟨x, γ⟩dm(x).

As ⟨x0, γ⟩ ≠ 1, this means that
∫
G
⟨x, γ⟩dm(x) = 0. Therefore,∫

G

⟨x, γ⟩dm(x) =

{
1 γ = 0,

0 γ ̸= 0.

As G is compact, χG ∈ L1(G), and

χ̂G(γ) =

∫
G

χG(x)⟨−x, γ⟩dm(x) =

∫
G

⟨−x, γ⟩dm(x) =

{
1 γ = 0,

0 γ ̸= 0.

χ̂G is continuous, so {γ ∈ Γ : χ̂G(γ) = 0} is a closed subset of Γ, hence its
complement {γ ∈ Γ : χ̂G(γ) ̸= 0} is an open subset of Γ. But by the above
this complement is {0}, and Γ is a topological group so this implies that each
singleton is open, meaning that Γ is discrete.

8



4 Regular complex Borel measures on G

Let M(G) be the set of regular complex Borel measures on G. If E is a Borel
set in G, define En = {(x1, . . . , xn) : x1 + · · ·+ xn ∈ E}, which is a Borel set in
Gn. For µ1, . . . , µn ∈M(G), we define

(µ1 ∗ · · · ∗ µn)(E) = (µ1 × · · · × µn)(En).

It is proved in Rudin7 that µ1 ∗ · · · ∗ µn ∈M(G), and that with convolution as
multiplication and norm ∥µ∥ = |µ|(G) (the total variation norm), M(G) is a
commutative Banach algebra with unity δ0.

The Fourier transform of µ ∈M(G) is the function µ̂ : Γ → C defined by

µ̂(γ) =

∫
G

⟨−x, γ⟩dµ(x), γ ∈ Γ.

We write B(Γ) = {µ̂ : µ ∈ M(G)}. For f ∈ L1(G) we have proved that

f̂ ∈ C0(G). We prove now that for µ ∈ M(G), µ̂ is bounded and uniformly
continuous on Γ. However, δ0 ∈M(G), and for γ ∈ Γ,

δ̂0(γ) =

∫
G

⟨−x, γ⟩dδ0(x) = ⟨0, γ⟩ = γ(0) = 1,

so δ̂0 ̸∈ C0(Γ). The proof is from Rudin.8

Theorem 6. If µ ∈ M(G), then µ̂ : Γ → C is bounded and uniformly continu-
ous.

Proof. For any γ ∈ Γ,

|µ̂(γ)| ≤
∫
G

|⟨−x, γ⟩|d|µ|(x) =
∫
G

d|µ|(x) = |µ|(G) <∞,

where |µ| is the variation of µ. Hence µ̂ is bounded.
|µ| is regular, so for any δ > 0 there is some compact set K such that

|µ|(K ′) < δ, where K ′ = G \K. For γ1, γ2 ∈ Γ, ⟨x, γ1 − γ2⟩ = ⟨x, γ1⟩⟨x, γ2⟩−1

and hence
|⟨x, γ1⟩ − ⟨x, γ2⟩| = |1− ⟨x, γ1 − γ2⟩|,

with which we get

|µ̂(γ1)− µ̂(γ2)| ≤
∫
G

|1− ⟨x, γ1 − γ2⟩|d|µ|(x).

We know that W (K, δ) defined in Theorem 3 is an open neighborhood of 0. If
γ1 − γ2 ∈ W (K, δ), then by the definition of W (K, δ), for all x ∈ K we have
|1− ⟨x, γ1 − γ2⟩| < δ, giving∫

G

|1− ⟨x, γ1 − γ2⟩|d|µ|(x) ≤
∫
K

δd|µ|(x) +
∫
K′

2d|µ|(x) < δ∥µ∥+ 2δ,

7Walter Rudin, Fourier Analysis on Groups, p. 13, §1.3.1.
8Walter Rudin, Fourier Analysis on Groups, p. 15, §1.3.3.
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showing that µ̂ is uniformly continuous.

If f ∈ L1(G), we define µf ∈M(G) by

µf (E) =

∫
E

f(x)dm(x),

for Borel subsets E of G, where m is Haar measure on G. Thus, µf is absolutely
continuous with respect to m and has density f . Then, for γ ∈ Γ,

µ̂f (γ) =

∫
G

⟨−x, γ⟩dµf (x) =

∫
G

⟨−x, γ⟩f(x)dm(x) = f̂(γ),

showing that A(Γ) ⊂ B(Γ). Furthermore, ∥f∥1 = ∥µf∥, hence it makes sense to
identify L1(G) with its image in M(G) under the map f 7→ µf . To talk about
a function that belongs to M(G) is to speak about µf for some f ∈ L1(G). It
is proved in Rudin that L1(G) is a closed ideal in the Banach algebra M(G).9

Rudin calls the following theorem the uniqueness theorem.10

Theorem 7. If µ ∈M(Γ) and∫
Γ

⟨x, γ⟩dµ(γ) = 0

for all x ∈ G, then µ = 0.

Proof. Let f ∈ L1(G).∫
Γ

f̂(γ)dµ(γ) =

∫
Γ

∫
G

f(x)⟨−x, γ⟩dm(x)dµ(γ)

=

∫
G

f(x)

∫
Γ

⟨−x, γ⟩dµ(γ)dm(x)

= 0.

Because A(Γ) is dense in C0(Γ), it follows that for all ϕ ∈ C0(Γ),∫
Γ

ϕdµ = 0,

and this implies that µ = 0.

5 Positive-definite functions

A function ϕ : G → C is called positive-definite if for every N and every
x1, . . . , xN ∈ G, c1, . . . , cN ∈ C, we have

N∑
n,m=1

cncmϕ(xn − xm) ≥ 0. (2)

9Walter Rudin, Fourier Analysis on Groups, p. 16, §1.3.4.
10Walter Rudin, Fourier Analysis on Groups, p. 17, §1.3.6.
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In particular, the left-hand side of the above inequality is real.
Let ϕ be a character of G, which we do not assume to be continuous. Then,

N∑
n,m=1

cncmϕ(xn − xm) =

N∑
n,m=1

cncmϕ(xn)ϕ(xm) =

∣∣∣∣∣
N∑

n=1

cnϕ(xn)

∣∣∣∣∣
2

≥ 0,

so any character of G, whether or not it is continuous, is positive-definite.

Lemma 8. If ϕ : G→ C is positive-definite, then

ϕ(0) ≥ 0,

ϕ(−x) = ϕ(x), |ϕ(x)| ≤ ϕ(0), x ∈ G,

and
|ϕ(x)− ϕ(y)|2 ≤ 2ϕ(0)Re (ϕ(0)− ϕ(x− y)), x, y ∈ G.

Proof. Take N = 1, c1 = 1, x1 = 0. Then (2) is

ϕ(0) ≥ 0.

Take N = 2, x1 = 0, x2 = x, c1 = 1, c2 = c. Then (2) is

ϕ(0) + cϕ(−x) + cϕ(x) + |c|2ϕ(0) ≥ 0. (3)

Because ϕ(0) is real, this means that cϕ(x) + cϕ(−x) is real, hence is equal to
its own complex conjugate. Writing ϕ(x) = A + iB and ϕ(−x) = C + iD, for
c = 1 this implies that

A+ iB + C + iD = A− iB + C − iD

and for c = i this is

iA−B − iC +D = −iA−B + iC +D.

The first equation tells us B+D = 0, and the second equation tells us A−C = 0.
Thus

ϕ(−x) = C + iD = A− iB = ϕ(x).

Use (3) with c chosen so that cϕ(x) = −|ϕ(x)|. |c| = 1, and using ϕ(−x) =
ϕ(x),

2ϕ(0) + 2|ϕ(x)| ≥ 0.

Take N = 3, x1 = 0, x2 = x, x3 = y, c1 = 1, λ ∈ R,

c2 =
λ|ϕ(x)− ϕ(y)|
ϕ(x)− ϕ(y)

,

11



c3 = −c2; since ϕ(0) ≥ 0, the claim is obviously true for the case x = y, which
we discard. Then (2) is

(1+2|c2|2)ϕ(0)+c2(ϕ(−x)−ϕ(−y))+c2(ϕ(x)−ϕ(y))−|c2|2(ϕ(x−y)+ϕ(y−x)) ≥ 0.

Using the definition of c2 and the fact that ϕ(z) = ϕ(−z),

(1 + 2λ2)ϕ(0) + 2λ|ϕ(x)− ϕ(y)| − λ2(ϕ(x− y) + ϕ(x− y)) ≥ 0,

or
λ2(2ϕ(0)− 2Reϕ(x− y)) + 2λ|ϕ(x)− ϕ(y)|+ ϕ(0) ≥ 0.

The fact that this quadratic polynomial does not take negative values implies
that it has either 0 or 1 real roots, and hence that its discriminant is ≤ 0:

4|ϕ(x)− ϕ(y)|2 − 4(2ϕ(0)− 2Reϕ(x− y))ϕ(0) ≤ 0,

which is the claim.

We remind ourselves that f∗(x) = f(−x).

Theorem 9. If f ∈ L2(G), then ϕ = f ∗ f∗ is positive-definite and belongs to
C0(G).

Proof.

N∑
n,m=1

cncmϕ(xn − xm) =

N∑
n,m=1

cncm

∫
G

f(xn − xm − y)f(−y)dy

=

N∑
n,m=1

cncm

∫
G

f(xn − y)f(xm − y)dy

=

∫
G

∣∣∣∣∣
N∑

n=1

cnf(xn − y)

∣∣∣∣∣
2

dy

≥ 0.

It is a fact that if 1 < p < ∞, 1
p + 1

q = 1 and f ∈ Lp(G), g ∈ Lq(G), then

f ∗ g ∈ C0(G).
11

The following theorem is from Rudin.12

Theorem 10. If µ ∈M(Γ), µ ≥ 0 (i.e. µ = |µ|), and

ϕ(x) =

∫
Γ

⟨x, γ⟩dµ(γ), x ∈ G,

then ϕ is uniformly continuous and positive-definite.

11Walter Rudin, Fourier Analysis on Groups, p. 4, §1.1.6.
12Walter Rudin, Fourier Analysis on Groups, p. 19, §1.4.2.
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Proof.

N∑
n,m=1

cncmϕ(xn − xm) =

∫
Γ

N∑
n,m=1

cncm⟨xn − xm, γ⟩dµ(γ)

=

∫
Γ

N∑
n,m=1

cncm⟨xn, γ⟩⟨xm, γ⟩dµ(γ)

=

∫
Γ

∣∣∣∣∣
N∑

n=1

cn⟨xn, γ⟩

∣∣∣∣∣
2

dµ(γ)

≥ 0,

showing that ϕ is positive-definite.
µ is regular, so for any δ > 0 there is a compact set C such that µ(C ′) <

δ, where C ′ = Γ \ C. We know V (C, δ) defined in Theorem 3 is an open
neighborhood of 0. If x1 − x2 ∈ V (C, δ), then by the definition of V (C, δ), for
all γ ∈ C we have |1− ⟨x1 − x2, γ⟩| < δ, and so

|ϕ(x1)− ϕ(x2)| ≤
∫
Γ

|1− ⟨x1 − x2, γ⟩|dµ(γ)

=

∫
C

|1− ⟨x1 − x2, γ⟩|dµ(γ) +
∫
C′

|1− ⟨x1 − x2, γ⟩|dµ(γ)

≤
∫
C

δdµ(γ) +

∫
C′

2dµ(γ)

< δ∥µ∥+ 2δ.

The above theorem shows that the inverse Fourier transform of a nonnegative
measure on Γ is a uniformly continuous positive-definite function on G. The
following theorem shows that any continuous positive-definite function on G has
this form. We remind ourselves that if a positive-definite function is continuous
then it is uniformly continuous, by Lemma 8. We are following the proof given
in Rudin.13

Theorem 11 (Bochner’s theorem). If ϕ : G → C is uniformly continuous and
positive-definite, then there is some nonnegative measure µ ∈M(Γ) such that

ϕ(x) =

∫
Γ

⟨x, γ⟩dµ(γ), x ∈ G.

Proof. As ϕ is positive-definite, ϕ(0) is a nonnegative real number, and |ϕ(x)| ≤
ϕ(0) for all x ∈ G. If ϕ(0) = 0 then use µ = 0. Otherwise, it makes sense
to divide ϕ by ϕ(0) and the resulting function is also continuous and positive-
definite. Thus without loss of generality we suppose that ϕ(0) = 1.

13Walter Rudin, Fourier Analysis on Groups, p. 19, §1.4.3.
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Using the fact that ϕ is positive-definite one shows that for any f ∈ Cc(G),∫
G

∫
G
f(x)f(y)ϕ(x− y)dm(x)dm(y) is nonnegative by approximating this inte-

gral with finite sums. Then as Cc(G) is dense in L1(G), the previous integral is
nonnegative for any f ∈ L1(G). We define Tϕ : L1(G) → C by

Tϕ(f) =

∫
G

fϕdm, f ∈ L1(G),

and define, for f, g ∈ L1(G),

[f, g] = Tϕ(f ∗ g∗)

=

∫
G

(f ∗ g∗)(x)ϕ(x)dm(x)

=

∫
G

∫
G

f(x− y)g(−y)ϕ(x)dm(y)dm(x)

=

∫
G

∫
G

f(x)g(y)ϕ(x− y)dm(x)dm(y).

Therefore, [f, f ] ≥ 0, and thus [·, ·] is an inner product on L1(G) and hence
satisfies the Cauchy-Schwarz inequality:

|[f, g]|2 ≤ [f, f ][g, g], f, g ∈ L1(G).

Suppose that V is a symmetric neighborhood of 0 in G and define g = χV

m(V ) .

[f, g]− Tϕ(f) =

∫
G

∫
G

f(x)g(y)ϕ(x− y)dm(x)dm(y)−
∫
G

f(x)ϕ(x)dm(x)

=

∫
G

1

m(V )

∫
V

f(x)ϕ(x− y)dm(y)dm(x)

−
∫
G

1

m(V )

∫
V

f(x)ϕ(x)dm(y)dm(x)

=

∫
G

f(x)
1

m(V )

∫
V

(ϕ(x− y)− ϕ(x))dm(y)dm(x)

and

[g, g]− 1 =
1

m(V )2

∫
V

∫
V

(ϕ(x− y)− 1)dm(x)dm(y).

Because ϕ is uniformly continuous, for any δ > 0 there is some V such that both
these integrals have absolute value < δ, and then using the Cauchy-Schwarz
inequality we get

|Tϕ(f)|2 ≤ [f, f ], f ∈ L1(G). (4)

Let f ∈ L1(G) and define h = f ∗ f∗ and hn = hn−1 ∗ h for n ≥ 2. |ϕ(x)| ≤
ϕ(0) = 1 tells us ∥ϕ∥∞ = 1 and so ∥Tϕ∥ ≤ 1. In fact, one checks that ∥Tϕ∥ = 1.
Applying (4) to h, h2, h4, . . . we obtain

|Tϕ(f)|2 ≤ Tϕ(f ∗ f∗) = Tϕ(h) ≤ (Tϕ(h ∗ h∗))1/2 = (Tϕ(h
2))1/2 ≤ . . . ,

14



so for any n ≥ 1, because ∥Tϕ∥ = 1,

|Tϕ(f)|2 ≤ (Tϕ(h
2n))2

−n

≤ ∥h2
n

∥2
−n

1 .

The spectral radius formula tells us that

lim
n→∞

∥h2
n

∥2
−n

1 = ∥ĥ∥∞.

But ĥ = f̂ f̂∗ = |f̂ |2, so |Tϕ(f)|2 ≤ ∥f̂∥2∞, i.e.

|Tϕ(f)| ≤ ∥f̂∥∞, f ∈ L1(G).

We define Sϕ on A(Γ) by Sϕ(f̂) = Tϕ(f); this makes sense because if f̂1 = f̂2
then |Tϕ(f1 − f2)| ≤ ∥f̂1 − f̂2∥∞ = 0, so Tϕ(f1) = Tϕ(f2). The above inequality
means that

|Sϕ(f̂)| ≤ ∥f̂∥∞, f̂ ∈ A(Γ).

Therefore Sϕ is a bounded linear functional on A(Γ), and because A(Γ) is dense
in C0(Γ), Sϕ can be extended to a bounded linear functional on C0(Γ) with
norm ∥Tϕ∥ = 1. But Γ is a locally compact Hausdorff space, so by the Riesz
representation theorem there is a unique measure µ ∈M(Γ) such that

Sϕ(g) =

∫
Γ

g(−γ)dµ(γ), g ∈ C0(Γ),

and ∥µ∥ = ∥Sϕ∥ = 1; we state the above with g(−γ) rather than g(γ) for later
convenience. For f ∈ L1(G),

Tϕ(f) = Sϕ(f̂)

=

∫
Γ

f̂(−γ)dµ(γ)

=

∫
Γ

∫
G

f(x)⟨−x,−γ⟩dm(x)dµ(γ)

=

∫
G

f(x)

(∫
Γ

⟨x, γ⟩dµ(γ)
)
dm(x).

But the definition of Tϕ states

Tϕ(f) =

∫
G

f(x)ϕ(x)dm(x).

Since these two expressions for Tϕ(f) are equal for all f ∈ L1(G), we get that∫
Γ

⟨x, γ⟩dµ(γ) = ϕ(x)

for almost all x ∈ G. Since both sides of the above equality are continuous, they
are equal for all x ∈ G. For x = 0,

1 = ϕ(0) =

∫
Γ

⟨0, γ⟩dµ(γ) =
∫
Γ

dµ(γ) ≤
∫
Γ

d|µ|(γ) ≤ ∥µ∥ = 1.

Hence
∫
Γ
dµ(γ) =

∫
Γ
d|µ|(γ), from which it follows that µ = |µ|, and therefore

µ is a nonnegative measure.
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6 The inversion theorem

Define B(G) to be the set of those f : G→ C for which there is some µf ∈M(Γ)
such that

f(x) =

∫
Γ

⟨x, γ⟩dµf (γ), x ∈ G.

It is apparent from Theorem 7 that there is at most one µf ∈ M(Γ) such that
the above holds.

The following proof is from Rudin.14

Theorem 12 (Inversion theorem). If f ∈ L1(G) ∩B(G), then f̂ ∈ L1(Γ).
If the Haar measure m on G is fixed, then there is a Haar measure mΓ on

Γ such that for all f ∈ L1(G) ∩B(G),

f(x) =

∫
Γ

f̂(γ)⟨x, γ⟩dmΓ(γ), x ∈ G.

Proof. Write B1 = L1(G) ∩B(G). For f ∈ B1 and h ∈ L1(G),

(h ∗ f)(0) =

∫
G

h(x)f(−x)dm(x)

=

∫
G

h(x)

∫
Γ

⟨−x, γ⟩dµf (γ)dm(x)

=

∫
Γ

ĥ(γ)dµf (γ).

For g ∈ B1, we have h ∗ g ∈ L1(G) and h ∗ f ∈ L1(G), and so using the above
equality,∫

Γ

ĥ ∗ gdµf = ((h ∗ g) ∗ f)(0) = ((h ∗ f) ∗ g)(0) =
∫
Γ

ĥ ∗ fdµg,

hence ∫
Γ

ĥĝdµf =

∫
Γ

ĥf̂dµg, f, g ∈ B1, h ∈ L1(G).

Because A(Γ) is dense in C0(Γ) and the above holds for all h ∈ L1(G), it follows
that

ĝdµf = f̂dµg, f, g ∈ B1. (5)

We define T : Cc(Γ) → C as follows. Let ψ ∈ Cc(Γ), K = suppψ. For
γ0 ∈ K, there is some ϕ ∈ C0(Γ) such that ϕ(γ0) ̸= 0, and because A(Γ) is

dense in C0(Γ) there is therefore some f ∈ L1(G) such that f̂(γ0) ̸= 0. With

δ = |f̂(γ0)|, there is some u ∈ Cc(G) with ∥u− f∥1 < δ, and

|û(γ0)− f̂(γ0)| ≤ ∥u− f∥1 < δ,

14Walter Rudin, Fourier Analysis on Groups, p. 22, §1.5.1.
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which shows that û(γ0) ̸= 0. û ∗ u∗ = |û|2 ≥ 0, so there is some open neighbor-

hood U of γ0 on which û ∗ u∗ is positive, as it is a continuous function. Since
K is compact, it is covered by finitely many of these open neighborhoods. Call
the corresponding functions u1, . . . , un ∈ Cc(G), and write

g = u1 ∗ u∗1 + · · ·+ un ∗ u∗n.

g satisfies ĝ(γ) > 0 for all γ ∈ K. Because each un belongs to Cc(G), un ∗ u∗n
belongs to Cc(G) and so g ∈ Cc(G). Moreover, by Theorem 9, each un ∗ u∗n is
positive-definite, and one checks that as g is a linear combination of positive-
definite functions with nonnegative coefficients it is itself positive-definite. Be-
cause g is positive-definite, by Bochner’s theorem it belongs to B(G), and be-
cause g ∈ Cc(G), g belongs to L1(G). Hence g ∈ B1. We have now proved that
there is at least one element of B1 whose Fourier transform does not vanish on
K. Suppose that f is any such function. Then using (5),∫

Γ

ψ

f̂
dµf =

∫
Γ

ψ

f̂ ĝ
ĝdµf =

∫
Γ

ψ

f̂ ĝ
f̂dµg =

∫
G

ψ

ĝ
dµg.

Thus, it makes sense to define

Tψ =

∫
Γ

ψ

ĝ
dµg. (6)

One checks that T is linear. Because g is positive-definite, the measure µg

supplied by Bochner’s theorem is nonnegative, and hence if ψ ≥ 0 then Tψ ≥ 0,
namely, T is positive. There are f ∈ B1 and ψ ∈ Cc(G) such that

∫
Γ
ψdµf ̸= 0,

and ψf̂ ∈ Cc(G), so there is some g ∈ B1 satisfying

T (ψf̂) =

∫
Γ

ψf̂

ĝ
dµg =

∫
Γ

ψdµf ̸= 0,

showing that T ̸= 0.
Let ψ ∈ Cc(Γ) and γ0 ∈ Γ. There is some g ∈ B1 such that ĝ is positive on

both K and K+γ0. For f(x) = ⟨−x, γ0⟩g(x), x ∈ G, we have f̂(γ) = ĝ(γ+γ0),
γ ∈ Γ, and µf (E) = µg(E − γ0). For ψ0 ∈ Cc(Γ) defined by ψ0(γ) = ψ(γ − γ0),

Tψ0 =

∫
Γ

ψ(γ − γ0)

ĝ(γ)
dµg(γ) =

∫
Γ

ψ(γ)

f̂(γ)
dµf (γ) = Tψ,

showing that T is translation invariant. Then by the Riesz representation the-
orem, there is some nonnegative regular measure mΓ on Γ satisfying

Tψ =

∫
Γ

ψdmΓ, ψ ∈ Cc(Γ).

This measure mΓ is translation invariant and not the zero measure because T
has these properties, and this means that it is a Haar measure on Γ.
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For f ∈ B1, ∫
Γ

ψdµf = T (ψf̂) =

∫
Γ

ψf̂dmΓ, ψ ∈ Cc(Γ),

which implies that
dµf = f̂dmΓ, f ∈ B1.

Because ∥µf∥ <∞ (as µf ∈M(Γ)), the above equality implies that f̂ ∈ L1(Γ).
Moreover, by the definition of µf , for any x ∈ G we have

f(x) =

∫
Γ

⟨x, γ⟩dµf (γ) =

∫
Γ

⟨x, γ⟩f̂dmΓ(γ).

Using the inversion theorem, we prove the following lemma.15

Lemma 13. {x0 + V (C, r) : x0 ∈ G, C is a compact subset of G, r > 0} is a
basis for the topology of G.

Γ separates points in G.

Proof. Let mΓ be the Haar measure on Γ specified in the inversion theorem.
Suppose that V is a neighborhood of 0 in G. LetW be a compact neighborhood
of 0 in G satisfying W −W ⊂ V . (One proves that there are such W .) Define
f = χW√

m(W )
and g = f ∗ f∗. g is continuous and positive-definite, and supp g ⊂

W −W . Because g is continuous and positive-definite, by Bochner’s theorem it
belongs to B(G), and because supp g ⊂W −W it belongs to L1(G), so we can
apply the inversion theorem to get ĝ ∈ L1(Γ) and∫

Γ

ĝdmΓ(γ) = g(0) =

∫
G

f(−y)f(−y)dm(y) =

∫
G

|f(y)|2dm(y) = 1.

Because ĝ = |f̂ |2 ≥ 0, there is a compact set C in Γ such that∫
C

ĝ(γ)dmΓ(γ) >
2

3
.

To say that x ∈ V (C, 1/3) means |1 − ⟨x, γ⟩| < 1
3 for all γ ∈ C and hence

Re ⟨x, γ⟩ > 2
3 , and satisfies

g(x) = Re

∫
C

ĝ(γ)⟨x, γ⟩dmΓ(γ) + Re

∫
C′
ĝ(γ)⟨x, γ⟩dmΓ(γ).

The first term is > 4
9 and the second term has absolute value < 1

3 , so g(x) >
1
9

for x ∈ V (C, 1/3). But g(x) > 1
9 means that x ∈ supp g =W −W ⊂ V , so

V (C, 1/3) ⊂ V,

15Walter Rudin, Fourier Analysis on Groups, p. 23, §1.5.2.
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from which it follows that V (C, r), C compact and r > 0, is a local basis at 0.
For x0 ∈ G, x0 ̸= 0, let V be a neighborhood of 0 that does not include

x0, and the above gives x ̸∈ V (C, 1/3), i.e., there is some γ ∈ Γ such that
|1−⟨x, γ⟩| ≥ 1

3 , and hence ⟨x, γ⟩ ≠ 1. Therefore, if x1 ̸= x2, there is some γ ∈ Γ
such that ⟨x1 − x2, γ⟩ ̸= 1, and hence ⟨x1, γ⟩ ̸= ⟨x2, γ⟩, which is what it means
to say that Γ separates points in G.

7 Pontryagin duality theorem

The dual group Γ of G is itself a locally compact abelian group and so has a
dual group Γ̂. We proved in Theorem 3 that (x, γ) 7→ ⟨x, γ⟩ is continuous, and
therefore for any x ∈ G, the function α(x) : Γ → C defined by

⟨γ, α(x)⟩ = ⟨x, γ⟩, γ ∈ Γ,

belongs to Γ̂. For x, y ∈ G, α(xy) ∈ Γ̂ satisfies

⟨γ, α(xy)⟩ = ⟨xy, γ⟩ = ⟨x, γ⟩⟨y, γ⟩ = ⟨γ, α(x)⟩⟨γ, α(y)⟩,

showing that α : G → Γ̂ is a homomorphism. The following theorem, proved
in Rudin,16 shows that α is an isomorphism of topological groups. That is, it
states that a locally compact abelian group is isomorphic as a topological group
to its double dual. Let LCA denote the category of locally compact abelian
groups, where morphisms are continuous group homomorphisms. Taking the
double dual of an element of LCA is a functor, and it can be proved that there
is a natural isomorphism between the identity functor in LCA and the double
dual functor.17

Theorem 14 (Pontryagin duality theorem). α : G→ Γ̂ defined by

⟨γ, α(x)⟩ = ⟨x, γ⟩, γ ∈ Γ,

is an isomorphism of topological groups.

We proved earlier that if G is discrete then Γ is compact and that if G is
compact then Γ is discrete, but had not established that if Γ is compact then G
is discrete or if Γ is discrete then G is compact, but we obtain these conclusions
from the Pontryagin duality theorem: if Γ is compact then Γ̂ is discrete, and G
is isomorphic as a topological group to Γ̂ so G is discrete, and likewise if Γ is
discrete then G is compact.

8 Further reading

Keith Conrad, http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/
characterQ.pdf works out explicitly the form of all characters of Q, and shows

16Walter Rudin, Fourier Analysis on Groups, p. 28, §1.7.2.
17For more, see the nLab page: http://ncatlab.org/nlab/show/Pontrjagin+dual
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that the group of all characters of Q (namely, the dual group of Q when Q has
the discrete topology), is isomorphic as a group to the quotient group AQ/Q.
This gives a satisfying reason for caring about the p-adic numbers Qp and the
adeles AQ.
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