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1 Measurable spaces

Let R = R ∪ {−∞,∞}, with the order topology. We assign R the Borel σ-
algebra. It is a fact that for E ⊂ R, E ∈ BR if and only if E \ {−∞,∞} ∈ BR.

Theorem 1. Let (Ω,Σ) be a measurable space. If fj is a sequence of measurable
functions Ω → R, then for each k,

gk(x) = sup
j≥k

fj(x), hk(x) = inf
j≥k

fj(x),

are measurable Ω → R, and

g(x) = lim sup
j→∞

fj(x), h(x) = lim inf
j→∞

fj(x),

are measurable Ω → R.

Proof. Let a ∈ R. For each j, f−1
j (a,∞] ∈ Σ, so

∞⋃
j=k

f−1
j (a,∞] ∈ Σ.

For each j ≥ k,

f−1
j (a,∞] ⊂

{
x ∈ Ω : sup

i≥k
fi(x) > a

}
,

so
∞⋃
j=k

f−1
j (a,∞] ⊂

{
x ∈ Ω : sup

i≥k
fi(x) > a

}
.

If y ̸∈
⋃∞

j=k f
−1
j (a,∞], then for each j ≥ k, fj(y) ≤ a, hence gk(y) ≤ a, which

means that y ̸∈ {x ∈ Ω : gk(x) > a}. Therefore,
∞⋃
j=k

f−1
j (a,∞] = {x ∈ Ω : gk(x) > a} ,
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and thus g−1
k (a,∞] ∈ Σ. Because this is true for all a ∈ R and BR is generated

by the collection {(a,∞] : a ∈ R}, it follows that gk : Ω → R is measurable.
That hk is measurable follows from the fact that if f : Ω → R is mea-

surable then −f : Ω → R is measurable, and that hk(x) = infj≥k fj(x) =
− supj≥k(−fj(x)).

For x ∈ Ω,
g(x) = inf

k≥1
gk(x),

and because each gk is measurable it follows that g is measurable. Likewise,

h(x) = sup
k≥1

hk(x),

and because each hk is measurable it follows that h is measurable.

2 Convergence in measure

Let (Ω,Σ, µ) be a probability space. Let L0(µ) be the collection of equivalence
classes of measurable functions Ω → C, where C has the Borel σ-algebra, and
where two functions f and g are equivalent when

µ{x ∈ Ω : f(x) ̸= g(x)} = 0.

L0(µ) is a vector space. For f, g ∈ L0(µ) we define

ρ(f, g) =

∫
Ω

|f − g|
1 + |f − g|

dµ.

This is a metric on L0(µ), and one proves that with this metric L0(µ) is a
topological vector space. We call the topology induced by ρ the topology of
convergence in measure.1

Theorem 2. Suppose that fn is a sequence in L0(µ). fn → 0 in the topology
of convergence in measure if and only if for each ϵ > 0,

lim
n→∞

µ ({x ∈ Ω : |fn(x)| ≥ ϵ}) = 0.

Proof. Suppose that fn → 0 in the topology of convergence in measure and let
ϵ > 0. For each n, let

An = {x ∈ Ω : |fn(x)| ≥ ϵ} =

{
x ∈ Ω :

|fn(x)|
1 + |fn(x)|

≥ ϵ

1 + ϵ

}
.

Because ϵ
1+ϵχAn ≤ |fn|

1+|fn| ,∫
Ω

ϵ

1 + ϵ
χAn

dµ ≤
∫
Ω

|fn|
1 + |fn|

dµ = ρ(fn, 0),

1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 480, Lemma 13.40.
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i.e. µ(An) ≤ 1+ϵ
ϵ ρ(fn, 0), which tends to 0 as n → ∞.

Let ϵ > 0 and for each n, let

An = {x ∈ Ω : |fn(x)| ≥ ϵ} =

{
x ∈ Ω :

|fn(x)|
1 + |fn(x)|

≥ ϵ

1 + ϵ

}
.

Suppose that µ(An) → 0 as n → ∞. There is some nϵ such that n ≥ nϵ implies
that µ(An) < ϵ. For n ≥ nϵ,

ρ(fn, 0) =

∫
An

|fn|
1 + |fn|

dµ+

∫
Ω\An

|fn|
1 + |fn|

dµ

≤
∫
An

1 dµ+

∫
Ω\An

ϵ

1 + ϵ
dµ

=
1 + ϵ

1 + ϵ
µ(An) +

ϵ

1 + ϵ
µ(Ω \An)

=
1

1 + ϵ
µ(An) +

ϵ

1 + ϵ
(µ(An) + µ(Ω \An))

=
1

1 + ϵ
µ(An) +

ϵ

1 + ϵ

<
1

1 + ϵ
· ϵ+ ϵ

1 + ϵ

< 2ϵ.

This shows that fn → 0 in the topology of convergence in measure.

We now prove that if a sequence in L0(µ) converges almost everywhere to 0
then it converges in measure to 0.2

Theorem 3. Suppose that fn is a sequence in L0(µ) and that for almost all
x ∈ Ω, fn(x) → 0 as n → ∞. Then fn → 0 in the topology of convergence in
measure.

Proof. Let ϵ > 0 and let η > 0. Egorov’s theorem tells us that there is some
E ∈ Σ with µ(E) < η such that fn → 0 uniformly on Ω \ E. So there is some
n0 such that if n ≥ n0 and x ∈ Ω \ E then |fn(x)| < ϵ. Thus for n ≥ n0,

µ({x ∈ Ω : |fn(x)| ≥ ϵ}) ≤ µ(E) + µ({x ∈ Ω \ E : |fn(x)| ≥ ϵ})
= µ(E)

< η.

Then µ({x ∈ Ω : |fn(x)| ≥ ϵ}) → 0 as n → ∞, namely, fn → 0 in measure.

Theorem 4. If fn is a sequence in L1(µ) that converges in L1(µ) to 0, then fn
converges in measure to 0.

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.37.
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Proof. Let ϵ > 0 and let An = {x ∈ Ω : |fn(x)| ≥ ϵ}. By Chebyshev’s inequality,

µ(An) ≤
1

ϵ
∥fn∥1 ,

hence µ(An) → 0 as n → ∞, namely, fn converges to 0 in measure.

The following theorem shows that a sequence in L0(µ) that converges in
measure to 0 then it has a subsequence that almost everywhere converges to 0.3

Theorem 5. Suppose that fn is a sequence in L0(µ) that converges in measure
to 0. Then there is a subsequence fa(n) of fn such that for almost all x ∈ Ω,
fa(n)(x) → 0.

Proof. For each n, with ϵ = 1
n , there is some a(n) such that m ≥ a(n) implies

that

µ

({
x ∈ Ω : |fm(x)| ≥ 1

n

})
<

1

2n
.

For each n, let

En =

{
x ∈ Ω : |fa(n)(x)| ≥

1

n

}
,

for which µ(En) <
1
2n . Let

E =

∞⋂
n=1

⋃
m=n

Em,

and for each n,

µ(E) ≤ µ

( ∞⋃
m=n

Em

)
≤

∞∑
m=n

µ(Em) <

∞∑
m=n

1

2m
=

1

2n
· 2 = 21−n.

Because this is true for all n, µ(E) = 0. If x ∈ Ω \ E, then there is some nx

such that x ̸∈
⋃∞

m=nx
Em. This means that for m ≥ nx we have x ̸∈ Em, i.e.

|fa(m)(x)| < 1
m . This implies that for x ̸∈ E, fa(n)(x) → 0 as n → ∞, showing

that for almost all x ∈ Ω, fa(n)(x) → 0 as n → ∞.

We now prove that ρ is a complete metric, namely that L0(µ) with this
metric is an F -space.4

Theorem 6. ρ is a complete metric on L0(µ).

3Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.38.

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 481, Theorem 13.41; Gerald B. Folland, Real Analysis: Modern
Techniques and Their Applications, second ed., p. 61, Theorem 2.30.
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Proof. Suppose that fn is a Cauchy sequence in L0(µ). To prove that fn is
convergent it suffices to prove that fn has a convergent subsequence. If (X, d) is
a metric space and xn is a Cauchy sequence in X, for any N let aN be such that
n,m ≥ aN implies that d(xn, xm) < 1

N and a fortiori d(xn, xm) < 1
aN

. Thus we

presume that fn itself satisfies ρ(fn, fm) < 1
n for m ≥ n.

Let

Ak,m(ϵ) = {x ∈ Ω : |fk(x)−fm(x)| ≥ ϵ} =

{
x ∈ Ω :

|fk(x)− fm(x)|
1 + |fk(x)− fm(x)|

≥ ϵ

1 + ϵ

}
,

for which
ϵ

1 + ϵ
χAk,m(ϵ) ≤

|fk(x)− fm(x)|
1 + |fk(x)− fm(x)|

.

If m ≥ k,

µ(Ak,m(ϵ)) ≤ 1 + ϵ

ϵ

∫
Ω

|fk − fm|
1 + |fk − fm|

dµ =
1 + ϵ

ϵ
ρ(fk, fm) <

1 + ϵ

ϵ

1

k
. (1)

For n = 1 and ϵ1 = 1
21 , let k1 be such that 1+ϵ1

ϵ1
1
k1

≤ 1
21 , i.e. k1 ≥ 21 · 1+ϵ1

ϵ1
. For

n ≥ 1 and ϵn = 1
2n , assume that kn satisfies 1+ϵn

ϵn
1
kn

≤ 1
2n and kn > kn−1. For

ϵn+1 = 1
2n+1 , let kn+1 be such that 1+ϵn+1

ϵn+1

1
kn+1

≤ 1
2n+1 and kn+1 > kn. For any

n we have, because kn ≥ n, 1+ϵn
ϵn

1
kn

≤ 1
2kn

. Then using (1) with m ≥ kn,

µ

(
Akn,m

(
1

2n

))
<

1 + ϵn
ϵn

1

kn
≤ 1

2kn
. (2)

Let gn = fkn
and let

En =

{
x ∈ Ω : |gn+1(x)− gn(x)| ≥

1

2n

}
,

for which, by (2), µ(En) <
1
2n . Let

Fn =

∞⋃
r=n

En,

which satisfies

µ(Fn) ≤
∞∑

r=n

µ(En) <

∞∑
r=n

2−r = 2−n+1.

Hence F =
⋂∞

n=1 Fn satisfies µ(F ) = 0.
If x ̸∈ F , then there is some n for which x ̸∈ Fn, i.e. for each r ≥ n we have

x ̸∈ Er, i.e. for each r ≥ n we have |gr+1(x)− gr(x)| < 2−r. This implies that
for k ≥ n and for any positive integer p,

|gk+p(x)− gk(x)| ≤ |gk+p(x)− gk+p−1(x)|+ · · ·+ |gk+1(x)− gk(x)|
< 2−k−p+1 + · · ·+ 2−k

< 2−k+1,
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so if j ≥ k then
|gj(x)− gk(x)| < 2−k+1. (3)

This shows that if x ̸∈ F then gk(x) is a Cauchy sequence in C, and hence
converges. We define g : Ω → C by

g(x) = χΩ\F (x) lim sup
k→∞

gk(x), x ∈ Ω,

and by Theorem 1, g ∈ L0(µ). For x ̸∈ Fk we have x ̸∈ F and so gl(x) → g(x)
as l → ∞. Then for x ̸∈ Fk and j ≥ k, using (3) we have

|gj(x)−g(x)| ≤ |gj(x)−gl(x)|+ |gl(x)−g(x)| < 2−k+1+ |gl(x)−g(x)| → 2−k+1

as l → ∞, so |gj(x) − g(x)| < 2−k+1. For ϵ > 0, let k be such that 2−k+1 ≤ ϵ.
Then

µ({x ∈ Ω : |gk(x)− g(x)| ≥ ϵ})
≤µ(Fk) + µ({x ∈ Ω \ Fk : |gk(x)− g(x)| ≥ ϵ})
<2−k+1 + µ({x ∈ Ω \ Fk : |gk(x)− g(x)| ≥ 2−k+1})
=2−k+1,

which tends to 0 as k → ∞, showing that gk converges to g in measure, and
because gk is a subsequence of fk this completes the proof.

3 Equi-integrability

Let (Ω,Σ, µ) be a probability space. A subset F of L1(µ) is said to be equi-
integrable if for every ϵ > 0 there is some δ > 0 such that for all E ∈ Σ with
µ(E) ≤ δ and for all f ∈ F , ∫

E

|f |dµ ≤ ϵ.

In other words, to say that F is equi-integrable means that

lim
µ(E)→0

sup
f∈F

∫
E

|f |dµ = 0.

The following theorem gives an equivalent condition for a bounded subset of
L1(µ) to be equi-integrable.5

Theorem 7. Suppose that F is a bounded subset of L1(µ). Then the following
are equivalent:

1. F is equi-integrable.

2. limC→∞ supf∈F

∫
{|f |>C} |f |dµ = 0.

5Fernando Albiac and Nigel J. Kalton, Topics in Banach Space Theory, p. 105, Lemma
5.2.6.
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Proof. Let K = supf∈F ∥f∥1 < ∞ and suppose that F is equi-integrable. For
f ∈ F , Chebyshev’s inequality tells us

µ({|f | > M}) ≤
∥f∥1
M

≤ K

M
.

Because µ({|f | > M}) → 0 as M → ∞ and F is equi-integrable,

lim
M→∞

sup
f∈F

∫
{|f |>M}

|f |dµ = 0.

Suppose now that

lim
M→∞

sup
f∈F

∫
{|f |>M}

|f |dµ = 0. (4)

For E ∈ Σ and f ∈ F , if M > 0 then∫
E

|f |dµ =

∫
E∩{|f |≤M}

|f |dµ+

∫
E∩{|f |>M}

|f |dµ

≤ Mµ(E) +

∫
{|f |>M}

|f |dµ

≤ Mµ(E) + sup
g∈F

∫
{|g|>M}

|g|dµ,

hence

sup
f∈F

∫
E

|f |dµ ≤ Mµ(E) + sup
g∈F

∫
{|g|>M}

|g|dµ. (5)

Let ϵ > 0. By (4) there is some M such that supg∈F

∫
{|g|>M} |g|dµ ≤ ϵ

2 . For

δ = ϵ
2M , if E ∈ Σ and µ(E) ≤ δ then (5) yields

sup
f∈F

∫
E

|f |dµ ≤ Mδ +
ϵ

2
= ϵ,

showing that F is equi-integrable.

Theorem 8 (Absolute continuity of Lebesgue integral). Suppose that f ∈
L1(µ). If ϵ > 0 then there is some δ > 0 such that for any E ∈ Σ with
µ(E) ≤ δ, ∫

E

|f |dµ ≤ ϵ.

Proof. For n ≥ 1, define

gn(x) = min{|f(x)|, n}, x ∈ Ω.
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Then gn is a sequence in L1(µ) such that for each x ∈ Ω, gn(x) is nondecreasing
and gn(x) → |f(x)|, and thus the monotone convergence theorem tells us that

lim
n→∞

∫
Ω

gndµ =

∫
Ω

|f |dµ.

Then there is some N for which

0 ≤
∫
Ω

|f |dµ−
∫
Ω

gNdµ ≤ ϵ

2
.

For δ = ϵ
2N and E ∈ Σ with µ(E) ≤ δ,∫

E

|f |dµ =

∫
E

(|f | − gN )dµ+

∫
E

gNdµ

≤ ϵ

2
+

∫
E

gNdµ

≤ ϵ

2
+Nµ(E)

≤ ϵ

2
+Nδ

= ϵ.

The following is the Vitali convergence theorem.6

Theorem 9 (Vitali convergence theorem). Suppose that f ∈ L0(µ) and fn is
a sequence in L1(µ). Then the following are equivalent:

1. {fn} is equi-integrable, {fn} is bounded in L1(µ), and fn → f in measure.

2. f ∈ L1(µ) and fn → f in L1(µ).

Proof. Suppose that {fn} is equi-integrable and fn → f in measure. Because
fn → f in measure, there is a subsequence fa(n) of fn that converges almost
everywhere to f and so |fa(n)| converges almost everywhere to |f |. Let K =

supn≥1

∥∥fa(n)∥∥1 < ∞. Fatou’s lemma tells us that |f | ∈ L1(µ) and

∥f∥1 ≤ lim inf
n→∞

∥∥fa(n)∥∥1 ≤ K.

Because f ∈ L0(µ) and |f | ∈ L1(µ), f ∈ L1(µ). To show that fn converges to f
in L1(µ), it suffices to show that any subsequence of fn itself has a subsequence
that converges to f in L1(µ). (Generally, a sequence in a topological space
converges to x if and only if any subsequence itself has a subsequence that
converges to x.) Thus, let gn be a subsequence of fn. Because fn converges
to f in measure, the subsequence gn converges to f in measure and so there is

6V. I. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4.
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a subsequence ga(n) of gn that converges almost everywhere to f . Let ϵ > 0.
Because {fn} is equi-integrable, there is some δ > 0 such that for all E ∈ Σ
with µ(E) ≤ δ and for all n, ∫

E

|ga(n)|dµ ≤ ϵ.

If E ∈ Σ with µ(E) ≤ δ, then χEga(n) converges almost everywhere to χEf ,

and supn≥1

∥∥χEga(n)
∥∥
1
≤ ϵ, so by Fatou’s lemma we obtain∫

E

|f |dµ = ∥χEf∥1 ≤ lim inf
n→∞

∥∥χEga(n)
∥∥
1
≤ ϵ.

But because ga(n) converges almost everywhere to f , by Egorov’s theorem there
is some E ∈ Σ with µ(E) ≤ δ such that ga(n) → f uniformly on Ω \ E, and so
there is some n0 such that if n ≥ n0 and x ∈ Ω \ E then |ga(n)(x) − f(x)| ≤ ϵ.
Thus for n ≥ n0,∫

Ω

|ga(n) − f |dµ =

∫
Ω\E

|ga(n) − f |dµ+

∫
E

|ga(n) − f |dµ

≤ µ(Ω \ E)ϵ+

∫
E

|ga(n)|dµ+

∫
E

|f |dµ

≤ ϵ+ ϵ+ ϵ,

which shows that ga(n) → f in L1(µ). That is, we have shown that for any
subsequence gn of fn there is a subsequence ga(n) of gn that converges to f in
L1(µ), which implies that the sequence fn converges to f in L1(µ).

Suppose that f ∈ L1(µ) and fn → f in L1(µ). First, because the sequence
fn is convergent in L1(µ) the set {fn} is bounded in L1(µ). Second, fn → f in
L1(µ) implies that fn → f in measure. Third, for ϵ > 0, let n0 such that n ≥ n0

implies that ∥fn − f∥1 ≤ ϵ. For each 1 ≤ n < n0, by Theorem 8 there is some
δfn > 0 such that for E ∈ Σ and µ(E) ≤ δfn ,∫

E

|fn|dµ ≤ ϵ,

and likewise there is some δf such that for E ∈ Σ and µ(E) ≤ f ,∫
E

|f |dµ ≤ ϵ.

Let δ > 0 be the minimum of δf1 , . . . , δfn−1
, δf . Thus if E ∈ Σ and µ(E) ≤ δ,

then for 1 ≤ n < n, ∫
E

|fn|dµ ≤ ϵ,

and for for n ≥ n0,∫
E

|fn|dµ ≤
∫
E

|fn − f |dµ+

∫
E

|f |dµ ≤ ∥fn − f∥1 +
∫
E

|f |dµ ≤ ϵ+ ϵ.

This shows that {fn} is equi-integrable, completing the proof.
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The following is the de la Vallée-Poussin criterion for equi-integrability.7

Theorem 10 (de la Vallée-Poussin criterion). Suppose that F ⊂ L1(µ). F is
bounded and equi-integrable if and only if there is a there nonnegative nonde-
creasing function G on [0,∞) such that

lim
t→∞

G(t)

t
= ∞ and sup

f∈F

∫
Ω

G(|f(x)|)dµ(x) < ∞, (6)

and if there is a nonnegative nondecreasing function G satisfying (6) then there
is a convex nonnegative nondecreasing function G satisfying (6).

Proof. Suppose that G is a nonnegative nondecreasing function on [0,∞) satis-
fying (6). Let

sup
f∈F

∫
Ω

G(|f(x)|)dµ(x) ≤ M < ∞.

For ϵ > 0, there is some C such that t ≥ C implies that G(t)
t ≥ M

ϵ , and hence, for

f ∈ F , if x ∈ Ω and |f(x)| ≥ C then G(|f(x)|)
|f(x)| ≥ M

ϵ , i.e. |f(x)| ≤ ϵ
MG(|f(x)|),

which yields∫
{|f |≥C}

|f |dµ ≤
∫
{|f |≥C}

ϵ

M
G(|f(x)|)dµ(x) ≤ ϵ

M
·M = ϵ.

Therefore by Theorem 7, F is bounded and equi-integrable.
Suppose that F is bounded and equi-integrable. For f ∈ F and j ≥ 1, let

µj(f) = µ({x ∈ Ω : |f(x)| > j}) ∈ Σ.

By induction, because F is bounded and equi-integrable there is a strictly
increasing sequence of positive integers Cn such that for each n,

sup
f∈F

∫
{|f |>Cn}

|f |dµ ≤ 2−n. (7)

For f ∈ F and n ≥ 1,∫
{|f |>Cn}

|f |dµ =

∞∑
j=Cn

∫
{j<|f |≤j+1}

|f |dµ

≥
∞∑

j=Cn

jµ({x ∈ Ω : j < |f(x)| ≤ j + 1})

=

∞∑
j=Cn

j(µj(f)− µj+1(f))

=

∞∑
j=Cn

µj(f).

7V. I. Bogachev, Measure Theory, volume I, p. 272, Theorem 4.5.9.
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Using this and (7), for f ∈ F ,

∞∑
n=1

∞∑
j=Cn

µj(f) ≤
∞∑

n=1

∫
{|f |>Cn}

|f |dµ

≤
∞∑

n=1

2−n

= 1.

For n ≥ 0 we define

αn =

{
0 n < C1

max{k : Ck ≤ n} n ≥ C1.

It is straightforward that αn → ∞ as n → ∞. We define a step function g on
[0,∞) by

g(t) =
∞∑

n=0

αnχ(n,n+1](t), 0 ≤ t < ∞,

and we define a function G on [0,∞) by

G(t) =

∫ t

0

g(s)ds, 0 ≤ t < ∞.

It is apparent that G is nonnegative and nondecreasing. For t1, t2 ∈ [0,∞),
t1 ≤ t2, by the fundamental theorem of calculus,

G′(t1)(t2 − t1) = g(t1)(t2 − t1) ≤ G(t2)−G(t1),

showing that G is convex. The above inequality also yields that for t > 0,
G(t)
t ≥ g(t/2)

2 , and g(t/2) → ∞ as t → ∞ so we get that limt→∞
G(t)
t = ∞. For

f ∈ F , using G(0) = 0, G(1) = 0, and for n ≥ 1,

G(n+ 1) ≤ g(1) + g(2) + · · ·+ g(n+ 1) = α0 + α1 + · · ·+ αn = α1 + · · ·+ αn,
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we get∫
Ω

G(|f(x)|)dµ(x) =
∫
{|f |=0}

G(|f(x)|)dµ(x) +
∞∑

n=0

∫
{n<|f |≤n+1}

G(|f(x)|)dµ(x)

≤
∞∑

n=0

∫
{n<|f |≤n+1}

G(n+ 1)dµ(x)

=

∞∑
n=1

(µn(f)− µn+1(f))G(n+ 1)

≤
∞∑

n=1

(µn(f)− µn+1(f))

n∑
j=1

αj

=

∞∑
n=1

µn(f)αn

=

∞∑
n=1

∞∑
j=Cn

µj(f)

≤ 1,

showing that supf∈F

∫
Ω
G(|f(x)|)dµ(x) < ∞, which completes the proof.
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