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1 Measurable spaces

Let R = R U {—00, 00}, with the order topology. We assign R the Borel o-
algebra. It is a fact that for F C R, E € %y if and only if E'\ {—00,00} € HBr.

Theorem 1. Let (£, Y) be a measurable space. If f; is a sequence of measurable
functions 2 — R, then for each k,

gr(x) =sup fi(z),  hi(e) = inf fj(z),
>k jzk

are measurable Q — R, and

g(z) = limsup f;(x), h(z) = liminf f;(z),

j—>00 Jj—o0o
are measurable 2 — R.

Proof. Let a € R. For each j, fj_l(a,oo] €3, s0

U fj_l(a,oo] S
j=k

For each 7 > k,

f{l(a,oo] C {a: € Q:sup fi(x) > a} ,

i>k
SO

[j S (a,00] C {x € Q:sup fi(z) > a} ,

i>k

j=k
Ity ¢ U;2, fj_l(a,oo], then for each j >k, f;(y) < a, hence gx(y) < a, which
means that y & {x € Q: gp(x) > a}. Therefore,

U fj_l(a,oo] ={zr e Q:g(x)>a},
=k
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and thus g,;l(a, oo] € X. Because this is true for all @ € R and %y is generated

by the collection {(a,o0] : @ € R}, it follows that gj, :  — R is measurable.
That hj is measurable follows from the fact that if f : Q@ — R is mea-

surable then —f : Q@ — R is measurable, and that hy(x) = inf;>x fj(z) =

—sup;>.(—f;(@)).
For z € Q,

=1 f
g(x) = inf gi(z),
and because each gj is measurable it follows that g is measurable. Likewise,

h(z) = sup hi(x),
k>1

and because each hj is measurable it follows that h is measurable. O

2 Convergence in measure

Let (2,3, 1) be a probability space. Let L°(u) be the collection of equivalence
classes of measurable functions 2 — C, where C has the Borel o-algebra, and
where two functions f and g are equivalent when

plr € 9 f(2) £ gla)} = 0.
L°(u) is a vector space. For f,g € L°(u) we define
_ 1/ — 4l
p(f.9) = /Q 17 _g|du-

This is a metric on L°(u), and one proves that with this metric L(u) is a
topological vector space. We call the topology induced by p the topology of
convergence in measure.!

Theorem 2. Suppose that f,, is a sequence in L°(u). f, — 0 in the topology
of convergence in measure if and only if for each € > 0,

lim g ({r € Q2 [fule)] > }) = 0.

Proof. Suppose that f,, — 0 in the topology of convergence in measure and let
€ > 0. For each n, let

An={x69:|fn(w)>6}={$€Q:1HTJE,T()L) >1ie}'

|fnl
I+[fnl”

€ | fnl
I, dp < dy = naou
/Qlﬂxfxnu,/ﬂlﬂmu p(fn:0)

LCharalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 480, Lemma 13.40.

€
Because x4, <




ie. w(A,) < 2EEp(fn,0), which tends to 0 as n — oo.

€

Let € > 0 and for each n, let

o= il 20 = (s e = T

Suppose that u(A,) — 0 as n — oo. There is some n, such that n > n. implies
that p(A4,) < e. For n > ne,

A bl

n

€
< 1du+/ du
/A o4, 1+e

n

1+e€ €
= A, —u(Q2\ A,
() + (@) Ay

- - i “(An) + T ((An) + 12\ An))

1 €
A,
1+6u( )+

1 n €
€
1+e 1+e

< 2e.

This shows that f,, — 0 in the topology of convergence in measure. O

We now prove that if a sequence in L°(u1) converges almost everywhere to 0
then it converges in measure to 0.2

Theorem 3. Suppose that f, is a sequence in L%(u) and that for almost all
x € 9Q, fun(x) = 0as n — oo. Then f, — 0 in the topology of convergence in
measure.

Proof. Let ¢ > 0 and let n > 0. Egorov’s theorem tells us that there is some
E € ¥ with u(F) < n such that f,, — 0 uniformly on Q \ E. So there is some
ng such that if n > ng and € Q\ E then |f,(z)| < e. Thus for n > ny,

p{z € Q: @) 2 ) < pu(B) + p({z € Q\ B |ful2)] > €})
= pu(E)
<n.

Then p({z € Q: |fn(x)] > €}) = 0 as n — oo, namely, f,, — 0 in measure. [

Theorem 4. If f, is a sequence in L'(p) that converges in L*(u) to 0, then f,
converges in measure to 0.

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.37.



Proof. Let € > 0 and let 4,, = {x € Q: |f,(z)| > €}. By Chebyshev’s inequality,

1
p(An) < < I ally

hence u(A,) — 0 as n — oo, namely, f,, converges to 0 in measure. O

The following theorem shows that a sequence in L°(u) that converges in
measure to 0 then it has a subsequence that almost everywhere converges to 0.3

Theorem 5. Suppose that f, is a sequence in L°(u1) that converges in measure
to 0. Then there is a subsequence f,(,) of fn such that for almost all x € €,

fa(n) (33) — 0.

Proof. For each n, with e = =, there is some a(n) such that m > a(n) implies
that 1 )
(e )&
n 2n
For each n, let
1
E, = {l‘ € |fa(n)(x)| > n}’

for which p(E,) < 5. Let

E=) U Fn

n=1m=n

and for each n,

/IJ(E>§,U'<U Em) < Z,U'(Em)< 22%:2%'2:217”4'

m=n m=n

Because this is true for all n, u(E) = 0. If z € Q\ E, then there is some n,
such that x ¢ U n, Em. This means that for m > n, we have z ¢ E,,, ie.

| fa(m) ()] < E' This implies that for © & E, f,)(x) — 0 as n — oo, showing
that for almost all z € Q, fo(,)(z) — 0 as n — oo. O

We now prove that p is a complete metric, namely that L°(u) with this
metric is an F-space.*

Theorem 6. p is a complete metric on L(1).

3Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 479, Theorem 13.38.

4Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 481, Theorem 13.41; Gerald B. Folland, Real Analysis: Modern
Techniques and Their Applications, second ed., p. 61, Theorem 2.30.



Proof. Suppose that f,, is a Cauchy sequence in L°(u). To prove that f, is
convergent it suffices to prove that f,, has a convergent subsequence. If (X, d) is
a metric space and x,, is a Cauchy sequence in X, for any N let ay be such that
n,m > ay implies that d(z,,x,) < % and a fortiori d(z,,, Tpm) < ﬁ Thus we
presume that f,, itself satisfies p(fy, fim) < % for m > n.

Let

Apm(e) ={z € Q:|fe(z)—fm(z)| > €} = {x e lJrfT](‘:()x;fn}(j()Lﬂ > 1 i e} )

for which
€ BN < |fk(1') - fm(x”
T+ X4 = T 7@) = fn(@)]

Ifm >k,

M(Ak,m(e))§1+€/ [fe = fml d 1+e€ 1+el

yJm P 1
< Jo T fo - = = PUndm) < == (1
Forn=1and ¢ = 21, let ki be such that 1L < L je k> 20 11’% For

€1 kl — 2
n>1 and € = 2171, assume that k,, satisfies mki < % and k, > k,_1. For

l14en
€nt1 = 5mrr, let k,o1 be such that TJI knlﬂ < 5ot and kpy1 > ky,. For any
n we have, because k,, > n, fﬁ kl < 2 . Then using (1) with m > k,,
n n

1 1+e, 1
A m | — —<
M( e (Qn)> = €n  kn

Let g, = fi, and let

(2)

1
By = {2 € 0510 (0) — 0.0 2 1 |

for which, by (2), w(E,) < 5. Let

Fn == U ETH
which satisfies
o0 o0
(Fu) <> p(En) <) 277 =27

Hence F = ()2, F, satisfies u(F) = 0.

If x € F, then there is some n for which = & F,, i.e. for each r > n we have
z & E,, ie. for each r > n we have |g,+1(z) — g-(z)| < 27". This implies that
for £ > n and for any positive integer p,

|9k+p(7) = g1 ()] < |ghtp(T) = Grrp-1(T)| + -+ + [grt1(2) — gr(2)]
< 2—k—p+1 + . + 2—k

<2~ k-‘rl



so if j > k then
lg; (z) — gi(z)] <277 (3)

This shows that if © ¢ F then gi(x) is a Cauchy sequence in C, and hence
converges. We define g : Q — C by

9(x) = xa\r(x) limsup gi (), x € Q,
k—o0

and by Theorem 1, g € L°(u). For € F}, we have z ¢ F and so g;(x) — g(x)
as | — 0o. Then for x ¢ Fy, and j > k, using (3) we have

lg; () = g(@)| < |gj () — gu(x)| + |gu(z) — g(x)| < 27FF 4 |gi(2) — g(a)| — 275!

as | — o0, so |gj(x) — g(x)] < 27%F1. For € > 0, let k be such that 271 <.
Then

p({z € Q:lgr(z) —g(z)| = €})
<u(Fe) + p({r € O\ Fi+ lgule) — g(a)] > )
<27 4 u({w € Q\ Fy : [gi(@) — g(2)| = 2751}
:2—k:—‘,-17

which tends to 0 as & — oo, showing that g; converges to ¢g in measure, and
because g is a subsequence of f; this completes the proof. O

3 Equi-integrability

Let (€, %, 1) be a probability space. A subset .# of L!(u) is said to be equi-
integrable if for every € > 0 there is some 6 > 0 such that for all £ € ¥ with

uw(E) < § and for all f € F,
[ 1t <
E

In other words, to say that % is equi-integrable means that

lim sup/ dp = 0.
w(E)—=0 fez Em a

The following theorem gives an equivalent condition for a bounded subset of
L'(u) to be equi-integrable.’

Theorem 7. Suppose that .Z is a bounded subset of L' (). Then the following
are equivalent:

1. Z is equi-integrable.

2. im0 SUP ez f{‘f|>c} |fldp = 0.

5Fernando Albiac and Nigel J. Kalton, Topics in Banach Space Theory, p. 105, Lemma
5.2.6.



Proof. Let K =sup;c g || f|l, < oo and suppose that .# is equi-integrable. For
f € %, Chebyshev’s inequality tells us

£l _

K
p({If] > MY) < <

Because u({|f| > M}) — 0 as M — oo and .Z is equi-integrable,

lim sup/ | fldu = 0.
M=oo fez J{|f|>M}

Suppose now that

lim Sup/ |fldp = 0. (4)
M=o fez J{if1>m}

For E € ¥ and f € #,if M > 0 then

/ |l = / |l + / \fldu
E En{|f|I<M} En{|f|>M}

< Mu(E) +/ | fldp
{IfI>M}
< Mu(E) + sup / |glds,
9€F J{lg|>M}
hence
sup [ \flde < Mp(E) + sup [ gldp. (5)
rez e geF J{|g|>M}
Let € > 0. By (4) there is some M such that sup ¢ & f{‘ng} lgldp < 5. For
0 = 557, if £ € ¥ and p(E) < § then (5) yields
sup [ 17ldu < M5+ 5 =
fe#JE 2
showing that % is equi-integrable. O

Theorem 8 (Absolute continuity of Lebesgue integral). Suppose that f €
L*(p). If € > 0 then there is some § > 0 such that for any £ € ¥ with

nw(E) <6,
/ | fldp < e.
E

Proof. For n > 1, define

gn(x) = min{'f(x)lvn}’ z €.



Then g, is a sequence in L () such that for each z € Q, g, () is nondecreasing
and g, (z) — |f(z)|, and thus the monotone convergence theorem tells us that

i [ gud= [ I7ldn

Then there is some N for which

€
0§/|f|dﬂ_/gNdM§§-
Q Q

For § = 55 and E € ¥ with pu(E) <4,

[ 1= [ (1= gmydn+ [ av

€
_§+/9Ndli
E
€

5 Nu(E)
€

§+N5

A

IN

IN

= €.

The following is the Vitali convergence theorem.®

Theorem 9 (Vitali convergence theorem). Suppose that f € L°(u) and f, is
a sequence in L'(u). Then the following are equivalent:

1. {fn} is equi-integrable, {f,} is bounded in L'(u), and f,, — f in measure.
2. feL'(u) and f, — fin L'(u).

Proof. Suppose that {f,} is equi-integrable and f,, — f in measure. Because
fn — [ in measure, there is a subsequence f,(,) of f, that converges almost
everywhere to f and so |fq(n)| converges almost everywhere to |f|. Let K =
sup,>1 || fa(n) ||1 < co. Fatou’s lemma tells us that |f| € L!(u) and

£l < liminf [| foe [, < K.

Because f € L°(u) and |f| € LY(u), f € L'(u). To show that f,, converges to f
in L' (), it suffices to show that any subsequence of f,, itself has a subsequence
that converges to f in L'(u). (Generally, a sequence in a topological space
converges to x if and only if any subsequence itself has a subsequence that
converges to z.) Thus, let g, be a subsequence of f,. Because f, converges
to f in measure, the subsequence g, converges to f in measure and so there is

6V. 1. Bogachev, Measure Theory, volume I, p. 268, Theorem 4.5.4.



a subsequence gq(,) of g, that converges almost everywhere to f. Let € > 0.
Because {f,} is equi-integrable, there is some § > 0 such that for all E € ¥
with p(FE) < 4 and for all n,

/ |ga(n)|d:u S e
E

If E € X with u(E) < 6, then xgg,n) converges almost everywhere to xgf,
and sup,,>, HXEga(n) ||1 < ¢, so by Fatou’s lemma we obtain

/ |fldp = ||XEf||1 < linrgioréf ||XE9¢1(")||1 e
E

But because gq(,) converges almost everywhere to f, by Egorov’s theorem there
is some £ € ¥ with u(E) < § such that g,(,) — f uniformly on Q\ £, and so
there is some ng such that if n > ng and 2 € Q\ E then |gq(m)(x) — f(z)] < e
Thus for n > ng,

/mm—ﬂw=/ mw—ﬂw+/mmrﬂw
Q O\E E
sﬂm\Ek+/N%mwu+/Wﬂw
E E

<e+e+e

which shows that g,,) — f in L'(u). That is, we have shown that for any
subsequence g, of f, there is a subsequence gq(,) of g, that converges to f in
L'(p), which implies that the sequence f,, converges to f in L(u).

Suppose that f € L'(u) and f,, — f in L'(u). First, because the sequence
fn is convergent in L'(u) the set {f,} is bounded in L'(x). Second, f, — f in
L'(u) implies that f,, — f in measure. Third, for € > 0, let ng such that n > ng
implies that || f, — f||; < €. For each 1 < n < ng, by Theorem 8 there is some
dy, > 0 such that for E € ¥ and p(E) < dy,,

[ il < e
E
and likewise there is some 67 such that for £ € ¥ and pu(E) < f,

/ | fldp < e.
E
Let § > 0 be the minimum of dy,,...,6d5, ,,d;. Thus if E € ¥ and p(F) < 6,

then for 1 < n < n,
[ 10l <
E

and for for n > ng,

(émWSLmﬁﬂw+LWWQm—m+éWWSHe

This shows that {f,} is equi-integrable, completing the proof. O



The following is the de la Vallée-Poussin criterion for equi-integrability.

Theorem 10 (de la Vallée-Poussin criterion). Suppose that F C L(u). Z is
bounded and equi-integrable if and only if there is a there nonnegative nonde-
creasing function G on [0, 00) such that
. G(t)
lim —* =00 and sup [ G(|f(x)])du(z) < oo, (6)
Q

t—o0 t fez

and if there is a nonnegative nondecreasing function G satisfying (6) then there
is a convex nonnegative nondecreasing function G satisfying (6).

Proof. Suppose that G is a nonnegative nondecreasing function on [0, o) satis-
fying (6). Let

sup [ (1S (@))dula) < M < .

feZ JQ

For € > 0, there is some C such that ¢ > C implies that @ > %, and hence, for

feZ ifxeQand |f(x)] > C then % > M e |f(x)] < SG(f(2)]),
which yields

/{|f>C}|f| “5/{|f|>c} —G(f(@))dp2) < - .

Therefore by Theorem 7, % is bounded and equi-integrable.
Suppose that .# is bounded and equi-integrable. For f € . and j > 1, let

pi(f) = p{z € Q:[f(x)] > j}) € X

By induction, because .# is bounded and equi-integrable there is a strictly
increasing sequence of positive integers C,, such that for each n,

sup / |fldp <277 (7)
rez J{f1>cn)
For f € # and n > 1,
flau=> | Fldp
/{f|>0n} J; (<IfI<i+1}

Y

doin{reQ:j<|f(x) <j+1})
j=C

3

I (f) = pya(f))

V. L. Bogachev, Measure Theory, volume I, p. 272, Theorem 4.5.9.
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Using this and (7), for f € &,

o0 o0 (o]
UES Sy BN
L= )
<> 2
n=1
=1.
For n > 0 we define
o — 0 n < C
" max{k:Cp <n} n>C.

It is straightforward that a,, — oo as n — co. We define a step function g on
[0,00) by

t) - Z anX(n,n+1] (t)a 0 S t < 0,

and we define a function G on [0, 00) by

G(t) = /Otg(s)ds, 0<t<o0.

It is apparent that G is nonnegative and nondecreasing. For t1,t2 € [0, 00),
t1 < to9, by the fundamental theorem of calculus,

G'(t1)(t2 —t1) = g(t1)(t2 — t1) < G(t2) — G(t1),

showing that G is convex. The above inequality also yields that for ¢ > 0,
G(t) > g(t/Z) ,and g(t/2) — oo as t — 0o so we get that lims_, o @ = oo. For
f E usmg G(0) =0, G(1) =0, and for n > 1,

Gln+1) < g(1) +9(2) + -+ gln+ 1) = ag+ a1+ +an = a1+ -+ an,

11



we get

JRUCIEEY SRR EEITIERD Y SN G
< / G(n + 1)du(z)

o

(b (f) = b2 ())G(n + 1)

3
Il
—

(bn(f) = pns1(F)) Z a;

3
Il
-

o

n(f)am

> i)
i=Ch

3
Il
-

M

1

3
Il

IA
—_

i

showing that sup ;e » [ G(|f(x)])du(z) < oo, which completes the proof. [
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