$C[0,1]$: the Faber-Schauder basis, the Riesz representation theorem, and the Borel σ-algebra

Jordan Bell

July 24, 2015

1 Introduction

In this note I work out some results about the space of continuous functions $[0,1] \rightarrow \mathbb{R}$. In some cases these are instances of general results about continuous functions on compact Hausdorff spaces or compact metrizable spaces.

$2 C(K)$

Let K be a compact topological space (not necessarily Hausdorff) and let $C(K)$ be the collection of continuous functions $K \rightarrow \mathbb{R}$. With the norm

$$
\|f\|=\sup _{t \in K}|f(t)|, \quad f \in C(K)
$$

this is a real Banach algebra, with unity $1: K \rightarrow \mathbb{R}$ defined by $1(t)=1$ for all $t \in K .{ }^{1}$ Generally, if X is a compact metrizable space and Y is a separable metrizable space then $C(X, Y)$ is separable. ${ }^{2}$ Thus, when K is a compact metrizable space, $C(K)$ is a separable unital Banach algebra.

3 Schauder bases

If X is a real normed space, a Schauder basis for X is a sequence $\left(h_{k}\right)$ in X such that for each $x \in X$ there is a unique sequence of real numbers $\left(c_{k}(x)\right)$ such that $\sum_{k=1}^{n} c_{k}(x) h_{k} \rightarrow x$. A sequence $\left(h_{k}\right)$ in X is called a basic sequence if it is a Schauder basis for the closure of its linear span. ${ }^{3}$

[^0]If $\left(h_{k}\right)$ is a Schauder basis, then $c_{k}(0)=0$ for all k. Suppose that for some real numbers a_{1}, \ldots, a_{n} we have $\sum_{k=1}^{n} a_{k} h_{k}=0$. Then $a_{k}=c_{k}(0)=0$ for $1 \leq k \leq n$, which means that the set $\left\{h_{1}, \ldots, h_{n}\right\}$ is linearly independent. Therefore a Schauder basis is linearly independent. It is immediate that the linear span of a Schauder basis is a dense linear subspace of X. The following shows that a normed space with a Schauder basis is separable. ${ }^{4}$

Lemma 1. If $\left(h_{k}\right)$ is a Schauder basis for a normed space X then

$$
\left\{\sum_{k=1}^{n} a_{k} h_{k}: n \geq 1, a_{1}, \ldots, a_{n} \in \mathbb{Q}\right\}
$$

is dense in X.
Proof. Let $x \in X$ and let $\epsilon>0$. There is some n for which

$$
\left\|\sum_{k=1}^{n} c_{k}(x) h_{k}-x\right\| \leq \epsilon
$$

For each $1 \leq k \leq n$, let $a_{k} \in \mathbb{Q}$ satisfy $\left|a_{k}-c_{k}(x)\right| \leq \frac{\epsilon}{n\left\|h_{k}\right\|}$. Then

$$
\begin{aligned}
\left\|\sum_{k=1}^{n} a_{k} h_{k}-x\right\| & \leq\left\|\sum_{k=1}^{n}\left(a_{k}-c_{k}(x)\right) h_{k}\right\|+\epsilon \\
& \leq \sum_{k=1}^{n}\left|a_{k}-c_{k}(x)\right|\left\|h_{k}\right\|+\epsilon \\
& \leq 2 \epsilon
\end{aligned}
$$

which proves the claim.
For each k we define $h_{k}^{*}: X \rightarrow \mathbb{R}$ by $h_{k}^{*}(x)=c_{k}(x)$. For $x, y \in X$, $\sum_{k=1}^{n} h_{k}^{*}(x) h_{k} \rightarrow x$ and $\sum_{k=1}^{n} h_{k}^{*}(y) h_{k} \rightarrow y$, so $\sum_{k=1}^{n}\left(h_{k}^{*}(x)+h_{k}^{*}(y)\right) h_{k} \rightarrow x+y$ and therefore $h_{k}^{*}(x+y)=h_{k}^{*}(x)+h_{k}^{*}(y)$, and for $\alpha \in \mathbb{R}, \sum_{k=1}^{n} \alpha h_{k}^{*}(x) h_{k} \rightarrow \alpha x$ and therefore $h_{k}^{*}(\alpha x)=\alpha h_{k}^{*}(x)$. This shows that $h_{k}^{*}: X \rightarrow \mathbb{R}$ is linear. It is apparent that $h_{k}^{*}\left(h_{j}\right)=\delta_{j, k}$.

We define $P_{n}: X \rightarrow X$ by

$$
P_{n} x=\sum_{k=1}^{n} h_{k}^{*}(x) h_{k}
$$

and it is immediate that P_{n} is linear and that for each $x \in X, P_{n} x \rightarrow x$ as $n \rightarrow \infty$. It is also immediate that P_{n} is a finite-rank operator: $P_{n}(X)$ is a

[^1]finite-dimensional linear subspace of X. For $m, n \geq 1$,
\[

$$
\begin{aligned}
P_{n} P_{m} x & =P_{n} \sum_{k=1}^{m} h_{k}^{*}(x) h_{k} \\
& =\sum_{k=1}^{m} h_{k}^{*}(x) P_{n} h_{k} \\
& =\sum_{k=1}^{m} h_{k}^{*}(x) \sum_{j=1}^{n} h_{j}^{*}\left(h_{k}\right) h_{j} \\
& =\sum_{k=1}^{m} h_{k}^{*}(x) \sum_{j=1}^{n} \delta_{j, k} h_{j} \\
& =P_{\min (m, n)} x
\end{aligned}
$$
\]

showing that

$$
P_{n} P_{m}=P_{\min (m, n)}
$$

In particular, $P_{n}^{2}=P_{n}$, namely, P_{n} is a projection operator. We prove that when X is a Banach space, P_{n} is continuous. ${ }^{5}$ We indicate explicitly in the proof when we use that X is a Banach space rather than merely a normed space.

Theorem 2. If X is a Banach space and $\left(h_{n}\right)$ is a Schauder basis for X, then each P_{n} is continuous, and $\sup _{n>1}\left\|P_{n}\right\|<\infty$. Furthermore, each h_{k}^{*} is continuous.

Proof. For $x \in X, P_{n} x \rightarrow x$, so $\left\|P_{n} x\right\| \rightarrow\|x\|$, which implies that $\sup _{n \geq 1}\left\|P_{n} x\right\|<$ ∞. It thus makes sense to define

$$
p(x)=\sup _{n \geq 1}\left\|P_{n} x\right\|
$$

It is immediate that $p(\alpha x)=|\alpha| p(x)$ and that $p(x+y) \leq p(x)+p(y)$. If $p(x)=0$, then $P_{n} x=0$ for all n, which implies that $x=0$. Therefore p is a norm on X.

For $n \geq 1$ and $x \in X$,

$$
\left\|P_{n} x\right\| \leq p(x)
$$

showing that $P_{n}:(X, p) \rightarrow(X,\|\cdot\|)$ is a bounded linear operator with operator norm ≤ 1. Suppose that $\left(x_{k}\right)$ is a Cauchy sequence in the norm p. Then we have for each n that $P_{n} x_{k}$ is a Cauchy sequence in the norm $\|\cdot\|$, and because $(X,\|\cdot\|)$ is a Banach space, there is some $y_{n} \in X$ such that $P_{n} x_{k} \rightarrow y_{n}$ in the norm $\|\cdot\|$ as $k \rightarrow \infty$. For $\epsilon>0$ there is some k_{ϵ} such that when $j, k \geq k_{\epsilon}$, $p\left(x_{j}-x_{k}\right) \leq \epsilon$, and thus for $k \geq k_{\epsilon}$ and for any n,

$$
\begin{equation*}
\left\|P_{n} x_{k}-y_{n}\right\|=\lim _{j \rightarrow \infty}\left\|P_{n} x_{k}-P_{n} x_{j}\right\| \leq \limsup _{j \rightarrow \infty} p\left(x_{k}-x_{j}\right) \leq \epsilon \tag{1}
\end{equation*}
$$

Now, for any m, n and any k,

$$
\left\|y_{n}-y_{m}\right\| \leq\left\|y_{n}-P_{n} x_{k}\right\|+\left\|P_{n} x_{k}-x_{k}\right\|+\left\|P_{m} x_{k}-x_{k}\right\|+\left\|P_{m} x_{k}-y_{m}\right\|
$$

[^2]so using the above, for $k \geq k_{\epsilon}$,
$$
\left\|y_{n}-y_{m}\right\| \leq 2 \epsilon+\left\|P_{n} x_{k}-x_{k}\right\|+\left\|P_{m} x_{k}-x_{k}\right\|
$$

Because $P_{n} x_{k} \rightarrow x_{k}$ as $n \rightarrow \infty$, there is some n_{ϵ} such that $\left\|P_{n} x_{k}-x_{k}\right\| \leq \epsilon$ when $n \geq n_{\epsilon}$, and in this case for $n, m \geq n_{\epsilon}$,

$$
\left\|y_{n}-y_{m}\right\| \leq 4 \epsilon
$$

which shows that y_{n} is a Cauchy sequence in the norm $\|\cdot\|$, and because ($X,\|\cdot\|$) is a Banach space there is some $y \in X$ such that $y_{n} \rightarrow y$ in the norm $\|\cdot\|$.

For any n, m, the restriction of the linear map $P_{n}: X \rightarrow X$ to the finitedimensional linear subspace $P_{m}(X)$ is continuous in the norm $\|\cdot\|$, thus

$$
\begin{aligned}
P_{n} y_{m} & =P_{n}\left(\lim _{k \rightarrow \infty} P_{m} x_{k}\right) \\
& =\lim _{k \rightarrow \infty} P_{n} P_{m} x_{k} \\
& =\lim _{k \rightarrow \infty} P_{\min (m, n)} x_{k} \\
& =y_{\min (m, n)} .
\end{aligned}
$$

Using this, we find by induction that for each n,

$$
y_{n}=\sum_{k=1}^{n} h_{k}^{*}\left(y_{k}\right) h_{k}
$$

and because $y_{n} \rightarrow y$ in the norm $\|\cdot\|$ as $n \rightarrow \infty$ and $\left(h_{k}\right)$ is a Schauder basis, this implies that $h_{k}^{*}(y)=h_{k}^{*}\left(y_{k}\right)$ for all k, and thus $P_{n} y=y_{n}$. Therefore

$$
p\left(x_{k}-y\right)=\sup _{n \geq 1}\left\|P_{n}\left(x_{k}-y\right)\right\|=\sup _{n \geq 1}\left\|P_{n} x_{k}-y_{n}\right\|
$$

For $\epsilon>0$ and $k \geq k_{\epsilon}$, by (1) we have $\left\|P_{n} x_{k}-y_{n}\right\| \leq \epsilon$ and therefore $p\left(x_{k}-y\right) \leq$ ϵ, which shows that $x_{k} \rightarrow y$ in the norm p as $k \rightarrow \infty$. Thus, (X, p) is a Banach space.

The identity $\operatorname{map}^{\operatorname{id}}{ }_{X}: X \rightarrow X$ is a linear isomorphism, and for $x \in X$,

$$
\left\|\operatorname{id}_{X} x\right\|=\|x\|=\lim _{n \rightarrow \infty}\left\|P_{n} x\right\| \leq p(x)
$$

showing that id_{X} is continuous $(X, p) \rightarrow(X,\|\cdot\|)$. Because (X, p) and $(X,\|\cdot\|)$ are Banach spaces and id_{X} is a continuous linear isomorphism, by the open mapping theorem ${ }^{6}$ there is some $a>0$ such that

$$
\|x\|=\left\|\operatorname{id}_{X}\right\| \geq a p(x), \quad x \in X
$$

Then

$$
\left\|P_{n} x\right\| \leq p(x) \leq \frac{1}{a}\|x\|
$$

which means that $P_{n}:(X,\|\cdot\|) \rightarrow(X,\|\cdot\|)$ is a bounded linear operator with operator norm $\leq \frac{1}{a}$.

[^3]Each P_{n} is a bounded linear operator on X, and for each $x \in X, P_{n} x \rightarrow x$, which means that $P_{n} \rightarrow \mathrm{id}_{X}$ in the strong operator topology. The fact that the functions $h_{k}^{*}: X \rightarrow \mathbb{R}$ are linear and continuous means that they belong to the dual space X^{*}.

In Theorem 2, if $\sup _{n \geq 1}\left\|P_{n}\right\|=1$, we call the Schauder basis $\left(x_{k}\right)$ monotone.

The following theorem gives sufficient and necessary conditions under which a sequence in a Banach space X is a basic sequence. ${ }^{7}$ Thus if a sequence satisfies this condition and its linear span is dense in X space, then it is a Schauder basis.

Theorem 3. Suppose that X is a Banach space and that $\left(x_{k}\right)$ is a sequence of nonzero elements of X. There is some K such that for any sequence of real numbers $\left(a_{k}\right)$ and any $n<N$,

$$
\begin{equation*}
\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \leq K\left\|\sum_{k=1}^{N} a_{k} x_{k}\right\| \tag{2}
\end{equation*}
$$

if and only if $\left(x_{k}\right)$ is a basic sequence.
Proof. It is apparent that $K \geq 1$. Let S be the linear span of $\left(x_{k}\right)$, and let S_{n} be the linear span of $\left\{x_{1}, \ldots, x_{n}\right\}$. For $n<N$,

$$
\begin{equation*}
\left|a_{n}\right|\left\|x_{n}\right\| \leq\left\|\sum_{k=1}^{n-1} a_{k} x_{k}\right\|+\left\|\sum_{k=1}^{n} a_{k} x_{k}\right\| \leq 2 K\left\|\sum_{k=1}^{N} a_{k} x_{k}\right\| . \tag{3}
\end{equation*}
$$

Thus if $\sum_{k=1}^{N} a_{k} x_{k}=0$ then using the above with $a_{N+1}=0$, for $1 \leq n \leq N$ we get $a_{n}=0$, showing that $\left(x_{k}\right)$ is linearly independent. Because $\left(x_{k}\right)$ is linearly independent, it makes sense to define a linear map $Q_{n}: S \rightarrow S_{n}$ by

$$
Q_{n} x_{k}= \begin{cases}x_{k} & k \leq n \\ 0 & k>n\end{cases}
$$

For $x=\sum_{k=1}^{N} a_{k} x_{k} \in S$, if $n<N$ then by (2), $\left\|Q_{n} x\right\| \leq K\|x\|$, and if $n \geq N$ then $Q_{n} x=x$. Thus for each $n, Q_{n}: S \rightarrow S_{n}$ is a bounded linear operator with operator norm $\leq K$, and because X is a Banach space and $\bar{S}_{n}=S_{n}$, there is a unique bounded linear operator $P_{n}: \bar{S} \rightarrow S_{n}$ whose restriction to S is equal to Q_{n}, which satisfies $\left\|P_{n}\right\|=\left\|Q_{n}\right\| \leq K .{ }^{8}$ For $s \in S, Q_{n} Q_{m} s=Q_{\min (m, n)} s$, and for $x \in \bar{S}$, there is a sequence $s_{k} \in S$ that tends to x, thus

$$
\begin{equation*}
P_{n} P_{m} x=\lim _{k \rightarrow \infty} P_{n} P_{m} s_{k}=\lim _{k \rightarrow \infty} P_{\min (m, n)} s_{k}=P_{\min (m, n)} x \tag{4}
\end{equation*}
$$

For $x \in \bar{S}$ and $\epsilon>0$, there is some $s \in S$ with $\|s-x\| \leq \epsilon$. Then there are

[^4]some $a_{1}, \ldots, a_{m} \in \mathbb{R}$ for which $s=\sum_{i=1}^{m} a_{i} x_{i}$, and for $n>m$,
\[

$$
\begin{aligned}
\left\|x-P_{n} x\right\| & \leq\|x-s\|+\left\|s-P_{n} s\right\|+\left\|P_{n} s-P_{n} x\right\| \\
& =\|x-s\|+\left\|P_{n} s-P_{n} x\right\| \\
& \leq \epsilon+K\|s-x\| \\
& \leq(K+1) \epsilon,
\end{aligned}
$$
\]

showing that $P_{n} x \rightarrow x$. It follows from this and (4) that for each $x \in \bar{S}$ there is a sequence of real numbers $\left(c_{k}\right)$ such that $\sum_{k=1}^{n} c_{k} x_{k} \rightarrow x$. If $\left(b_{k}\right)$ is another such sequence, let $a_{k}=c_{k}-b_{k}$, and then we obtain from (3) that $a_{k}=0$ for each k. Therefore, $\left(c_{k}\right)$ is the unique sequence of real numbers such that $\sum_{k=1}^{n} c_{k} x_{k} \rightarrow x$, which establishes that $\left(x_{k}\right)$ is a Schauder basis for \bar{S}.

4 Haar system and Faber-Schauder system

For $k \geq 0$, for $1 \leq i \leq 2^{k}$, and for $n=2^{k}+i$, write

$$
\Delta_{n}=\Delta_{k}^{i}=\left(\frac{i-1}{2^{k}}, \frac{i}{2^{k}}\right),
$$

and we write $\Delta_{1}=\Delta_{0}^{0}=(0,1) .{ }^{9}$ Thus

$$
\Delta_{1}=\Delta_{0}^{0}=(0,1), \Delta_{2}=\Delta_{0}^{1}=(0,1), \Delta_{3}=\Delta_{1}^{1}=\left(0, \frac{1}{2}\right), \Delta_{4}=\Delta_{1}^{2}=\left(\frac{1}{2}, 1\right)
$$

If $(a, b) \subset[0,1]$, let $(a, b)^{-}=\left(a, \frac{a+b}{2}\right)$ and $(a, b)^{+}=\left(\frac{a+b}{2}, b\right)$. Thus

$$
\Delta_{n}^{-}=\left(\Delta_{k}^{i}\right)^{-}=\left(\frac{i-1}{2^{k}}, \frac{2 i-1}{2^{k+1}}\right)=\left(\frac{2 i-2}{2^{k+1}}, \frac{2 i-1}{2^{k+1}}\right)=\Delta_{k+1}^{2 i-1}
$$

and

$$
\Delta_{n}^{+}=\left(\Delta_{k}^{i}\right)^{+}=\left(\frac{2 i-1}{2^{k+1}}, \frac{i}{2^{k}}\right)=\left(\frac{2 i-1}{2^{k+1}}, \frac{2 i}{2^{k+1}}\right)=\Delta_{k+1}^{2 i}
$$

Lemma 4. If $n \geq m$ then either $\Delta_{n} \subset \Delta_{m}$ or $\Delta_{n} \cap \Delta_{m}=\emptyset$.
Proof. Let $n=2^{k}+i$ and $m=2^{l}+j$, with $k \geq l$. Then

$$
\Delta_{l}^{j}=\left(\frac{j-1}{2^{l}}, \frac{j}{2^{l}}\right)=\left(\frac{2^{k-l}(j-1)}{2^{k}}, \frac{2^{k-l} j}{2^{k}}\right)
$$

There are three cases: (i) $i \leq 2^{k-l}(j-1)$, (ii) $2^{k-l}(j-1)<i \leq 2^{k-l} j$, (iii) $i>2^{k-l} j$. In the first case, $\Delta_{k}^{i} \cap \Delta_{l}^{j}=\emptyset$, i.e. $\Delta_{n} \cap \Delta_{m}=\emptyset$. In the second case, $i-1 \geq 2^{k-l}(j-1)$ and $i \leq 2^{k-l}$, so $\Delta_{k}^{i} \subset \Delta_{l}^{j}$, i.e. $\Delta_{n} \subset \Delta_{m}$. In the third case, $i-1 \geq 2^{k-l} j$ so $\Delta_{k}^{i} \cap \Delta_{l}^{j}=\emptyset$, i.e. $\Delta_{n} \cap \Delta_{m}=\emptyset$.

[^5]We define $\chi_{1}=1$, and for $k \geq 0,1 \leq i \leq 2^{k}$, and $n=2^{k}+i$, we define

$$
\chi_{n}(t)= \begin{cases}1 & t \in \Delta_{n}^{-}=\left(\frac{2 i-2}{2^{k+1}}, \frac{2 i-1}{2^{k+1}}\right) \\ -1 & t \in \Delta_{n}^{+}=\left(\frac{2 i-1}{2^{k+1}}, \frac{2 i}{2^{k+1}}\right) \\ 0 & \text { otherwise }\end{cases}
$$

For example,

$$
\chi_{2}(t)= \begin{cases}1 & t \in\left(0, \frac{1}{2}\right) \\ -1 & t \in\left(\frac{1}{2}, 1\right) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\chi_{3}(t)= \begin{cases}1 & t \in\left(0, \frac{1}{4}\right) \\ -1 & t \in\left(\frac{1}{4}, \frac{1}{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
\chi_{4}(t)= \begin{cases}1 & t \in\left(\frac{1}{2}, \frac{3}{4}\right) \\ -1 & t \in\left(\frac{3}{4}, 1\right) \\ 0 & \text { otherwise }\end{cases}
$$

We call $\left(\chi_{n}\right)$ the Haar system. It is a fact that $\left(\chi_{n}\right)$ is a monotone Schauder basis for the Banach space $L^{1}[0,1]$ with the norm $\|f\|_{L^{1}}=\int_{0}^{1}|f(t)| d t .^{10}$

Now we define $\phi_{1}=1$ and for $n>1$ we define $\phi_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
\phi_{n}(t)=\int_{0}^{t} \chi_{n-1}(u) d u
$$

Each ϕ_{n} belongs to $C[0,1]$, and we call $\left(\phi_{n}\right)$ the Faber-Schauder system. For example,

$$
\phi_{2}(t)=\int_{0}^{t} \chi_{1}(u) d u=t
$$

and

$$
\phi_{3}(t)=\left\{\begin{array}{ll}
\int_{0}^{t} 1 d u & t \in\left[0, \frac{1}{2}\right] \\
\int_{0}^{1 / 2} 1 d u+\int_{1 / 2}^{t}-1 d u & t \in\left[\frac{1}{2}, 1\right]
\end{array}= \begin{cases}t & t \in\left[0, \frac{1}{2}\right] \\
-t+1 & t \in\left[\frac{1}{2}, 1\right]\end{cases}\right.
$$

and

$$
\phi_{4}(t)=\left\{\begin{array}{ll}
\int_{0}^{t} 1 d u & t \in\left[0, \frac{1}{4}\right] \\
\int_{0}^{1 / 4} 1 d u+\int_{1 / 4}^{t}-1 d u & t \in\left[\frac{1}{4}, \frac{1}{2}\right] \\
0 & t \in\left[\frac{1}{2}, 1\right]
\end{array}= \begin{cases}t & t \in\left[0, \frac{1}{4}\right] \\
-t+\frac{1}{2} & t \in\left[\frac{1}{4}, \frac{1}{2}\right] \\
0 & t \in\left[\frac{1}{2}, 1\right]\end{cases}\right.
$$

[^6]and
\[

\phi_{5}(t)= $$
\begin{cases}0 & t \in\left[0, \frac{1}{2}\right] \\
\int_{1 / 2}^{t} 1 d u & t \in\left[\frac{1}{2}, \frac{3}{4}\right]=\left\{\begin{array}{ll}
0 & t \in\left[0, \frac{1}{2}\right] \\
t-\frac{1}{2} & t \in\left[\frac{1}{2}, \frac{3}{4}\right] \\
\int_{1 / 2}^{3 / 4} 1 d u+\int_{3 / 4}^{t}-1 d u & t \in\left[\frac{3}{4}, 1\right]
\end{array}-t+1\right. \\
t \in\left[\frac{3}{4}, 1\right]\end{cases}
$$
\]

Generally for $k \geq 0$, for $1 \leq i \leq 2^{k}$, and for $n=2^{k}+i$,

$$
\phi_{n+1}(t)= \begin{cases}t-\frac{i-1}{2^{k}} & t \in \Delta_{n}^{-}=\left(\frac{i-1}{2^{k}}, \frac{2 i-1}{2^{k+1}}\right) \\ -t+\frac{i}{2^{k}} & t \in \Delta_{n}^{+}=\left(\frac{2 i-1}{2^{k+1}}, \frac{i}{2^{k}}\right) \\ 0 & \text { otherwise. }\end{cases}
$$

We remark that

$$
\left\|\phi_{n+1}\right\|=\frac{2 i-1}{2^{k+1}}-\frac{i-1}{2^{k}}=2^{-k-1} .
$$

5 Riesz representation theorem

Let (X, \mathfrak{M}) be a measurable space. A signed measure is a function $\mu: \mathfrak{M} \rightarrow$ $[-\infty, \infty]$ such that (i) $\mu(\emptyset)=0$, (ii) μ assumes at most one of the values $-\infty, \infty$, and (iii) if $\left(E_{j}\right)$ is a sequence of disjoint elements of \mathfrak{M} then $\mu\left(\bigcup E_{j}\right)=\sum \mu\left(E_{j}\right)$. A finite signed measure is a signed measure whose image is contained in \mathbb{R}. We denote by $\mathrm{ca}(\mathfrak{M})$ the collection of all finite signed measures on \mathfrak{M}. For $\mu, \lambda \in \mathrm{ca}(\mathfrak{M})$ and for $c \in \mathbb{R}$, define

$$
(\mu+\lambda)(E)=\mu(E)+\lambda(E), \quad(c \mu)(E)=c \mu(E)
$$

for $E \in \mathfrak{M}$, and we check that with addition and scalar multiplication thus defined $\mathrm{ca}(\mathfrak{M})$ is a real vector space. A positive measure is a signed measure whose imaged is contained in $[0, \infty]$. For $\mu, \lambda \in \mathrm{ca}(\mathfrak{M})$, we write

$$
\mu \geq \lambda
$$

if $\mu-\lambda$ is a positive measure; in any case $\mu-\lambda \in \mathrm{ca}(\mathfrak{M})$. We check that \leq is a partial order on $\mathrm{ca}(\mathfrak{M})$ with which $\mathrm{ca}(\mathfrak{M})$ is an ordered vector space. Finally, a probability measure is a positive measure satisfying $\mu(X)=1$, which in particular belongs to $\mathrm{ca}(\mathfrak{M})$.

For $E \in \mathfrak{M}$, a partition of E is a countable subset $\left\{E_{i}\right\}$ of \mathfrak{M} whose members are pairwise disjoint. For $\mu \in \mathrm{ca}(\mathfrak{M})$ and $E \in \mathfrak{M}$ we define

$$
|\mu|(E)=\sup \left\{\sum_{i=1}^{\infty}\left|\mu\left(E_{i}\right)\right|:\left\{E_{i}\right\} \text { is a partition of } E\right\}
$$

It is immediate that $|\mu(E)| \leq|\mu|(E)$. It is proved that $|\mu|$ is a finite positive measure on \mathfrak{M}, called the total variation measure of $\mu .{ }^{11}$ For $\mu \in \mathrm{ca}(\mathfrak{M})$, define

$$
\mu^{+}=\frac{1}{2}(|\mu|+\mu), \quad \mu^{-}=\frac{1}{2}(|\mu|-\mu) .
$$

[^7]Because $|\mu|$ is a finite positive measure and $|\mu(E)| \leq|\mu(E)|, \mu^{+}$and μ^{-}are finite positive measures, called the positive and negative variations of μ. Then $\mu=\mu^{+}-\mu^{-}$, called the Jordan decomposition of μ.

For $\mu \in \mathrm{ca}(\mathfrak{M})$, define

$$
\|\mu\|=|\mu|(X)=\mu^{+}(X)+\mu^{-}(X)
$$

One checks that $\|\cdot\|$ is a norm on $\operatorname{ca}(\mathfrak{M})$.
For a compact Hausdorff space K and for $f, g \in C(K)$, write $g \geq f$ when $(g-f)(t) \geq 0$ for all $t \in K$. A positive linear functional is a linear map ϕ : $C(K) \rightarrow \mathbb{R}$ such that $\phi(f) \geq 0$ when $f \geq 0$. In this case, because $\|f\| \cdot 1+f \geq 0$,

$$
\|f\| \phi(1)+\phi(f)=\phi(\|f\| \cdot 1+f) \geq 0
$$

i.e. $-\phi(f) \leq \phi(1)\|f\|$, and because $\|f\| \cdot 1-f \geq 0$,

$$
\|f\| \phi(1)-\phi(f)=\phi(\|f\| \cdot 1-f) \geq 0
$$

i.e. $\phi(f) \leq \phi(1)\|f\|$, showing because $\|1\|=1$ that the operator norm of ϕ is $\|\phi\|=\phi(1)$, and in particular that $\phi \in C(K)^{*}$.

For normed spaces $\left(V,\|\cdot\|_{V}\right)$ and $\left(W,\|\cdot\|_{W}\right)$, an isometric isomorphism from V to W is a linear isomorphism $T: V \rightarrow W$ satisfying $\|T v\|_{W}=\|v\|_{V}$ for all $v \in V$. The simplest version of the Riesz representation theorem is for compact metrizable spaces, for which we do not need to speak about regular Borel measures or continuous functions vanishing at infinity. ${ }^{12}$

Theorem 5 (Riesz representation theorem for compact metrizable spaces). Let K be a compact metrizable space and define $\Lambda: \operatorname{ca}\left(\mathscr{B}_{K}\right) \rightarrow C(K)^{*}$ by

$$
\Lambda(\mu)(f)=\int_{K} f d \mu, \quad \mu \in \operatorname{ca}\left(\mathscr{B}_{K}\right), \quad f \in C(K)
$$

Λ is an isometric isomorphism, and is order preserving: if $\mu \geq 0$ then $\Lambda(\mu) \in$ $C(K)^{*}$ is a positive linear functional, and thus if $\mu \geq \lambda$ then $\Lambda(\mu) \geq \Lambda(\lambda)$.

6 The Borel σ-algebra of $C[0,1]$

Let $I=[0,1]$, with the relative topology inherited from \mathbb{R}, with which I is a compact metric space. For $t_{1}, \ldots, t_{n} \in I$, we define $\pi_{t_{1}, \ldots, t_{n}}: C(I) \rightarrow \mathbb{R}^{n}$ by

$$
\pi_{t_{1}, \ldots, t_{n}}(x)=\left(x\left(t_{1}\right), \ldots, x\left(t_{n}\right)\right), \quad x \in C(I)
$$

which is continuous.
For a set X and a collection of functions $f_{t}: X \rightarrow \mathbb{R}$, the coarsest σ algebra on X such that each f_{t} is measurable $X \rightarrow \mathbb{R}$, where \mathbb{R} has the Borel σ-algebra, is called the σ-algebra generated by $\left\{f_{t}: t \in I\right\}$, and is denoted by $\sigma\left(\left\{f_{t}: t \in I\right\}\right)$. We show that the Borel σ-algebra of $C(I)$ is equal to the σ-algebra generated by the family of projection maps $C(I) \rightarrow \mathbb{R} .^{13}$

[^8]Theorem 6. Let \mathscr{A} be the σ-algebra generated by the family $\left\{\pi_{t}: t \in[0,1]\right\}$. Then $\mathscr{B}_{C[0,1]}=\mathscr{A}$.

Proof. Because $C(I)$ is a separable metric space it is second-countable, and so if U is an open subset of $C(I)$ then U is equal to the union of countably many open balls. Each open ball is equal to the union of countably many closed balls: $B(x, r)=\bigcup \overline{B(x, r-1 / n)}$. Therefore each open subset of $C(I)$ is equal to the union of countably many closed balls, and to prove that $\mathscr{B}_{C(I)} \subset \mathscr{A}$ it suffices to prove that all closed balls belong to \mathscr{A}. To this end, let q_{1}, q_{2}, \ldots be an enumeration of $[0,1] \cap \mathbb{Q}$, let $x \in C(I)$, and let $r>0$. Suppose that $\left|y\left(q_{n}\right)-x\left(q_{n}\right)\right| \leq r$ for all n, and take $t \in[0,1]$. Then there is a subsequence $q_{a_{n}}$ of q_{n} that tends to t, and because $y-x:[0,1] \rightarrow \mathbb{R}$ is continuous, $\mid y\left(q_{a_{n}}\right)-$ $x\left(q_{a_{n}}\right)|\rightarrow| y(t)-x(t) \mid$, and then because for each n we have $\left|y\left(q_{a_{n}}\right)-x\left(q_{a_{n}}\right)\right| \leq r$ it follows that $|y(t)-x(t)| \leq r$. This establishes

$$
\{y \in C(I):\|y-x\| \leq r\}=\bigcap_{n=1}^{\infty}\left\{y \in C(I):\left|y\left(q_{n}\right)-x\left(q_{n}\right)\right| \leq r\right\}
$$

But

$$
\left\{y \in C(I):\left|y\left(q_{n}\right)-x\left(q_{n}\right)\right| \leq r\right\}=\pi_{q_{n}}^{-1}\left(\left[\pi_{q_{n}}(x)-r, \pi_{q_{n}}(x)+r\right]\right)
$$

which belongs to \mathscr{A}. Thus $\overline{B(x, r)}$ is a countable intersection of elements of \mathscr{A} and so belongs to \mathscr{A}, which shows that $\mathscr{B}_{C(I)} \subset \mathscr{A}$.

On the other hand, for each $t \in I$ the map $\pi_{t}: C(I) \rightarrow \mathbb{R}$ is continuous and hence is measurable $\mathscr{B}_{C(I)} \rightarrow \mathscr{B}_{\mathbb{R}}$. ${ }^{14}$ Therefore $\mathscr{A} \subset \mathscr{B}_{C(I)}$.

7 Relatively compact subsets of $C[0,1]$

If (M, d) is a metric space, a subset A of M is called totally bounded if for each $\epsilon>0$ there are finitely many points $x_{1}, \ldots, x_{n} \in M$ such that for any point $x \in M$ there is some i for which $d\left(x, x_{i}\right)<\epsilon$. It is immediate that a compact metric space is totally bounded, and the Heine-Borel theorem states that a metric space is compact if and only if it is complete and totally bounded. ${ }^{15}$ On the other hand, one checks that if (M, d) is a metric space and A is a totally bounded subset of M, then the closure \bar{A} is a totally bounded subset of M. Thus, if A is a totally bounded subset of a complete metric space (M, d), then the closure \bar{A} is itself a complete metric space (because (M, d) is a complete metric space), and because \bar{A} is complete and totally bounded, by the Heine-Borel theorem it is compact.

If X is a topological space and \mathscr{F} is a subset of $C(X)$, we say that \mathscr{F} is equicontinuous at $x \in X$ if for each $\epsilon>0$ there is a neighborhood $U_{x, \epsilon}$ of

[^9]x such that $|f(x)-f(y)|<\epsilon$ for all $f \in \mathscr{F}$ and for all $y \in U_{x, \epsilon}$, and we call \mathscr{F} equicontinuous if it is equicontinuous at each $x \in X$. We call \mathscr{F} pointwise bounded if for each $x \in X,\{f(x): f \in \mathscr{F}\}$ is a bounded subset of \mathbb{R}. The Arzelà-Ascoli theorem states that for a compact Hausdorff space X and for $\mathscr{F} \subset C(X), \mathscr{F}$ is equicontinuous and pointwise bounded if and only if \mathscr{F} is totally bounded. ${ }^{16}$ Then the closure $\overline{\mathscr{F}}$ is totally bounded and is itself a complete metric space, and hence is a compact metric space. That is, for a compact Hausdorff space X, \mathscr{F} is equicontinuous and pointwise bounded if and only if \mathscr{F} is relatively compact in $C(X)$.

For $x \in C[0,1]$ and $\delta>0$, define

$$
\omega_{x}(\delta)=\sup _{s, t \in I,|s-t| \leq \delta}|x(s)-x(t)|
$$

For $x \in C[0,1]$ because $x: I \rightarrow \mathbb{R}$ is continuous and I is compact, x is uniformly continuous on I. Thus for $\epsilon>0$ there is some $\delta_{\epsilon}>0$ such that when $|s-t| \leq \delta_{\epsilon}$, $|x(s)-x(t)| \leq \epsilon$, hence if $\delta \leq \delta_{\epsilon}$ then $\omega_{x}(\delta) \leq \epsilon$, i.e. $\omega_{x}(\delta) \rightarrow 0$ as $\delta \rightarrow 0$. We give sufficient and necessary conditions for a subset of $C[0,1]$ to be relatively compact.

Lemma 7. Let $A \subset C[0,1]$. A is relatively compact if and only if

$$
\begin{equation*}
\sup _{x \in A}|x(0)|<\infty \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\delta \downarrow 0} \sup _{x \in A} \omega_{x}(\delta)=0 . \tag{6}
\end{equation*}
$$

Proof. For $t \in I$ and for $r>0$, let

$$
B_{r}(t)=\{s \in I:|s-t|<r\},
$$

which is an open neighborhood of t. The Arzelà-Ascoli theorem tells us that A is relatively compact if and only if A is equicontinuous and pointwise bounded. If A is relatively compact, then being pointwise bounded yields (5). Let $\epsilon>0$. Because A is equicontinuous, for each $t \in I$ there is some $\delta_{t}>0$ such that for all $x \in A$ and for all $s \in B_{\delta_{t}}(t)$ we have $|x(s)-x(t)|<\epsilon / 2$. Then because I is compact, there are $t_{1}, \ldots, t_{n} \in I$ such that $I=\bigcup_{i=1}^{n} B_{\delta_{t_{i}}}\left(t_{i}\right)$. Let $\delta_{\epsilon}>0$ be the Lebesgue number for this open cover: for each $t \in I$ there is some i for which $B_{\delta_{\epsilon}}(t) \subset B_{\delta_{t_{i}}}\left(t_{i}\right)$. For $0<\delta \leq \delta_{\epsilon}$, for $x \in A$, and for $|s-t| \leq \delta / 2$, there is some i for which $B_{\delta}(t) \subset B_{\delta_{t_{i}}}\left(t_{i}\right)$, so $s, t \in B_{\delta_{t_{i}}}\left(t_{i}\right)$, which means that $\left|x(s)-x\left(t_{i}\right)\right|<\epsilon / 2$ and $\left|x(t)-x\left(t_{i}\right)\right|<\epsilon / 2$, and thus $|x(s)-x(t)| \leq$ $\left|x(s)-x\left(t_{i}\right)\right|+\left|x\left(t_{i}\right)-x(t)\right|<\epsilon$. Therefore $\omega_{\delta / 2}(x) \leq \epsilon$, and this is true for all $x \in A$ which proves (6).

Suppose now that (5) and (6) are true. By (6), there is some $m \geq 1$ such that $\sup _{x \in A} \omega_{x}(1 / m) \leq 1$, and therefore for $x \in A,\|x\| \leq|x(0)|+m$. With (5)

[^10]this yields $\sup _{x \in A}\|x\|<\infty$, whence A is pointwise bounded. Let $t \in I$ and let $\epsilon>0$. By (6) there is some $\delta>0$ such that $\sup _{x \in A} \omega_{x}(\delta)<\epsilon$. Thus for $x \in A$ and for $|s-t| \leq \delta,|x(s)-x(t)|<\epsilon$, which shows that A is equicontinuous at t. This is true for all $t \in I$, so A is equicontinuous and by the Arzelà-Ascoli theorem we get that A is relatively compact in $C[0,1]$.

8 Continuously differentiable functions

Let $f:[0,1] \rightarrow \mathbb{R}$ be a function. We say that f is differentiable at $t \in[0,1]$ if there is some $f^{\prime}(t) \in \mathbb{R}$ such that ${ }^{17}$

$$
\lim _{s \rightarrow t, s \in[0,1] \backslash\{t\}} \frac{f(s)-f(t)}{s-t}=f^{\prime}(t) .
$$

If f is differentiable at each $t \in[0,1]$, we say that f is differentiable on $[0,1]$ and define $f^{\prime}:[0,1] \rightarrow \mathbb{R}$ by $t \mapsto f^{\prime}(t)$. We define $C^{1}[0,1]$ to be the collection of those $f:[0,1] \rightarrow \mathbb{R}$ such that f is differentiable on $[0,1]$ and $f^{\prime}:[0,1] \rightarrow \mathbb{R}$ is continuous. $C^{1}[0,1]$ is contained in $C[0,1]$, and it turns out that $C^{1}[0,1]$ is a Borel set in $C[0,1] .{ }^{18}$ On the other hand, the collection differentiable functions $[0,1] \rightarrow \mathbb{R}$, which is a subset of $C[0,1]$, is not a Borel set in $C[0,1] .{ }^{19}$

[^11]
[^0]: ${ }^{1}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 124, Lemma 3.97.
 ${ }^{2}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 125, Lemma 3.99.
 ${ }^{3}$ Because Schauder bases are not as familiar objects as orthonormal bases (Hilbert space bases) or vector space bases (Hamel bases), it is worth explicitly checking their properties to make ourselves familiar with how they work.

[^1]: ${ }^{4}$ In particular, a Banach space with a Schauder basis is separable. There is a celebrated counterexample found by Per Enflo of a separable Banach space for which there does not exist a Schauder basis.

[^2]: ${ }^{5}$ N. L. Carothers, A Short Course in Banach Space Theory, p. 26, Theorem 3.1.

[^3]: ${ }^{6}$ Walter Rudin, Functional Analysis, second ed., p. 49, Corollary 2.12c.

[^4]: ${ }^{7}$ Joseph Diestel, Sequences and Series in Banach Spaces, p. 36, Chapter V, Theorem 1.
 ${ }^{8}$ Gert K. Pedersen, Analysis Now, revised printing, p. 47, Proposition 2.1.11.

[^5]: ${ }^{9}$ We are partly following the presentation in B. S. Kashin and A. A. Saakyan, Orthogonal Series, p. 61, Chapter III.

[^6]: ${ }^{10}$ Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces I and II, p. 3.

[^7]: ${ }^{11}$ Walter Rudin, Real and Complex Analysis, third ed., pp. 117-118, Theorem 6.2 and Theorem 6.4.

[^8]: ${ }^{12}$ Walter Rudin, Real and Complex Analysis, third ed., p. 130, Theorem 6.19.
 ${ }^{13}$ K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 212, Theorem 2.1.

[^9]: ${ }^{14}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 140, Corollary 4.26.
 ${ }^{15}$ Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhiker's Guide, third ed., p. 86, Theorem 3.28.

[^10]: ${ }^{16}$ Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 137, Theorem 4.43.

[^11]: ${ }^{17}$ cf. Nicolas Bourbaki, Elements of Mathematics. Functions of a Real Variable: Elementary Theory, p. 3, Chapter I, §1, no. 1, Definition 1.
 ${ }^{18}$ Alexander S. Kechris, Classical Descriptive Set Theory, p. 70, §11.B, Example 2.
 ${ }^{19}$ S. M. Srivastava, A Course on Borel Sets, p. 139, Proposition 4.2.7.

