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1 Introduction

In this note I work out some results about the space of continuous functions
[0, 1] → R. In some cases these are instances of general results about continuous
functions on compact Hausdorff spaces or compact metrizable spaces.

2 C(K)

Let K be a compact topological space (not necessarily Hausdorff) and let C(K)
be the collection of continuous functions K → R. With the norm

∥f∥ = sup
t∈K

|f(t)|, f ∈ C(K),

this is a real Banach algebra, with unity 1 : K → R defined by 1(t) = 1
for all t ∈ K.1 Generally, if X is a compact metrizable space and Y is a
separable metrizable space then C(X,Y ) is separable.2 Thus, when K is a
compact metrizable space, C(K) is a separable unital Banach algebra.

3 Schauder bases

If X is a real normed space, a Schauder basis for X is a sequence (hk) in
X such that for each x ∈ X there is a unique sequence of real numbers (ck(x))
such that

∑n
k=1 ck(x)hk → x. A sequence (hk) in X is called a basic sequence

if it is a Schauder basis for the closure of its linear span.3

1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 124, Lemma 3.97.

2Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 125, Lemma 3.99.

3Because Schauder bases are not as familiar objects as orthonormal bases (Hilbert space
bases) or vector space bases (Hamel bases), it is worth explicitly checking their properties to
make ourselves familiar with how they work.
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If (hk) is a Schauder basis, then ck(0) = 0 for all k. Suppose that for some
real numbers a1, . . . , an we have

∑n
k=1 akhk = 0. Then ak = ck(0) = 0 for

1 ≤ k ≤ n, which means that the set {h1, . . . , hn} is linearly independent.
Therefore a Schauder basis is linearly independent. It is immediate that the
linear span of a Schauder basis is a dense linear subspace of X. The following
shows that a normed space with a Schauder basis is separable.4

Lemma 1. If (hk) is a Schauder basis for a normed space X then{
n∑

k=1

akhk : n ≥ 1, a1, . . . , an ∈ Q

}

is dense in X.

Proof. Let x ∈ X and let ϵ > 0. There is some n for which∥∥∥∥∥
n∑

k=1

ck(x)hk − x

∥∥∥∥∥ ≤ ϵ.

For each 1 ≤ k ≤ n, let ak ∈ Q satisfy |ak − ck(x)| ≤ ϵ
n∥hk∥ . Then∥∥∥∥∥

n∑
k=1

akhk − x

∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

k=1

(ak − ck(x))hk

∥∥∥∥∥+ ϵ

≤
n∑

k=1

|ak − ck(x)| ∥hk∥+ ϵ

≤ 2ϵ,

which proves the claim.

For each k we define h∗
k : X → R by h∗

k(x) = ck(x). For x, y ∈ X,∑n
k=1 h

∗
k(x)hk → x and

∑n
k=1 h

∗
k(y)hk → y, so

∑n
k=1(h

∗
k(x)+h∗

k(y))hk → x+y
and therefore h∗

k(x+ y) = h∗
k(x) + h∗

k(y), and for α ∈ R,
∑n

k=1 αh
∗
k(x)hk → αx

and therefore h∗
k(αx) = αh∗

k(x). This shows that h∗
k : X → R is linear. It is

apparent that h∗
k(hj) = δj,k.

We define Pn : X → X by

Pnx =

n∑
k=1

h∗
k(x)hk,

and it is immediate that Pn is linear and that for each x ∈ X, Pnx → x as
n → ∞. It is also immediate that Pn is a finite-rank operator: Pn(X) is a

4In particular, a Banach space with a Schauder basis is separable. There is a celebrated
counterexample found by Per Enflo of a separable Banach space for which there does not exist
a Schauder basis.
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finite-dimensional linear subspace of X. For m,n ≥ 1,

PnPmx = Pn

m∑
k=1

h∗
k(x)hk

=

m∑
k=1

h∗
k(x)Pnhk

=

m∑
k=1

h∗
k(x)

n∑
j=1

h∗
j (hk)hj

=

m∑
k=1

h∗
k(x)

n∑
j=1

δj,khj

= Pmin(m,n)x,

showing that
PnPm = Pmin(m,n).

In particular, P 2
n = Pn, namely, Pn is a projection operator. We prove that

when X is a Banach space, Pn is continuous.5 We indicate explicitly in the proof
when we use that X is a Banach space rather than merely a normed space.

Theorem 2. If X is a Banach space and (hn) is a Schauder basis for X,
then each Pn is continuous, and supn≥1 ∥Pn∥ < ∞. Furthermore, each h∗

k is
continuous.

Proof. For x ∈ X, Pnx → x, so ∥Pnx∥ → ∥x∥, which implies that supn≥1 ∥Pnx∥ <
∞. It thus makes sense to define

p(x) = sup
n≥1

∥Pnx∥ .

It is immediate that p(αx) = |α|p(x) and that p(x+y) ≤ p(x)+p(y). If p(x) = 0,
then Pnx = 0 for all n, which implies that x = 0. Therefore p is a norm on X.

For n ≥ 1 and x ∈ X,
∥Pnx∥ ≤ p(x),

showing that Pn : (X, p) → (X, ∥·∥) is a bounded linear operator with operator
norm ≤ 1. Suppose that (xk) is a Cauchy sequence in the norm p. Then we
have for each n that Pnxk is a Cauchy sequence in the norm ∥·∥, and because
(X, ∥·∥) is a Banach space, there is some yn ∈ X such that Pnxk → yn in the
norm ∥·∥ as k → ∞. For ϵ > 0 there is some kϵ such that when j, k ≥ kϵ,
p(xj − xk) ≤ ϵ, and thus for k ≥ kϵ and for any n,

∥Pnxk − yn∥ = lim
j→∞

∥Pnxk − Pnxj∥ ≤ lim sup
j→∞

p(xk − xj) ≤ ϵ. (1)

Now, for any m,n and any k,

∥yn − ym∥ ≤ ∥yn − Pnxk∥+ ∥Pnxk − xk∥+ ∥Pmxk − xk∥+ ∥Pmxk − ym∥ ,
5N. L. Carothers, A Short Course in Banach Space Theory, p. 26, Theorem 3.1.
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so using the above, for k ≥ kϵ,

∥yn − ym∥ ≤ 2ϵ+ ∥Pnxk − xk∥+ ∥Pmxk − xk∥ .

Because Pnxk → xk as n → ∞, there is some nϵ such that ∥Pnxk − xk∥ ≤ ϵ
when n ≥ nϵ, and in this case for n,m ≥ nϵ,

∥yn − ym∥ ≤ 4ϵ,

which shows that yn is a Cauchy sequence in the norm ∥·∥, and because (X, ∥·∥)
is a Banach space there is some y ∈ X such that yn → y in the norm ∥·∥.

For any n,m, the restriction of the linear map Pn : X → X to the finite-
dimensional linear subspace Pm(X) is continuous in the norm ∥·∥, thus

Pnym = Pn

(
lim
k→∞

Pmxk

)
= lim

k→∞
PnPmxk

= lim
k→∞

Pmin(m,n)xk

= ymin(m,n).

Using this, we find by induction that for each n,

yn =

n∑
k=1

h∗
k(yk)hk,

and because yn → y in the norm ∥·∥ as n → ∞ and (hk) is a Schauder basis,
this implies that h∗

k(y) = h∗
k(yk) for all k, and thus Pny = yn. Therefore

p(xk − y) = sup
n≥1

∥Pn(xk − y)∥ = sup
n≥1

∥Pnxk − yn∥ .

For ϵ > 0 and k ≥ kϵ, by (1) we have ∥Pnxk − yn∥ ≤ ϵ and therefore p(xk−y) ≤
ϵ, which shows that xk → y in the norm p as k → ∞. Thus, (X, p) is a Banach
space.

The identity map idX : X → X is a linear isomorphism, and for x ∈ X,

∥idXx∥ = ∥x∥ = lim
n→∞

∥Pnx∥ ≤ p(x),

showing that idX is continuous (X, p) → (X, ∥·∥). Because (X, p) and (X, ∥·∥)
are Banach spaces and idX is a continuous linear isomorphism, by the open
mapping theorem6 there is some a > 0 such that

∥x∥ = ∥idX∥ ≥ ap(x), x ∈ X.

Then

∥Pnx∥ ≤ p(x) ≤ 1

a
∥x∥ ,

which means that Pn : (X, ∥·∥) → (X, ∥·∥) is a bounded linear operator with
operator norm ≤ 1

a .

6Walter Rudin, Functional Analysis, second ed., p. 49, Corollary 2.12c.
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Each Pn is a bounded linear operator on X, and for each x ∈ X, Pnx → x,
which means that Pn → idX in the strong operator topology. The fact that
the functions h∗

k : X → R are linear and continuous means that they belong to
the dual space X∗.

In Theorem 2, if supn≥1 ∥Pn∥ = 1, we call the Schauder basis (xk) mono-
tone.

The following theorem gives sufficient and necessary conditions under which
a sequence in a Banach space X is a basic sequence.7 Thus if a sequence satisfies
this condition and its linear span is dense in X space, then it is a Schauder basis.

Theorem 3. Suppose that X is a Banach space and that (xk) is a sequence
of nonzero elements of X. There is some K such that for any sequence of real
numbers (ak) and any n < N ,∥∥∥∥∥

n∑
k=1

akxk

∥∥∥∥∥ ≤ K

∥∥∥∥∥
N∑

k=1

akxk

∥∥∥∥∥ (2)

if and only if (xk) is a basic sequence.

Proof. It is apparent that K ≥ 1. Let S be the linear span of (xk), and let Sn

be the linear span of {x1, . . . , xn}. For n < N ,

|an| ∥xn∥ ≤

∥∥∥∥∥
n−1∑
k=1

akxk

∥∥∥∥∥+

∥∥∥∥∥
n∑

k=1

akxk

∥∥∥∥∥ ≤ 2K

∥∥∥∥∥
N∑

k=1

akxk

∥∥∥∥∥ . (3)

Thus if
∑N

k=1 akxk = 0 then using the above with aN+1 = 0, for 1 ≤ n ≤ N we
get an = 0, showing that (xk) is linearly independent. Because (xk) is linearly
independent, it makes sense to define a linear map Qn : S → Sn by

Qnxk =

{
xk k ≤ n

0 k > n.

For x =
∑N

k=1 akxk ∈ S, if n < N then by (2), ∥Qnx∥ ≤ K ∥x∥, and if n ≥ N
then Qnx = x. Thus for each n, Qn : S → Sn is a bounded linear operator with
operator norm ≤ K, and because X is a Banach space and Sn = Sn, there is a
unique bounded linear operator Pn : S → Sn whose restriction to S is equal to
Qn, which satisfies ∥Pn∥ = ∥Qn∥ ≤ K.8 For s ∈ S, QnQms = Qmin(m,n)s, and

for x ∈ S, there is a sequence sk ∈ S that tends to x, thus

PnPmx = lim
k→∞

PnPmsk = lim
k→∞

Pmin(m,n)sk = Pmin(m,n)x. (4)

For x ∈ S and ϵ > 0, there is some s ∈ S with ∥s− x∥ ≤ ϵ. Then there are

7Joseph Diestel, Sequences and Series in Banach Spaces, p. 36, Chapter V, Theorem 1.
8Gert K. Pedersen, Analysis Now, revised printing, p. 47, Proposition 2.1.11.
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some a1, . . . , am ∈ R for which s =
∑m

i=1 aixi, and for n > m,

∥x− Pnx∥ ≤ ∥x− s∥+ ∥s− Pns∥+ ∥Pns− Pnx∥
= ∥x− s∥+ ∥Pns− Pnx∥
≤ ϵ+K ∥s− x∥
≤ (K + 1)ϵ,

showing that Pnx → x. It follows from this and (4) that for each x ∈ S there
is a sequence of real numbers (ck) such that

∑n
k=1 ckxk → x. If (bk) is another

such sequence, let ak = ck − bk, and then we obtain from (3) that ak = 0
for each k. Therefore, (ck) is the unique sequence of real numbers such that∑n

k=1 ckxk → x, which establishes that (xk) is a Schauder basis for S.

4 Haar system and Faber-Schauder system

For k ≥ 0, for 1 ≤ i ≤ 2k, and for n = 2k + i, write

∆n = ∆i
k =

(
i− 1

2k
,
i

2k

)
,

and we write ∆1 = ∆0
0 = (0, 1).9 Thus

∆1 = ∆0
0 = (0, 1), ∆2 = ∆1

0 = (0, 1), ∆3 = ∆1
1 =

(
0,

1

2

)
, ∆4 = ∆2

1 =
(1
2
, 1
)
.

If (a, b) ⊂ [0, 1], let (a, b)− =
(
a, a+b

2

)
and (a, b)+ =

(
a+b
2 , b

)
. Thus

∆−
n = (∆i

k)
− =

(
i− 1

2k
,
2i− 1

2k+1

)
=

(
2i− 2

2k+1
,
2i− 1

2k+1

)
= ∆2i−1

k+1

and

∆+
n = (∆i

k)
+ =

(
2i− 1

2k+1
,
i

2k

)
=

(
2i− 1

2k+1
,

2i

2k+1

)
= ∆2i

k+1.

Lemma 4. If n ≥ m then either ∆n ⊂ ∆m or ∆n ∩∆m = ∅.

Proof. Let n = 2k + i and m = 2l + j, with k ≥ l. Then

∆j
l =

(
j − 1

2l
,
j

2l

)
=

(
2k−l(j − 1)

2k
,
2k−lj

2k

)
.

There are three cases: (i) i ≤ 2k−l(j − 1), (ii) 2k−l(j − 1) < i ≤ 2k−lj, (iii)
i > 2k−lj. In the first case, ∆i

k ∩∆j
l = ∅, i.e. ∆n ∩∆m = ∅. In the second case,

i− 1 ≥ 2k−l(j − 1) and i ≤ 2k−l, so ∆i
k ⊂ ∆j

l , i.e. ∆n ⊂ ∆m. In the third case,

i− 1 ≥ 2k−lj so ∆i
k ∩∆j

l = ∅, i.e. ∆n ∩∆m = ∅.
9We are partly following the presentation in B. S. Kashin and A. A. Saakyan, Orthogonal

Series, p. 61, Chapter III.
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We define χ1 = 1, and for k ≥ 0, 1 ≤ i ≤ 2k, and n = 2k + i, we define

χn(t) =


1 t ∈ ∆−

n =
(
2i−2
2k+1 ,

2i−1
2k+1

)
−1 t ∈ ∆+

n =
(
2i−1
2k+1 ,

2i
2k+1

)
0 otherwise.

For example,

χ2(t) =


1 t ∈

(
0, 1

2

)
−1 t ∈

(
1
2 , 1

)
0 otherwise

and

χ3(t) =


1 t ∈

(
0, 1

4

)
−1 t ∈

(
1
4 ,

1
2

)
0 otherwise

and

χ4(t) =


1 t ∈

(
1
2 ,

3
4

)
−1 t ∈

(
3
4 , 1

)
0 otherwise.

We call (χn) the Haar system. It is a fact that (χn) is a monotone Schauder

basis for the Banach space L1[0, 1] with the norm ∥f∥L1 =
∫ 1

0
|f(t)|dt.10

Now we define ϕ1 = 1 and for n > 1 we define ϕn : [0, 1] → R by

ϕn(t) =

∫ t

0

χn−1(u)du.

Each ϕn belongs to C[0, 1], and we call (ϕn) the Faber-Schauder system. For
example,

ϕ2(t) =

∫ t

0

χ1(u)du = t,

and

ϕ3(t) =

{∫ t

0
1du t ∈

[
0, 1

2

]∫ 1/2

0
1du+

∫ t

1/2
−1du t ∈

[
1
2 , 1

] =

{
t t ∈

[
0, 1

2

]
−t+ 1 t ∈

[
1
2 , 1

]
and

ϕ4(t) =


∫ t

0
1du t ∈

[
0, 1

4

]∫ 1/4

0
1du+

∫ t

1/4
−1du t ∈

[
1
4 ,

1
2

]
0 t ∈

[
1
2 , 1

] =


t t ∈

[
0, 1

4

]
−t+ 1

2 t ∈
[
1
4 ,

1
2

]
0 t ∈

[
1
2 , 1

]
10Joram Lindenstrauss and Lior Tzafriri, Classical Banach Spaces I and II, p. 3.
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and

ϕ5(t) =


0 t ∈

[
0, 1

2

]∫ t

1/2
1du t ∈

[
1
2 ,

3
4

]∫ 3/4

1/2
1du+

∫ t

3/4
−1du t ∈

[
3
4 , 1

] =


0 t ∈

[
0, 1

2

]
t− 1

2 t ∈
[
1
2 ,

3
4

]
−t+ 1 t ∈

[
3
4 , 1

]
.

Generally for k ≥ 0, for 1 ≤ i ≤ 2k, and for n = 2k + i,

ϕn+1(t) =


t− i−1

2k
t ∈ ∆−

n =
(
i−1
2k

, 2i−1
2k+1

)
−t+ i

2k
t ∈ ∆+

n =
(
2i−1
2k+1 ,

i
2k

)
0 otherwise.

We remark that

∥ϕn+1∥ =
2i− 1

2k+1
− i− 1

2k
= 2−k−1.

5 Riesz representation theorem

Let (X,M) be a measurable space. A signed measure is a function µ : M →
[−∞,∞] such that (i) µ(∅) = 0, (ii) µ assumes at most one of the values −∞,∞,
and (iii) if (Ej) is a sequence of disjoint elements ofM then µ (

⋃
Ej) =

∑
µ(Ej).

A finite signed measure is a signed measure whose image is contained in R.
We denote by ca(M) the collection of all finite signed measures on M. For
µ, λ ∈ ca(M) and for c ∈ R, define

(µ+ λ)(E) = µ(E) + λ(E), (cµ)(E) = cµ(E)

for E ∈ M, and we check that with addition and scalar multiplication thus
defined ca(M) is a real vector space. A positive measure is a signed measure
whose imaged is contained in [0,∞]. For µ, λ ∈ ca(M), we write

µ ≥ λ

if µ− λ is a positive measure; in any case µ− λ ∈ ca(M). We check that ≤ is a
partial order on ca(M) with which ca(M) is an ordered vector space. Finally,
a probability measure is a positive measure satisfying µ(X) = 1, which in
particular belongs to ca(M).

For E ∈ M, a partition of E is a countable subset {Ei} of M whose
members are pairwise disjoint. For µ ∈ ca(M) and E ∈ M we define

|µ|(E) = sup

{ ∞∑
i=1

|µ(Ei)| : {Ei} is a partition of E

}
.

It is immediate that |µ(E)| ≤ |µ|(E). It is proved that |µ| is a finite positive
measure on M, called the total variation measure of µ.11 For µ ∈ ca(M),
define

µ+ =
1

2
(|µ|+ µ), µ− =

1

2
(|µ| − µ).

11Walter Rudin, Real and Complex Analysis, third ed., pp. 117–118, Theorem 6.2 and
Theorem 6.4.
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Because |µ| is a finite positive measure and |µ(E)| ≤ |µ(E)|, µ+ and µ− are
finite positive measures, called the positive and negative variations of µ.
Then µ = µ+ − µ−, called the Jordan decomposition of µ.

For µ ∈ ca(M), define

∥µ∥ = |µ|(X) = µ+(X) + µ−(X).

One checks that ∥·∥ is a norm on ca(M).
For a compact Hausdorff space K and for f, g ∈ C(K), write g ≥ f when

(g − f)(t) ≥ 0 for all t ∈ K. A positive linear functional is a linear map ϕ :
C(K) → R such that ϕ(f) ≥ 0 when f ≥ 0. In this case, because ∥f∥·1+f ≥ 0,

∥f∥ϕ(1) + ϕ(f) = ϕ(∥f∥ · 1 + f) ≥ 0

i.e. −ϕ(f) ≤ ϕ(1) ∥f∥, and because ∥f∥ · 1− f ≥ 0,

∥f∥ϕ(1)− ϕ(f) = ϕ(∥f∥ · 1− f) ≥ 0,

i.e. ϕ(f) ≤ ϕ(1) ∥f∥, showing because ∥1∥ = 1 that the operator norm of ϕ is
∥ϕ∥ = ϕ(1), and in particular that ϕ ∈ C(K)∗.

For normed spaces (V, ∥·∥V ) and (W, ∥·∥W ), an isometric isomorphism
from V to W is a linear isomorphism T : V → W satisfying ∥Tv∥W = ∥v∥V
for all v ∈ V . The simplest version of the Riesz representation theorem is for
compact metrizable spaces, for which we do not need to speak about regular
Borel measures or continuous functions vanishing at infinity.12

Theorem 5 (Riesz representation theorem for compact metrizable spaces). Let
K be a compact metrizable space and define Λ : ca(BK) → C(K)∗ by

Λ(µ)(f) =

∫
K

fdµ, µ ∈ ca(BK), f ∈ C(K).

Λ is an isometric isomorphism, and is order preserving: if µ ≥ 0 then Λ(µ) ∈
C(K)∗ is a positive linear functional, and thus if µ ≥ λ then Λ(µ) ≥ Λ(λ).

6 The Borel σ-algebra of C[0, 1]

Let I = [0, 1], with the relative topology inherited from R, with which I is a
compact metric space. For t1, . . . , tn ∈ I, we define πt1,...,tn : C(I) → Rn by

πt1,...,tn(x) = (x(t1), . . . , x(tn)), x ∈ C(I),

which is continuous.
For a set X and a collection of functions ft : X → R, the coarsest σ-

algebra on X such that each ft is measurable X → R, where R has the Borel
σ-algebra, is called the σ-algebra generated by {ft : t ∈ I}, and is denoted
by σ({ft : t ∈ I}). We show that the Borel σ-algebra of C(I) is equal to the
σ-algebra generated by the family of projection maps C(I) → R.13

12Walter Rudin, Real and Complex Analysis, third ed., p. 130, Theorem 6.19.
13K. R. Parthasarathy, Probability Measures on Metric Spaces, p. 212, Theorem 2.1.
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Theorem 6. Let A be the σ-algebra generated by the family {πt : t ∈ [0, 1]}.
Then BC[0,1] = A .

Proof. Because C(I) is a separable metric space it is second-countable, and so
if U is an open subset of C(I) then U is equal to the union of countably many
open balls. Each open ball is equal to the union of countably many closed
balls: B(x, r) =

⋃
B(x, r − 1/n). Therefore each open subset of C(I) is equal

to the union of countably many closed balls, and to prove that BC(I) ⊂ A it
suffices to prove that all closed balls belong to A . To this end, let q1, q2, . . .
be an enumeration of [0, 1] ∩ Q, let x ∈ C(I), and let r > 0. Suppose that
|y(qn) − x(qn)| ≤ r for all n, and take t ∈ [0, 1]. Then there is a subsequence
qan

of qn that tends to t, and because y−x : [0, 1] → R is continuous, |y(qan
)−

x(qan
)| → |y(t)−x(t)|, and then because for each n we have |y(qan

)−x(qan
)| ≤ r

it follows that |y(t)− x(t)| ≤ r. This establishes

{y ∈ C(I) : ∥y − x∥ ≤ r} =

∞⋂
n=1

{y ∈ C(I) : |y(qn)− x(qn)| ≤ r}.

But

{y ∈ C(I) : |y(qn)− x(qn)| ≤ r} = π−1
qn ([πqn(x)− r, πqn(x) + r]),

which belongs to A . Thus B(x, r) is a countable intersection of elements of A
and so belongs to A , which shows that BC(I) ⊂ A .

On the other hand, for each t ∈ I the map πt : C(I) → R is continuous and
hence is measurable BC(I) → BR.

14 Therefore A ⊂ BC(I).

7 Relatively compact subsets of C[0, 1]

If (M,d) is a metric space, a subset A of M is called totally bounded if for
each ϵ > 0 there are finitely many points x1, . . . , xn ∈ M such that for any
point x ∈ M there is some i for which d(x, xi) < ϵ. It is immediate that
a compact metric space is totally bounded, and the Heine-Borel theorem
states that a metric space is compact if and only if it is complete and totally
bounded.15 On the other hand, one checks that if (M,d) is a metric space and
A is a totally bounded subset of M , then the closure A is a totally bounded
subset of M . Thus, if A is a totally bounded subset of a complete metric space
(M,d), then the closure A is itself a complete metric space (because (M,d) is
a complete metric space), and because A is complete and totally bounded, by
the Heine-Borel theorem it is compact.

If X is a topological space and F is a subset of C(X), we say that F is
equicontinuous at x ∈ X if for each ϵ > 0 there is a neighborhood Ux,ϵ of

14Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 140, Corollary 4.26.

15Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitch-
hiker’s Guide, third ed., p. 86, Theorem 3.28.
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x such that |f(x) − f(y)| < ϵ for all f ∈ F and for all y ∈ Ux,ϵ, and we
call F equicontinuous if it is equicontinuous at each x ∈ X. We call F
pointwise bounded if for each x ∈ X, {f(x) : f ∈ F} is a bounded subset
of R. The Arzelà-Ascoli theorem states that for a compact Hausdorff space
X and for F ⊂ C(X), F is equicontinuous and pointwise bounded if and only
if F is totally bounded.16 Then the closure F is totally bounded and is itself
a complete metric space, and hence is a compact metric space. That is, for a
compact Hausdorff space X, F is equicontinuous and pointwise bounded if and
only if F is relatively compact in C(X).

For x ∈ C[0, 1] and δ > 0, define

ωx(δ) = sup
s,t∈I,|s−t|≤δ

|x(s)− x(t)|.

For x ∈ C[0, 1] because x : I → R is continuous and I is compact, x is uniformly
continuous on I. Thus for ϵ > 0 there is some δϵ > 0 such that when |s− t| ≤ δϵ,
|x(s) − x(t)| ≤ ϵ, hence if δ ≤ δϵ then ωx(δ) ≤ ϵ, i.e. ωx(δ) → 0 as δ → 0. We
give sufficient and necessary conditions for a subset of C[0, 1] to be relatively
compact.

Lemma 7. Let A ⊂ C[0, 1]. A is relatively compact if and only if

sup
x∈A

|x(0)| < ∞ (5)

and
lim
δ↓0

sup
x∈A

ωx(δ) = 0. (6)

Proof. For t ∈ I and for r > 0, let

Br(t) = {s ∈ I : |s− t| < r},

which is an open neighborhood of t. The Arzelà-Ascoli theorem tells us that A
is relatively compact if and only if A is equicontinuous and pointwise bounded.
If A is relatively compact, then being pointwise bounded yields (5). Let ϵ > 0.
Because A is equicontinuous, for each t ∈ I there is some δt > 0 such that for
all x ∈ A and for all s ∈ Bδt(t) we have |x(s) − x(t)| < ϵ/2. Then because I
is compact, there are t1, . . . , tn ∈ I such that I =

⋃n
i=1 Bδti

(ti). Let δϵ > 0
be the Lebesgue number for this open cover: for each t ∈ I there is some i
for which Bδϵ(t) ⊂ Bδti

(ti). For 0 < δ ≤ δϵ, for x ∈ A, and for |s − t| ≤ δ/2,
there is some i for which Bδ(t) ⊂ Bδti

(ti), so s, t ∈ Bδti
(ti), which means

that |x(s) − x(ti)| < ϵ/2 and |x(t) − x(ti)| < ϵ/2, and thus |x(s) − x(t)| ≤
|x(s)− x(ti)|+ |x(ti)− x(t)| < ϵ. Therefore ωδ/2(x) ≤ ϵ, and this is true for all
x ∈ A which proves (6).

Suppose now that (5) and (6) are true. By (6), there is some m ≥ 1 such
that supx∈A ωx(1/m) ≤ 1, and therefore for x ∈ A, ∥x∥ ≤ |x(0)|+m. With (5)

16Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second
ed., p. 137, Theorem 4.43.
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this yields supx∈A ∥x∥ < ∞, whence A is pointwise bounded. Let t ∈ I and let
ϵ > 0. By (6) there is some δ > 0 such that supx∈A ωx(δ) < ϵ. Thus for x ∈ A
and for |s − t| ≤ δ, |x(s) − x(t)| < ϵ, which shows that A is equicontinuous at
t. This is true for all t ∈ I, so A is equicontinuous and by the Arzelà-Ascoli
theorem we get that A is relatively compact in C[0, 1].

8 Continuously differentiable functions

Let f : [0, 1] → R be a function. We say that f is differentiable at t ∈ [0, 1] if
there is some f ′(t) ∈ R such that17

lim
s→t,s∈[0,1]\{t}

f(s)− f(t)

s− t
= f ′(t).

If f is differentiable at each t ∈ [0, 1], we say that f is differentiable on [0, 1]
and define f ′ : [0, 1] → R by t 7→ f ′(t). We define C1[0, 1] to be the collection
of those f : [0, 1] → R such that f is differentiable on [0, 1] and f ′ : [0, 1] → R
is continuous. C1[0, 1] is contained in C[0, 1], and it turns out that C1[0, 1] is a
Borel set in C[0, 1].18 On the other hand, the collection differentiable functions
[0, 1] → R, which is a subset of C[0, 1], is not a Borel set in C[0, 1].19

17cf. Nicolas Bourbaki, Elements of Mathematics. Functions of a Real Variable: Elemen-
tary Theory, p. 3, Chapter I, §1, no. 1, Definition 1.

18Alexander S. Kechris, Classical Descriptive Set Theory, p. 70, §11.B, Example 2.
19S. M. Srivastava, A Course on Borel Sets, p. 139, Proposition 4.2.7.
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