
Functions of bounded variation and

differentiability

Jordan Bell

March 11, 2016

1 Functions of bounded variation

We say that a function f : A → R ∪ {∞}, A ⊂ R, is increasing if x ≤ y implies
F (x) ≤ F (y), namely if f is order preserving.

Let a < b be real. For a function F : [a, b] → R, define VF : [a, b] → [0,∞]
by

VF (x) = sup
N,a=t0<t1<···<tN=b

∑
j

|F (tj)− F (tj−1)|,

called the variation of F . It is apparent that VF is increasing. If VF is bounded,
we say that F has bounded variation. VF being bounded is equivalent to
VF (b) < ∞. If F is increasing then

VF (x) = F (x)− F (a),

so in particular an increasing function has bounded variation.
Define PF : [a, b] → [0,∞] by

PF (x) = sup
N,a=t0<t1<···<tN=b

∑
F (tj)≥F (tj−1)

F (tj)− F (tj−1),

called the positive variation of F , and define NF : [a, b] → [0,∞] by

NF (x) = sup
N,a=t0<t1<···<tN=b

∑
F (tj)≤F (tj−1)

−(F (tj)− F (tj−1)),

called the negative variation of F . It is apparent that PF and NF are in-
creasing.

We now prove the Jordan decomposition theorem. It shows in particular
that if F has bounded variation then PF and NF are bounded.

Theorem 1 (Jordan decomposition theorem). If F : [a, b] → R has bounded
variation, then for all x ∈ [a, b],

VF (x) = PF (x) +NF (x).

and
F (x)− F (a) = PF (x)−NF (x).
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Proof. For ϵ > 0 there is some L and some a = r0 < t1 < · · · < rL = x for
which ∑

F (rj)≥F (rj−1)

F (rj)− F (rj−1) > PF (x)− ϵ,

and there is some M and some a = s0 < s1 < · · · < sM = x for which∑
F (sj)≤F (sj−1)

−(F (sj)− F (sj−1)) > NF (x)− ϵ.

Let a = t0 < t1 < · · · < tN = x with {t0, . . . , tN} = {r0, . . . , rL} ∪ {s0, . . . , sM}.
As {r0, . . . , rL} ⊂ {t0, . . . , tN},∑

F (tj)≥F (tj−1)

F (tj)− F (tj−1) ≥
∑

F (rj)≥F (rj−1)

F (rj)− F (rj−1)

and as {s0, . . . , sM} ⊂ {t0, . . . , tN},∑
F (tj)≤F (tj−1)

−(F (tj)− F (tj−1)) ≥
∑

F (sj)≤F (sj−1)

−(F (sj)− F (sj−1)).

Hence
VF (x) ≥

∑
j

|F (tj)− F (tj−1)| > PF (x) +NF (x)− 2ϵ,

and as this is true for all ϵ > 0 it follows that VF (x) ≥ PF (x) + NF (x). And
sup(f + g) ≤ sup f + sup g, so VF (x) ≤ PF (x) +NF (x) and therefore VF (x) =
PF (x) +NF (x). Now,

F (x)− F (a) =
∑
j

F (tj)− F (tj−1)

=
∑

F (tj)≥F (tj−1)

F (tj)− F (tj−1)−
∑

F (tj)≤F (tj−1)

−(F (tj)− F (tj−1)),

which implies
|F (x)− F (a)− PF (x) +NF (x)| < 2ϵ,

whence F (x)− F (a)− PF (x) +NF (x) = 0.

The Jordan decomposition theorem tells us that if F has bounded variation
then

F (x) = (PF (x)− F (a))−NF (x),

and as x 7→ PF (x)− F (a) and x 7→ NF (x) are increasing, this shows that F is
the difference of two increasing functions.

The following says that a function of bounded variation is continuous at a
point if and only if its variation is continuous at that point.1

1V. I. Bogachev, Measure Theory, volume 1, p. 333, Proposition 5.2.2.
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Theorem 2. If F : [a, b] → R has bounded variation, then F is continuous at
x if and only if VF is continuous at x.

Theorem 3. If F : [a, b] → R has bounded variation then there are at most
countably many x ∈ [a, b] at which F is not continuous.

Proof. According to the Jordan decomposition theorem, VF = PF + NF , so
it suffices to prove that if f : [a, b] → R is increasing then there are at most
countably many x ∈ [a, b] at which f is not continuous. Let f(a−) = f(a) and
for a < x ≤ b let

f(x−) = lim
y→x,y<x

f(y),

and let f(b+) = f(b) and for a ≤ x < b let

f(x+) = lim
y→x,y>x

f(y);

this makes sense because f is increasing, and also because f is increasing we
have f(x−) ≤ f(x) ≤ f(x+). Let E be the set of those x ∈ [a, b] at which f is
not continuous. If x ∈ E, then f(x−) < f(x+) and hence there is some rx ∈
(f(x−), f(x+)) ∩Q. If x, y ∈ E, x < y, then as x < y we have f(x+) ≤ f(y−),
and as x, y ∈ E, f(x−) < rx < f(x+) and f(y−) < ry < f(y+), so rx < ry.
Therefore x 7→ rx is one-to-one E → Q, showing that E is countable.

2 Coverings

The following is the rising sum lemma, due to F. Riesz.2 (We don’t use the
rising sun lemma elsewhere in these notes, and instead use the Vitali covering
theorem, stated next.)

Lemma 4 (Rising sun lemma). Let G : [a, b] → R be continuous and let E
be the set of those x ∈ (a, b) for which there is some x < y ≤ b satisfying
G(y) > G(x). G is open, and if G is nonempty then G is the union of countably
many disjoint (ak, bk) ⊂ [a, b]. If ak > a then G(bk) = G(ak), and if ak = a
then G(bk) ≥ G(ak).

Proof. If x0 ∈ E, there is some x0 < y0 ≤ b with G(y0) > G(x0). Writing
ϵ = G(y0)−G(x0), as G is continuous there is some δ > 0, (x0−δ, x0+δ) ⊂ [a, b],
such that if |x− x0| < δ then |G(x)−G(x0)| < ϵ, so

G(y0)−G(x) = ϵ+G(x0)−G(x)

≥ ϵ− |G(x)−G(x0)|
> 0.

Thus if x ∈ (x0 − δ, x0 + δ) then G(y0) > G(x), which shows that E is open.

2Elias M. Stein and Rami Shakarchi, Real Analysis, p. 118, Lemma 3.2.
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Suppose now that E is nonempty, and for x ∈ E let

Ax = inf{t ∈ R : (t, x) ⊂ E}, Bx = sup{t ∈ R : (x, t) ⊂ E}.

As E is open, there is some δx > 0 such that (x−δx, x+δx) ⊂ E, so Ax ≤ x−δx <
x and Bx ≥ x+ δx > x. Furthermore, as E is open it follows that Ax ̸∈ E and
Bx ̸∈ E. For x, y ∈ E, either (Ax, Bx) ∩ (Ay, By) = ∅ or (Ax, Bx) = (Ay, By),
and as (Ax, Bx) contains at least one rational number,

E =
⋃

x∈E∩Q
(Ax, Bx).

As E∩Q is countable, there are pairwise disjoint (ak, bk) ⊂ [a, b], ak ̸∈ E, bk ̸∈ E,
k ∈ I, such that

E =
⋃
k∈I

(ak, bk).

For k ∈ I, suppose by contradiction that G(bk) < G(ak). Let

Ck =

{
c ∈ (ak, bk) : G(c) =

G(ak) +G(bk)

2

}
,

which is nonempty by the intermediate value theorem. Let ck = supCk, and

because G is continuous, ck ∈ Ck. ck = bk would imply G(bk) =
G(ak)+G(bk)

2 ,
contradicting G(bk) < G(ak); hence ck ∈ (ak, bk) ⊂ E. Then because ck ∈ E,
there is some ck < d ≤ b satisfying G(d) > G(ck). If d > bk then as bk ∈
(a, b) \ E it holds that G(d) ≤ G(bk) < G(ck) < G(d), a contradiction, and if
d = bk then G(d) = G(bk) < G(ck) < G(d), a contradiction; hence d < bk.
As G(d) > G(ck) > G(bk), by the intermediate value theorem there is some
c ∈ (d, bk) such that G(c) = G(ck). But then we have c ∈ Ck and c > ck,
contradicting ck = supCk. Therefore,

G(bk) ≥ G(ak).

If ak ̸= a then ak ∈ (a, b) \ E, which means that there is no ak < y ≤ b
satisfying G(y) > G(ak). Hence G(bk) ≤ G(ak), which shows that for ak ̸= a,
we have G(bk) = G(ak).

Let λ be Lebesgue measure on the Borel σ-algebra of R and let λ∗ be
Lebesgue outer measure on R.

A Vitali covering of a set E ⊂ R is a collection V of closed intervals such
that for ϵ > 0 and for x ∈ E there is some I ∈ V with x ∈ I and 0 < λ(I) < ϵ.
The following is the Vitali covering theorem.

Theorem 5 (Vitali covering theorem). Let U be an open set in R with λ(U) <
∞, let E ⊂ U , and let V be a Vitali covering of E each interval of which is
contained in U . Then for any ϵ > 0 there are pairwise disjoint I1, . . . , In ∈ V
such that

λ∗

E \
n⋃

j=1

Ij

 < ϵ.
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3 Differentiability

Let F : [a, b] → R be a function. The Dini derivatives of F are the following.
D−F (x) : (a, b] → R ∪ {∞} is defined by

D−F (x) = lim sup
h→0,h<0

F (x+ h)− F (x)

h
,

D−F (x) : (a, b] → R ∪ {−∞} is defined by

D−F (x) = lim inf
h→0,h<0

F (x+ h)− F (x)

h
,

D+F (x) : [a, b) → R ∪ {∞} is defined by

D+F (x) = lim sup
h→0,h>0

F (x+ h)− F (x)

h
,

D+F (x) : [a, b) → R ∪ {−∞} is defined by

D+F (x) = lim inf
h→0,h>0

F (x+ h)− F (x)

h
.

For x ∈ [a, b], the upper derivative of F at x is

DF (x) = lim sup
h→0,h̸=0

F (x+ h)− F (x)

h
,

and the lower derivative of F at x is

DF (x) = lim inf
h→0,h̸=0

F (x+ h)− F (x)

h
.

Let
L = {x ∈ (a, b] : D−F (x) = D−F (x)},
R = {x ∈ [a, b) : D+F (x) = D+F (x)}.

For x ∈ L , the left-derivative of F at x is

F ′
−(x) = D−F (x) = D−F (x),

and for x ∈ R, the right-derivative of F at x is

F ′
+(x) = D+F (x) = D+F (x).

For x ∈ (a, b), for F to be differentiable at x means that

−∞ < D−F (x) = D−F (x) = D+F (x) = D+F (x) < ∞.

We prove that the set of points at which F is left-differentiable and right-
differentiable but F ′

−(x) ̸= F ′
+(x) is countable.

3

3V. I. Bogachev, Measure Theory, volume 1, p. 332, Lemma 5.1.3.
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Lemma 6. {x ∈ L ∩ R : F ′
−(x) ̸= F ′

+(x)} is countable.

Proof. Let Q = {rk : k ≥ 1}, rk ̸= rj for k ̸= j, and let

E = {x ∈ L ∩ R : F ′
−(x) < F ′

+(x)},

For x ∈ E, as F ′
−(x) < F ′

+(x) there is a minimal k with F ′
−(x) < rk < F ′

+(x).
As rk > F ′

−(x), there is a minimal m such that rm < x and for all t ∈ (rm, x),
F (t)−F (x)

t−x < rk and hence F (t) − F (x) > rk(t − x). Likewise, as rk < F ′
+(x),

there is a minimal n such that rn > x and for all t ∈ (x, rn),
F (t)−F (x)

t−x > rk
and hence F (t)− F (x) > rk(t− x). Hence

F (t)− F (x) > rk(t− x), t ∈ (rm, rn), t ̸= x. (1)

Now for distinct x, y ∈ E suppose by contradiction that (k(x),m(x), n(x)) =
(k(y),m(y), n(y)). As x, y ∈ (rm, rn), using (1) with t = y and t = x we get

F (y)− F (x) > rk(y − x), F (x)− F (y) > rk(x− y),

yielding rk(x − y) < F (x) − F (y) < rk(x − y), a contradiction. Therefore
x 7→ (k(x),m(x), n(x)) is one-to-one E → N3, for N the positive integers, which
shows that E is countable.

We similarly prove that

{x ∈ L ∩ R : F ′
−(x) > F ′

+(x)}

is countable.

4 Differentiability of increasing functions

We now use the Vitali covering lemma to prove that the Dini derivatives of an
increasing function are finite almost everywhere.4

Lemma 7. Let F : [a, b] → R be an increasing function and let

A− = {x ∈ (a, b] : D−F (x) = ∞}, A− = {x ∈ (a, b] : D−F (x) = −∞},

A+ = {x ∈ [a, b) : D+F (x) = ∞}, A+ = {x ∈ [a, b) : D+F (x) = −∞}.

Then
λ∗(A−) = 0, λ∗(A−) = 0, λ∗(A+) = 0, λ∗(A−) = 0.

Proof. Because F is increasing, for any h ̸= 0, F (x+h)−F (x)
h ≥ 0, and therefore

A− = ∅ and A+ = ∅. Suppose by contradiction that

λ∗(A−) = α > 0.

4Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55,
Lemma 4.8.
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As α > 0, there is some r > 0 satisfying

rα

2
> F (b)− F (a).

For x−, because D−F (x) = ∞ there is an increasing sequence tx,k ∈ [a, b] that
tends to x such that for each k ≥ 1,

F (x)− F (tx,k)

x− tx,k
≥ r. (2)

Let
V = {[tx,k, x] : x ∈ A−, k ≥ 1},

which is a Vitali covering of A−, and so by the Vitali covering theorem there
are pairwise disjoint [txj ,kj

, xj ] ∈ V, 1 ≤ j ≤ n, such that

λ∗

A− \
n⋃

j=1

[txj ,kj , xj ]

 <
α

2

and then

λ∗(A−) ≤ λ∗

A− \
n⋃

j=1

[txj ,kj
, xj ]

+ λ

 n⋃
j=1

[txj ,kj
, xj ]

 ,

hence

n∑
j=1

λ([txj ,kj
, xj ]) = λ

 n⋃
j=1

[txj ,kj
, xj ]


≥ λ∗(A−)− λ∗

A− \
n⋃

j=1

[txj ,kj
, xj ]


> α− α

2
.

That is,
n∑

j=1

(xj − txj ,kj ) >
α

2
.

Now, by (2), F (xj)− F (txj ,kj
) ≥ r(xj − txj ,kj

), so

n∑
j=1

(F (xj)− F (txj ,kj )) ≥
n∑

j=1

r(xj − txj ,kj ) >
rα

2
> F (b)− F (a).

But because the intervals [txj ,kj , xj ] are pairwise disjoint and F is increasing,∑n
j=1(F (xj) − F (txj ,kj )) ≤ F (b) − F (a), contradicting the above inequality.

Therefore λ∗(A−) = 0.
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Suppose by contradiction that

λ∗(A+) = α > 0.

As α > 0, there is some r > 0 satisfying

rα

2
> F (b)− F (a).

For x ∈ A+, because D+F (x) = ∞ there is a decreasing sequence tx,k ∈ [a, b]
that tends to x such that for each k ≥ 1,

F (tx,k)− F (x)

tx,k − x
≥ r. (3)

Let
V = {[x, tx,k] : x ∈ A+, k ≥ 1},

which is a Vitali covering of A+, and so by the Vitali covering theorem there
are pairwise disjoint [xj , txj ,kj ] ∈ V, 1 ≤ j ≤ n, such that

λ∗

A+ \
n⋃

j=1

[xj , txj ,kj ]

 <
α

2

and then

λ∗(A+) ≤ λ∗

A+ \
n⋃

j=1

[xj , txj ,kj
]

+ λ

 n⋃
j=1

[xj , txj ,kj
]

 ,

hence

n∑
j=1

λ([xj , txj ,kj
]) = λ

 n⋃
j=1

[xj , txj ,kj
]


≥ λ∗(A+)− λ∗

A+ \
n⋃

j=1

[xj , txj ,kj
]


> α− α

2
.

That is,
n∑

j=1

(txj ,kj − xj) >
α

2
.

Now, by (3), F (txj ,kj
)− F (xj) ≥ r(txj ,kj

− xj), so

n∑
j=1

(F (txj ,kj )− F (xj)) ≥
n∑

j=1

r(txj ,kj − xj) >
rα

2
> F (b)− F (a).

But because the intervals [xj , txj ,kj ] are pairwise disjoint and F is increasing,∑n
j=1(F (txj ,kj ) − F (xj)) ≤ F (b) − F (a), contradicting the above inequality.

Therefore λ∗(A+) = 0.
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We now prove that an increasing function is differentiable almost every-
where.5

Theorem 8. Let F : [a, b] → R be increasing and let

E = {x ∈ (a, b) : −∞ < D−F (x) = D−F (x) = D+F (x) = D+F (x) < ∞}.

Then λ∗([a, b] \ E) = 0.

Proof. Let
A = {x ∈ (a, b) : D+F (x) < D+F (x)},

and suppose by contradiction that λ∗(A) > 0. Since

A =
⋃

p,q∈Q,p<q

{x ∈ (a, b) : D+F (x) < p < q < D+F (x)},

which is a union of countably many sets, there are some p, q ∈ Q, p < q, such
that λ∗(B) = β > 0,

B = {x ∈ (a, b) : D+F (x) < p < q < D+F (x)}.

Let ϵ > 0. There is an open set U ⊂ (a, b) with B ⊂ U and λ(U) < λ∗(B)+ ϵ =
β + ϵ. For x ∈ B, because D+F (x) < p and because x belongs to the open set
U , there is a sequence tx,k ∈ (x, x+1/k), [x, tx,k] ⊂ U , such that for each k ≥ 1,

F (tx,k)− F (x)

tx,k − x
< p.

Then
V = {[x, tx,k] : x ∈ B, k ≥ 1}

is a Vitali covering of B, so by the Vitali covering theorem there are pairwise
disjoint [xj , txj ,kj

] ∈ V, 1 ≤ j ≤ m, such that

λ∗

B \
m⋃
j=1

[xj , txj ,kj
]

 < ϵ,

and then, as the intervals [xj , txj ,kj
] are pairwise disjoint and are all contained

5Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55,
Theorem 4.9.
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in U ,

m∑
j=1

(F (txj ,kj
)− F (xj)) <

m∑
j=1

p(txj ,kj
− xj)

= p

m∑
j=1

λ([xj , txj ,kj
]]

= pλ

 m⋃
j=1

[xj , txj ,kj
]


≤ pλ(U)

< p(β + ϵ).

Let C = B ∩
⋃n

j=1(xj , txj ,kj ), for which

β = λ∗(B) ≤ λ∗(C) + λ∗

B \
n⋃

j=1

[xj , txj ,kj
]

 < λ∗(C) + ϵ,

so
λ∗(C) > β − ϵ.

For y ∈ C there is some i for which y ∈ (xi, txi,ki), and because D+F (y) > q
there is a sequence uy,l ∈ (y, y + 1/l), [y, uy,l] ⊂ (xi, txi,ki), such that for each
l ≥ 1,

F (uy,l)− F (y)

uy,l − y
> q.

Then
W = {[y, uy,l] : y ∈ B, l ≥ 1}

is a Vitali covering of C, so by the Vitali covering theorem there are pairwise
disjoint [yj , uyj ,lj ] ∈ W, 1 ≤ j ≤ n, such that

λ∗

C \
n⋃

j=1

[yj , uyj ,lj ]

 < ϵ,

so

λ∗(C) ≤ λ∗

C \
n⋃

j=1

[yj , uyj ,lj ]

+ λ

 n⋃
j=1

[yj , uyj ,lj ]

 < ϵ+

n∑
j=1

λ([yj , uyj ,lj ]),

and then

n∑
j=1

(F (uyj ,lj )− F (yj)) >

n∑
j=1

q(uyj ,lj − yj) > q(λ∗(C)− ϵ) > q(β − 2ϵ).
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Now for 1 ≤ i ≤ m let πi = {1 ≤ j ≤ n : [yj , uyj ,lj ] ⊂ (xi, txi,ki
)}. Because F

is increasing, if j ∈ πi then F (uyj ,lj )− F (yj) ≤ F (txi,ki
)− F (xi), and because

each [yj , uyj ,lj ] is contained in some (xi, txi,ki
),

q(β − 2ϵ) <

n∑
j=1

(F (uyj ,lj )− F (yj))

=

m∑
i=1

∑
j∈πi

(F (uyj ,lj )− F (yj))

≤
m∑
i=1

(F (txi,ki
)− F (xi));

the last inequality also uses that the intervals [yj , uyj ,lj ] are pairwise disjoint.
But we have found

∑m
i=1(F (txi,ki)−F (xi)) < p(β+ ϵ), so q(β− 2ϵ) < p(β+ ϵ).

As this is true for all ϵ > 0, it holds that qβ ≤ pβ, and as β > 0 we get q ≤ p,
contradicting that p < q. Therefore λ∗(A) = 0.
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