# Functions of bounded variation and differentiability 

Jordan Bell

March 11, 2016

## 1 Functions of bounded variation

We say that a function $f: A \rightarrow \mathbb{R} \cup\{\infty\}, A \subset \mathbb{R}$, is increasing if $x \leq y$ implies $F(x) \leq F(y)$, namely if $f$ is order preserving.

Let $a<b$ be real. For a function $F:[a, b] \rightarrow \mathbb{R}$, define $V_{F}:[a, b] \rightarrow[0, \infty]$ by

$$
V_{F}(x)=\sup _{N, a=t_{0}<t_{1}<\cdots<t_{N}=b} \sum_{j}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|,
$$

called the variation of $F$. It is apparent that $V_{F}$ is increasing. If $V_{F}$ is bounded, we say that $F$ has bounded variation. $V_{F}$ being bounded is equivalent to $V_{F}(b)<\infty$. If $F$ is increasing then

$$
V_{F}(x)=F(x)-F(a),
$$

so in particular an increasing function has bounded variation.
Define $P_{F}:[a, b] \rightarrow[0, \infty]$ by

$$
P_{F}(x)=\sup _{N, a=t_{0}<t_{1}<\cdots<t_{N}=b} \sum_{F\left(t_{j}\right) \geq F\left(t_{j-1}\right)} F\left(t_{j}\right)-F\left(t_{j-1}\right),
$$

called the positive variation of $F$, and define $N_{F}:[a, b] \rightarrow[0, \infty]$ by

$$
N_{F}(x)=\sup _{N, a=t_{0}<t_{1}<\cdots<t_{N}=b} \sum_{F\left(t_{j}\right) \leq F\left(t_{j-1}\right)}-\left(F\left(t_{j}\right)-F\left(t_{j-1}\right)\right),
$$

called the negative variation of $F$. It is apparent that $P_{F}$ and $N_{F}$ are increasing.

We now prove the Jordan decomposition theorem. It shows in particular that if $F$ has bounded variation then $P_{F}$ and $N_{F}$ are bounded.

Theorem 1 (Jordan decomposition theorem). If $F:[a, b] \rightarrow \mathbb{R}$ has bounded variation, then for all $x \in[a, b]$,

$$
V_{F}(x)=P_{F}(x)+N_{F}(x) .
$$

and

$$
F(x)-F(a)=P_{F}(x)-N_{F}(x) .
$$

Proof. For $\epsilon>0$ there is some $L$ and some $a=r_{0}<t_{1}<\cdots<r_{L}=x$ for which

$$
\sum_{F\left(r_{j}\right) \geq F\left(r_{j-1}\right)} F\left(r_{j}\right)-F\left(r_{j-1}\right)>P_{F}(x)-\epsilon,
$$

and there is some $M$ and some $a=s_{0}<s_{1}<\cdots<s_{M}=x$ for which

$$
\sum_{F\left(s_{j}\right) \leq F\left(s_{j-1}\right)}-\left(F\left(s_{j}\right)-F\left(s_{j-1}\right)\right)>N_{F}(x)-\epsilon .
$$

Let $a=t_{0}<t_{1}<\cdots<t_{N}=x$ with $\left\{t_{0}, \ldots, t_{N}\right\}=\left\{r_{0}, \ldots, r_{L}\right\} \cup\left\{s_{0}, \ldots, s_{M}\right\}$. As $\left\{r_{0}, \ldots, r_{L}\right\} \subset\left\{t_{0}, \ldots, t_{N}\right\}$,

$$
\sum_{F\left(t_{j}\right) \geq F\left(t_{j-1}\right)} F\left(t_{j}\right)-F\left(t_{j-1}\right) \geq \sum_{F\left(r_{j}\right) \geq F\left(r_{j-1}\right)} F\left(r_{j}\right)-F\left(r_{j-1}\right)
$$

and as $\left\{s_{0}, \ldots, s_{M}\right\} \subset\left\{t_{0}, \ldots, t_{N}\right\}$,

$$
\sum_{F\left(t_{j}\right) \leq F\left(t_{j-1}\right)}-\left(F\left(t_{j}\right)-F\left(t_{j-1}\right)\right) \geq \sum_{F\left(s_{j}\right) \leq F\left(s_{j-1}\right)}-\left(F\left(s_{j}\right)-F\left(s_{j-1}\right)\right)
$$

Hence

$$
V_{F}(x) \geq \sum_{j}\left|F\left(t_{j}\right)-F\left(t_{j-1}\right)\right|>P_{F}(x)+N_{F}(x)-2 \epsilon,
$$

and as this is true for all $\epsilon>0$ it follows that $V_{F}(x) \geq P_{F}(x)+N_{F}(x)$. And $\sup (f+g) \leq \sup f+\sup g$, so $V_{F}(x) \leq P_{F}(x)+N_{F}(x)$ and therefore $V_{F}(x)=$ $P_{F}(x)+N_{F}(x)$. Now,

$$
\begin{aligned}
F(x)-F(a) & =\sum_{j} F\left(t_{j}\right)-F\left(t_{j-1}\right) \\
& =\sum_{F\left(t_{j}\right) \geq F\left(t_{j-1}\right)} F\left(t_{j}\right)-F\left(t_{j-1}\right)-\sum_{F\left(t_{j}\right) \leq F\left(t_{j-1}\right)}-\left(F\left(t_{j}\right)-F\left(t_{j-1}\right)\right),
\end{aligned}
$$

which implies

$$
\left|F(x)-F(a)-P_{F}(x)+N_{F}(x)\right|<2 \epsilon,
$$

whence $F(x)-F(a)-P_{F}(x)+N_{F}(x)=0$.
The Jordan decomposition theorem tells us that if $F$ has bounded variation then

$$
F(x)=\left(P_{F}(x)-F(a)\right)-N_{F}(x)
$$

and as $x \mapsto P_{F}(x)-F(a)$ and $x \mapsto N_{F}(x)$ are increasing, this shows that $F$ is the difference of two increasing functions.

The following says that a function of bounded variation is continuous at a point if and only if its variation is continuous at that point. ${ }^{1}$

[^0]Theorem 2. If $F:[a, b] \rightarrow \mathbb{R}$ has bounded variation, then $F$ is continuous at $x$ if and only if $V_{F}$ is continuous at $x$.

Theorem 3. If $F:[a, b] \rightarrow \mathbb{R}$ has bounded variation then there are at most countably many $x \in[a, b]$ at which $F$ is not continuous.

Proof. According to the Jordan decomposition theorem, $V_{F}=P_{F}+N_{F}$, so it suffices to prove that if $f:[a, b] \rightarrow \mathbb{R}$ is increasing then there are at most countably many $x \in[a, b]$ at which $f$ is not continuous. Let $f\left(a^{-}\right)=f(a)$ and for $a<x \leq b$ let

$$
f\left(x^{-}\right)=\lim _{y \rightarrow x, y<x} f(y)
$$

and let $f\left(b^{+}\right)=f(b)$ and for $a \leq x<b$ let

$$
f\left(x^{+}\right)=\lim _{y \rightarrow x, y>x} f(y)
$$

this makes sense because $f$ is increasing, and also because $f$ is increasing we have $f\left(x^{-}\right) \leq f(x) \leq f\left(x^{+}\right)$. Let $E$ be the set of those $x \in[a, b]$ at which $f$ is not continuous. If $x \in E$, then $f\left(x^{-}\right)<f\left(x^{+}\right)$and hence there is some $r_{x} \in$ $\left(f\left(x^{-}\right), f\left(x^{+}\right)\right) \cap \mathbb{Q}$. If $x, y \in E, x<y$, then as $x<y$ we have $f\left(x^{+}\right) \leq f\left(y^{-}\right)$, and as $x, y \in E, f\left(x^{-}\right)<r_{x}<f\left(x^{+}\right)$and $f\left(y^{-}\right)<r_{y}<f\left(y^{+}\right)$, so $r_{x}<r_{y}$. Therefore $x \mapsto r_{x}$ is one-to-one $E \rightarrow \mathbb{Q}$, showing that $E$ is countable.

## 2 Coverings

The following is the rising sum lemma, due to F. Riesz. ${ }^{2}$ (We don't use the rising sun lemma elsewhere in these notes, and instead use the Vitali covering theorem, stated next.)

Lemma 4 (Rising sun lemma). Let $G:[a, b] \rightarrow \mathbb{R}$ be continuous and let $E$ be the set of those $x \in(a, b)$ for which there is some $x<y \leq b$ satisfying $G(y)>G(x) . G$ is open, and if $G$ is nonempty then $G$ is the union of countably many disjoint $\left(a_{k}, b_{k}\right) \subset[a, b]$. If $a_{k}>a$ then $G\left(b_{k}\right)=G\left(a_{k}\right)$, and if $a_{k}=a$ then $G\left(b_{k}\right) \geq G\left(a_{k}\right)$.

Proof. If $x_{0} \in E$, there is some $x_{0}<y_{0} \leq b$ with $G\left(y_{0}\right)>G\left(x_{0}\right)$. Writing $\epsilon=G\left(y_{0}\right)-G\left(x_{0}\right)$, as $G$ is continuous there is some $\delta>0,\left(x_{0}-\delta, x_{0}+\delta\right) \subset[a, b]$, such that if $\left|x-x_{0}\right|<\delta$ then $\left|G(x)-G\left(x_{0}\right)\right|<\epsilon$, so

$$
\begin{aligned}
G\left(y_{0}\right)-G(x) & =\epsilon+G\left(x_{0}\right)-G(x) \\
& \geq \epsilon-\left|G(x)-G\left(x_{0}\right)\right| \\
& >0 .
\end{aligned}
$$

Thus if $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ then $G\left(y_{0}\right)>G(x)$, which shows that $E$ is open.

[^1]Suppose now that $E$ is nonempty, and for $x \in E$ let

$$
A_{x}=\inf \{t \in \mathbb{R}:(t, x) \subset E\}, \quad B_{x}=\sup \{t \in \mathbb{R}:(x, t) \subset E\}
$$

As $E$ is open, there is some $\delta_{x}>0$ such that $\left(x-\delta_{x}, x+\delta_{x}\right) \subset E$, so $A_{x} \leq x-\delta_{x}<$ $x$ and $B_{x} \geq x+\delta_{x}>x$. Furthermore, as $E$ is open it follows that $A_{x} \notin E$ and $B_{x} \notin E$. For $x, y \in E$, either $\left(A_{x}, B_{x}\right) \cap\left(A_{y}, B_{y}\right)=\emptyset$ or $\left(A_{x}, B_{x}\right)=\left(A_{y}, B_{y}\right)$, and as $\left(A_{x}, B_{x}\right)$ contains at least one rational number,

$$
E=\bigcup_{x \in E \cap \mathbb{Q}}\left(A_{x}, B_{x}\right) .
$$

As $E \cap \mathbb{Q}$ is countable, there are pairwise disjoint $\left(a_{k}, b_{k}\right) \subset[a, b], a_{k} \notin E, b_{k} \notin E$, $k \in I$, such that

$$
E=\bigcup_{k \in I}\left(a_{k}, b_{k}\right)
$$

For $k \in I$, suppose by contradiction that $G\left(b_{k}\right)<G\left(a_{k}\right)$. Let

$$
C_{k}=\left\{c \in\left(a_{k}, b_{k}\right): G(c)=\frac{G\left(a_{k}\right)+G\left(b_{k}\right)}{2}\right\}
$$

which is nonempty by the intermediate value theorem. Let $c_{k}=\sup C_{k}$, and because $G$ is continuous, $c_{k} \in C_{k} . c_{k}=b_{k}$ would imply $G\left(b_{k}\right)=\frac{G\left(a_{k}\right)+G\left(b_{k}\right)}{2}$, contradicting $G\left(b_{k}\right)<G\left(a_{k}\right)$; hence $c_{k} \in\left(a_{k}, b_{k}\right) \subset E$. Then because $c_{k} \in E$, there is some $c_{k}<d \leq b$ satisfying $G(d)>G\left(c_{k}\right)$. If $d>b_{k}$ then as $b_{k} \in$ $(a, b) \backslash E$ it holds that $G(d) \leq G\left(b_{k}\right)<G\left(c_{k}\right)<G(d)$, a contradiction, and if $d=b_{k}$ then $G(d)=G\left(b_{k}\right)<G\left(c_{k}\right)<G(d)$, a contradiction; hence $d<b_{k}$. As $G(d)>G\left(c_{k}\right)>G\left(b_{k}\right)$, by the intermediate value theorem there is some $c \in\left(d, b_{k}\right)$ such that $G(c)=G\left(c_{k}\right)$. But then we have $c \in C_{k}$ and $c>c_{k}$, contradicting $c_{k}=\sup C_{k}$. Therefore,

$$
G\left(b_{k}\right) \geq G\left(a_{k}\right)
$$

If $a_{k} \neq a$ then $a_{k} \in(a, b) \backslash E$, which means that there is no $a_{k}<y \leq b$ satisfying $G(y)>G\left(a_{k}\right)$. Hence $G\left(b_{k}\right) \leq G\left(a_{k}\right)$, which shows that for $a_{k} \neq a$, we have $G\left(b_{k}\right)=G\left(a_{k}\right)$.

Let $\lambda$ be Lebesgue measure on the Borel $\sigma$-algebra of $\mathbb{R}$ and let $\lambda^{*}$ be Lebesgue outer measure on $\mathbb{R}$.

A Vitali covering of a set $E \subset \mathbb{R}$ is a collection $\mathcal{V}$ of closed intervals such that for $\epsilon>0$ and for $x \in E$ there is some $I \in \mathcal{V}$ with $x \in I$ and $0<\lambda(I)<\epsilon$. The following is the Vitali covering theorem.
Theorem 5 (Vitali covering theorem). Let $U$ be an open set in $\mathbb{R}$ with $\lambda(U)<$ $\infty$, let $E \subset U$, and let $\mathcal{V}$ be a Vitali covering of $E$ each interval of which is contained in $U$. Then for any $\epsilon>0$ there are pairwise disjoint $I_{1}, \ldots, I_{n} \in \mathcal{V}$ such that

$$
\lambda^{*}\left(E \backslash \bigcup_{j=1}^{n} I_{j}\right)<\epsilon
$$

## 3 Differentiability

Let $F:[a, b] \rightarrow \mathbb{R}$ be a function. The Dini derivatives of $F$ are the following. $D^{-} F(x):(a, b] \rightarrow \mathbb{R} \cup\{\infty\}$ is defined by

$$
D^{-} F(x)=\limsup _{h \rightarrow 0, h<0} \frac{F(x+h)-F(x)}{h},
$$

$D_{-} F(x):(a, b] \rightarrow \mathbb{R} \cup\{-\infty\}$ is defined by

$$
D_{-} F(x)=\liminf _{h \rightarrow 0, h<0} \frac{F(x+h)-F(x)}{h},
$$

$D^{+} F(x):[a, b) \rightarrow \mathbb{R} \cup\{\infty\}$ is defined by

$$
D^{+} F(x)=\limsup _{h \rightarrow 0, h>0} \frac{F(x+h)-F(x)}{h},
$$

$D_{+} F(x):[a, b) \rightarrow \mathbb{R} \cup\{-\infty\}$ is defined by

$$
D_{+} F(x)=\liminf _{h \rightarrow 0, h>0} \frac{F(x+h)-F(x)}{h} .
$$

For $x \in[a, b]$, the upper derivative of $F$ at $x$ is

$$
\bar{D} F(x)=\limsup _{h \rightarrow 0, h \neq 0} \frac{F(x+h)-F(x)}{h},
$$

and the lower derivative of $F$ at $x$ is

$$
\underline{D} F(x)=\liminf _{h \rightarrow 0, h \neq 0} \frac{F(x+h)-F(x)}{h} .
$$

Let

$$
\begin{aligned}
& \mathscr{L}=\left\{x \in(a, b]: D^{-} F(x)=D_{-} F(x)\right\}, \\
& \mathscr{R}=\left\{x \in[a, b): D^{+} F(x)=D_{+} F(x)\right\} .
\end{aligned}
$$

For $x \in \mathscr{L}$, the left-derivative of $F$ at $x$ is

$$
F_{-}^{\prime}(x)=D^{-} F(x)=D_{-} F(x),
$$

and for $x \in \mathscr{R}$, the right-derivative of $F$ at $x$ is

$$
F_{+}^{\prime}(x)=D^{+} F(x)=D_{+} F(x) .
$$

For $x \in(a, b)$, for $F$ to be differentiable at $x$ means that

$$
-\infty<D_{-} F(x)=D^{-} F(x)=D_{+} F(x)=D^{+} F(x)<\infty .
$$

We prove that the set of points at which $F$ is left-differentiable and rightdifferentiable but $F_{-}^{\prime}(x) \neq F_{+}^{\prime}(x)$ is countable. ${ }^{3}$

[^2]Lemma 6. $\left\{x \in \mathscr{L} \cap \mathscr{R}: F_{-}^{\prime}(x) \neq F_{+}^{\prime}(x)\right\}$ is countable.
Proof. Let $\mathbb{Q}=\left\{r_{k}: k \geq 1\right\}, r_{k} \neq r_{j}$ for $k \neq j$, and let

$$
E=\left\{x \in \mathscr{L} \cap \mathscr{R}: F_{-}^{\prime}(x)<F_{+}^{\prime}(x)\right\},
$$

For $x \in E$, as $F_{-}^{\prime}(x)<F_{+}^{\prime}(x)$ there is a minimal $k$ with $F_{-}^{\prime}(x)<r_{k}<F_{+}^{\prime}(x)$. As $r_{k}>F_{-}^{\prime}(x)$, there is a minimal $m$ such that $r_{m}<x$ and for all $t \in\left(r_{m}, x\right)$, $\frac{F(t)-F(x)}{t-x}<r_{k}$ and hence $F(t)-F(x)>r_{k}(t-x)$. Likewise, as $r_{k}<F_{+}^{\prime}(x)$, there is a minimal $n$ such that $r_{n}>x$ and for all $t \in\left(x, r_{n}\right), \frac{F(t)-F(x)}{t-x}>r_{k}$ and hence $F(t)-F(x)>r_{k}(t-x)$. Hence

$$
\begin{equation*}
F(t)-F(x)>r_{k}(t-x), \quad t \in\left(r_{m}, r_{n}\right), t \neq x \tag{1}
\end{equation*}
$$

Now for distinct $x, y \in E$ suppose by contradiction that $(k(x), m(x), n(x))=$ $(k(y), m(y), n(y))$. As $x, y \in\left(r_{m}, r_{n}\right)$, using (1) with $t=y$ and $t=x$ we get

$$
F(y)-F(x)>r_{k}(y-x), \quad F(x)-F(y)>r_{k}(x-y),
$$

yielding $r_{k}(x-y)<F(x)-F(y)<r_{k}(x-y)$, a contradiction. Therefore $x \mapsto(k(x), m(x), n(x))$ is one-to-one $E \rightarrow \mathbb{N}^{3}$, for $\mathbb{N}$ the positive integers, which shows that $E$ is countable.

We similarly prove that

$$
\left\{x \in \mathscr{L} \cap \mathscr{R}: F_{-}^{\prime}(x)>F_{+}^{\prime}(x)\right\}
$$

is countable.

## 4 Differentiability of increasing functions

We now use the Vitali covering lemma to prove that the Dini derivatives of an increasing function are finite almost everywhere. ${ }^{4}$

Lemma 7. Let $F:[a, b] \rightarrow \mathbb{R}$ be an increasing function and let

$$
\begin{aligned}
& A^{-}=\left\{x \in(a, b]: D^{-} F(x)=\infty\right\}, A_{-}=\left\{x \in(a, b]: D_{-} F(x)=-\infty\right\}, \\
& A^{+}=\left\{x \in[a, b): D^{+} F(x)=\infty\right\}, A_{+}=\left\{x \in[a, b): D_{+} F(x)=-\infty\right\} .
\end{aligned}
$$

Then

$$
\lambda^{*}\left(A^{-}\right)=0, \lambda^{*}\left(A_{-}\right)=0, \lambda^{*}\left(A^{+}\right)=0, \lambda^{*}\left(A_{-}\right)=0 .
$$

Proof. Because $F$ is increasing, for any $h \neq 0, \frac{F(x+h)-F(x)}{h} \geq 0$, and therefore $A_{-}=\emptyset$ and $A_{+}=\emptyset$. Suppose by contradiction that

$$
\lambda^{*}\left(A^{-}\right)=\alpha>0 .
$$

[^3]As $\alpha>0$, there is some $r>0$ satisfying

$$
\frac{r \alpha}{2}>F(b)-F(a)
$$

For $x^{-}$, because $D^{-} F(x)=\infty$ there is an increasing sequence $t_{x, k} \in[a, b]$ that tends to $x$ such that for each $k \geq 1$,

$$
\begin{equation*}
\frac{F(x)-F\left(t_{x, k}\right)}{x-t_{x, k}} \geq r . \tag{2}
\end{equation*}
$$

Let

$$
\mathcal{V}=\left\{\left[t_{x, k}, x\right]: x \in A^{-}, k \geq 1\right\}
$$

which is a Vitali covering of $A^{-}$, and so by the Vitali covering theorem there are pairwise disjoint $\left[t_{x_{j}, k_{j}}, x_{j}\right] \in \mathcal{V}, 1 \leq j \leq n$, such that

$$
\lambda^{*}\left(A^{-} \backslash \bigcup_{j=1}^{n}\left[t_{x_{j}, k_{j}}, x_{j}\right]\right)<\frac{\alpha}{2}
$$

and then

$$
\lambda^{*}\left(A^{-}\right) \leq \lambda^{*}\left(A^{-} \backslash \bigcup_{j=1}^{n}\left[t_{x_{j}, k_{j}}, x_{j}\right]\right)+\lambda\left(\bigcup_{j=1}^{n}\left[t_{x_{j}, k_{j}}, x_{j}\right]\right),
$$

hence

$$
\begin{aligned}
\sum_{j=1}^{n} \lambda\left(\left[t_{x_{j}, k_{j}}, x_{j}\right]\right) & =\lambda\left(\bigcup_{j=1}^{n}\left[t_{x_{j}, k_{j}}, x_{j}\right]\right) \\
& \geq \lambda^{*}\left(A^{-}\right)-\lambda^{*}\left(A^{-} \backslash \bigcup_{j=1}^{n}\left[t_{x_{j}, k_{j}}, x_{j}\right]\right) \\
& >\alpha-\frac{\alpha}{2}
\end{aligned}
$$

That is,

$$
\sum_{j=1}^{n}\left(x_{j}-t_{x_{j}, k_{j}}\right)>\frac{\alpha}{2}
$$

Now, by (2), $F\left(x_{j}\right)-F\left(t_{x_{j}, k_{j}}\right) \geq r\left(x_{j}-t_{x_{j}, k_{j}}\right)$, so

$$
\sum_{j=1}^{n}\left(F\left(x_{j}\right)-F\left(t_{x_{j}, k_{j}}\right)\right) \geq \sum_{j=1}^{n} r\left(x_{j}-t_{x_{j}, k_{j}}\right)>\frac{r \alpha}{2}>F(b)-F(a)
$$

But because the intervals $\left[t_{x_{j}, k_{j}}, x_{j}\right]$ are pairwise disjoint and $F$ is increasing, $\sum_{j=1}^{n}\left(F\left(x_{j}\right)-F\left(t_{x_{j}, k_{j}}\right)\right) \leq F(b)-F(a)$, contradicting the above inequality. Therefore $\lambda^{*}\left(A^{-}\right)=0$.

Suppose by contradiction that

$$
\lambda^{*}\left(A^{+}\right)=\alpha>0 .
$$

As $\alpha>0$, there is some $r>0$ satisfying

$$
\frac{r \alpha}{2}>F(b)-F(a) .
$$

For $x \in A^{+}$, because $D^{+} F(x)=\infty$ there is a decreasing sequence $t_{x, k} \in[a, b]$ that tends to $x$ such that for each $k \geq 1$,

$$
\begin{equation*}
\frac{F\left(t_{x, k}\right)-F(x)}{t_{x, k}-x} \geq r . \tag{3}
\end{equation*}
$$

Let

$$
\mathcal{V}=\left\{\left[x, t_{x, k}\right]: x \in A^{+}, k \geq 1\right\},
$$

which is a Vitali covering of $A^{+}$, and so by the Vitali covering theorem there are pairwise disjoint $\left[x_{j}, t_{x_{j}, k_{j}}\right] \in \mathcal{V}, 1 \leq j \leq n$, such that

$$
\lambda^{*}\left(A^{+} \backslash \bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right)<\frac{\alpha}{2}
$$

and then

$$
\lambda^{*}\left(A^{+}\right) \leq \lambda^{*}\left(A^{+} \backslash \bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right)+\lambda\left(\bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right)
$$

hence

$$
\begin{aligned}
\sum_{j=1}^{n} \lambda\left(\left[x_{j}, t_{x_{j}, k_{j}}\right]\right) & =\lambda\left(\bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right) \\
& \geq \lambda^{*}\left(A^{+}\right)-\lambda^{*}\left(A^{+} \backslash \bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right) \\
& >\alpha-\frac{\alpha}{2}
\end{aligned}
$$

That is,

$$
\sum_{j=1}^{n}\left(t_{x_{j}, k_{j}}-x_{j}\right)>\frac{\alpha}{2}
$$

Now, by (3), $F\left(t_{x_{j}, k_{j}}\right)-F\left(x_{j}\right) \geq r\left(t_{x_{j}, k_{j}}-x_{j}\right)$, so

$$
\sum_{j=1}^{n}\left(F\left(t_{x_{j}, k_{j}}\right)-F\left(x_{j}\right)\right) \geq \sum_{j=1}^{n} r\left(t_{x_{j}, k_{j}}-x_{j}\right)>\frac{r \alpha}{2}>F(b)-F(a) .
$$

But because the intervals $\left[x_{j}, t_{x_{j}, k_{j}}\right]$ are pairwise disjoint and $F$ is increasing, $\sum_{j=1}^{n}\left(F\left(t_{x_{j}, k_{j}}\right)-F\left(x_{j}\right)\right) \leq F(b)-F(a)$, contradicting the above inequality. Therefore $\lambda^{*}\left(A^{+}\right)=0$.

We now prove that an increasing function is differentiable almost everywhere. ${ }^{5}$

Theorem 8. Let $F:[a, b] \rightarrow \mathbb{R}$ be increasing and let

$$
E=\left\{x \in(a, b):-\infty<D_{-} F(x)=D^{-} F(x)=D_{+} F(x)=D^{+} F(x)<\infty\right\} .
$$

Then $\lambda^{*}([a, b] \backslash E)=0$.
Proof. Let

$$
A=\left\{x \in(a, b): D_{+} F(x)<D^{+} F(x)\right\},
$$

and suppose by contradiction that $\lambda^{*}(A)>0$. Since

$$
A=\bigcup_{p, q \in \mathbb{Q}, p<q}\left\{x \in(a, b): D_{+} F(x)<p<q<D^{+} F(x)\right\},
$$

which is a union of countably many sets, there are some $p, q \in \mathbb{Q}, p<q$, such that $\lambda^{*}(B)=\beta>0$,

$$
B=\left\{x \in(a, b): D_{+} F(x)<p<q<D^{+} F(x)\right\} .
$$

Let $\epsilon>0$. There is an open set $U \subset(a, b)$ with $B \subset U$ and $\lambda(U)<\lambda^{*}(B)+\epsilon=$ $\beta+\epsilon$. For $x \in B$, because $D_{+} F(x)<p$ and because $x$ belongs to the open set $U$, there is a sequence $t_{x, k} \in(x, x+1 / k),\left[x, t_{x, k}\right] \subset U$, such that for each $k \geq 1$,

$$
\frac{F\left(t_{x, k}\right)-F(x)}{t_{x, k}-x}<p .
$$

Then

$$
\mathcal{V}=\left\{\left[x, t_{x, k}\right]: x \in B, k \geq 1\right\}
$$

is a Vitali covering of $B$, so by the Vitali covering theorem there are pairwise disjoint $\left[x_{j}, t_{x_{j}, k_{j}}\right] \in \mathcal{V}, 1 \leq j \leq m$, such that

$$
\lambda^{*}\left(B \backslash \bigcup_{j=1}^{m}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right)<\epsilon,
$$

and then, as the intervals $\left[x_{j}, t_{x_{j}, k_{j}}\right]$ are pairwise disjoint and are all contained

[^4]in $U$,
\[

$$
\begin{aligned}
\sum_{j=1}^{m}\left(F\left(t_{x_{j}, k_{j}}\right)-F\left(x_{j}\right)\right) & <\sum_{j=1}^{m} p\left(t_{x_{j}, k_{j}}-x_{j}\right) \\
& =p \sum_{j=1}^{m} \lambda\left(\left[x_{j}, t_{x_{j}, k_{j}}\right]\right] \\
& =p \lambda\left(\bigcup_{j=1}^{m}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right) \\
& \leq p \lambda(U) \\
& <p(\beta+\epsilon)
\end{aligned}
$$
\]

Let $C=B \cap \bigcup_{j=1}^{n}\left(x_{j}, t_{x_{j}, k_{j}}\right)$, for which

$$
\beta=\lambda^{*}(B) \leq \lambda^{*}(C)+\lambda^{*}\left(B \backslash \bigcup_{j=1}^{n}\left[x_{j}, t_{x_{j}, k_{j}}\right]\right)<\lambda^{*}(C)+\epsilon
$$

so

$$
\lambda^{*}(C)>\beta-\epsilon
$$

For $y \in C$ there is some $i$ for which $y \in\left(x_{i}, t_{x_{i}, k_{i}}\right)$, and because $D^{+} F(y)>q$ there is a sequence $u_{y, l} \in(y, y+1 / l),\left[y, u_{y, l}\right] \subset\left(x_{i}, t_{x_{i}, k_{i}}\right)$, such that for each $l \geq 1$,

$$
\frac{F\left(u_{y, l}\right)-F(y)}{u_{y, l}-y}>q .
$$

Then

$$
\mathcal{W}=\left\{\left[y, u_{y, l}\right]: y \in B, l \geq 1\right\}
$$

is a Vitali covering of $C$, so by the Vitali covering theorem there are pairwise disjoint $\left[y_{j}, u_{y_{j}, l_{j}}\right] \in \mathcal{W}, 1 \leq j \leq n$, such that

$$
\lambda^{*}\left(C \backslash \bigcup_{j=1}^{n}\left[y_{j}, u_{y_{j}, l_{j}}\right]\right)<\epsilon,
$$

so

$$
\lambda^{*}(C) \leq \lambda^{*}\left(C \backslash \bigcup_{j=1}^{n}\left[y_{j}, u_{y_{j}, l_{j}}\right]\right)+\lambda\left(\bigcup_{j=1}^{n}\left[y_{j}, u_{y_{j}, l_{j}}\right]\right)<\epsilon+\sum_{j=1}^{n} \lambda\left(\left[y_{j}, u_{y_{j}, l_{j}}\right]\right),
$$

and then

$$
\sum_{j=1}^{n}\left(F\left(u_{y_{j}, l_{j}}\right)-F\left(y_{j}\right)\right)>\sum_{j=1}^{n} q\left(u_{y_{j}, l_{j}}-y_{j}\right)>q\left(\lambda^{*}(C)-\epsilon\right)>q(\beta-2 \epsilon) .
$$

Now for $1 \leq i \leq m$ let $\pi_{i}=\left\{1 \leq j \leq n:\left[y_{j}, u_{y_{j}, l_{j}}\right] \subset\left(x_{i}, t_{x_{i}, k_{i}}\right)\right\}$. Because $F$ is increasing, if $j \in \pi_{i}$ then $F\left(u_{y_{j}, l_{j}}\right)-F\left(y_{j}\right) \leq F\left(t_{x_{i}, k_{i}}\right)-F\left(x_{i}\right)$, and because each $\left[y_{j}, u_{y_{j}, l_{j}}\right]$ is contained in some $\left(x_{i}, t_{x_{i}, k_{i}}\right)$,

$$
\begin{aligned}
q(\beta-2 \epsilon) & <\sum_{j=1}^{n}\left(F\left(u_{y_{j}, l_{j}}\right)-F\left(y_{j}\right)\right) \\
& =\sum_{i=1}^{m} \sum_{j \in \pi_{i}}\left(F\left(u_{y_{j}, l_{j}}\right)-F\left(y_{j}\right)\right) \\
& \leq \sum_{i=1}^{m}\left(F\left(t_{x_{i}, k_{i}}\right)-F\left(x_{i}\right)\right) ;
\end{aligned}
$$

the last inequality also uses that the intervals $\left[y_{j}, u_{y_{j}, l_{j}}\right]$ are pairwise disjoint. But we have found $\sum_{i=1}^{m}\left(F\left(t_{x_{i}, k_{i}}\right)-F\left(x_{i}\right)\right)<p(\beta+\epsilon)$, so $q(\beta-2 \epsilon)<p(\beta+\epsilon)$. As this is true for all $\epsilon>0$, it holds that $q \beta \leq p \beta$, and as $\beta>0$ we get $q \leq p$, contradicting that $p<q$. Therefore $\lambda^{*}(A)=0$.


[^0]:    ${ }^{1}$ V. I. Bogachev, Measure Theory, volume 1, p. 333, Proposition 5.2.2.

[^1]:    ${ }^{2}$ Elias M. Stein and Rami Shakarchi, Real Analysis, p. 118, Lemma 3.2.

[^2]:    ${ }^{3}$ V. I. Bogachev, Measure Theory, volume 1, p. 332, Lemma 5.1.3.

[^3]:    ${ }^{4}$ Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55, Lemma 4.8.

[^4]:    ${ }^{5}$ Russell A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, p. 55, Theorem 4.9.

