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Mathematical induction (=“complete induction”) often is worked out as a
generalizable example (because once we have our hands on something fixed it
is easier to do things), and the idea of a generalizable example is contained in
the general idea of induction as used in philosophy.

In the Euler-Goldbach correspondence no. 85–86
Wallis [3, p. 474]
Euler used incomplete induction as an instrument of scientific research.

Juškevič [13] writes the following: “It is frequently said that Euler saw no
intrinsic impossibility in the deduction of mathematical laws from a very lim-
ited basis in observation; and naturally he employed methods of induction to
make empirical use of the results he had arrived at through analysis of concrete
numerical material. But he himself warned many times that an incomplete
induction serves only as a heuristic device, and he never passed off as finally
proved truths the suppositions arrived at by such methods”; also cf. Weil [21,
Chapter II, §III] and Cajori [5].

Bernoulli [10, p. 29]
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[13] Adolf P. Juškevič, Euler, Leonhard, Dictionary of Scientific Biography,
volume IV: Richard Dedekind – Firmicus Maternus (Charles Coulston
Gillispie, ed.), Charles Scribner’s Sons, New York, 1971, pp. 467–484.

[14] J. R. Milton, Induction before Hume, Brit. J. Phil. Sci. 38 (1987), 49–74.

[15] Nachum L. Rabinovitch, Rabbi Levi ben Gershon and the origins of math-
ematical induction, Arch. Hist. Exact Sci. 6 (1970), no. 3, 237–248.
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