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1 Introduction

Book IV of Euclid is attributed to the Pythagoreans, by the Scholion to Euclid
273.3. See Burkert [2, p. 450]

Mueller [17], Chapter 5.

2 Propositions from Books I–III

I.4: “If two triangles have the two sides equal to two sides respectively, and
have the angles contained by the equal straight lines equal, they will also have
the base equal to the base, the triangle will be equal to the remaining angles
respectively, namely those which the equal sides subtend.”

I.9: “To bisect a given rectilinear angle.”
I.10: “To bisect a given finite straight line.”
I.11: “To draw a straight line at right angles to a given straight line from a

given point on it.”
I.12: “To a given infinite straight line, from a given point which is not on

it, to draw a perpendicular straight line.”
I.13: “If a straight line set up on a straight line make angles, it will make

either two right angles or angles equal to two right angles.”
I.23: “On a given straight line and at a point on it to construct a rectilinear

angle equal to a given rectilinear angle.”
I.26: “If two triangles have the two angles equal to two angles respectively,

and one side equal to one side, namely, either the side adjoining the equal angles,
or that subtending one of the equal angles, they will also have the remaining
sides equal to the remaining sides and the remaining angle to the remaining
angle.”

I.32: “In any triangle, if one of the sides be produced, the exterior angle is
equal to the two interior and opposite angles, and the three interior angles of
the triangle are equal to two right angles.”

I.36: “Parallelograms which are on equal bases and in the same parallels
are equal to one another.”

1



I.38: “Triangles which are on equal bases and in the same parallels are equal
to one another.”

I.41: “If a parallelogram have the same base with a triangle and be in the
same parallels, the parallelogram is double of the triangle.”

I.46: “On a given straight line to describe a square.”
I.47: “In right-angled triangles the square on the side subtending the right

angle is equal to the squares on the sides containing the right angle.”
II.11: “To cut a given straight line so that the rectangle contained by the

whole and one of the segments is equal to the square on the remaining segment.”
II.14: “To construct a square equal to a given rectilinear figure.”
III.1: “To find the centre of a given circle.”
III.16: “The straight line drawn at right angles to the diameter of a circle

from its extremity will fall outside the circle, and into the space between the
straight line and the circumference another straight line cannot be interposed;
further the angle of the semicircle is greater, and the remaining angle less, than
any acute rectilinear angle.”

III.18: “If a straight line touch a circle, and a straight line be joined from the
centre to the point of contact, the straight line so joined will be perpendicular
to the tangent.”

Book III, Definition 8: “An angle in a segment is the angle which, when a
point is taken on the circumference of the segment and straight lines are joined
from it to the extremities of the straight line which is the base of the segment,
is contained by the straight lines so joined.”

III.21: “In a circle the angles in the same segment are equal to one another.”
III.31: “In a circle the angle in the semicircle is right, that in a greater

segment less than a right angle, and that in a less segment greater than a right
angle; and further the angle of the greater segment is greater than a right angle,
and the angle of the less segment less than a right angle.” This means that
if ABC is a semicircle and AC is the diameter, then the angle ABC is right,
whatever is the point B on the semicircle.

III.32: “If a straight line touch a circle, and from the point of contact there
be drawn across, in the circle, a straight line cutting the circle, the angles which
it makes with the tangent will be equal to the angles in the alternate segments
of the circle.” This means that if ABCD is a circle and a line EF touches the
circle at the point B, then the angle FBD is equal to the angle BAD and the
angle EBD is equal to the angle DCB, whatever are the points A,C,D on the
circle.

3 Book IV

IV.1: “Into a given circle to fit a straight line equal to a given straight line
which is not greater than the diameter of the circle.”

IV.2: “In a given circle to inscribe a triangle equiangular with a given
triangle.”
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Proof. Let ABC be the given circle and let DEF be the given triangle. Using
III.16, construct a line GH touching the circle at A.

Then using I.23, on the line AH at the point A construct an angle HAC
equal to the angle DEF , and on the line GA at the point A construct an angle
GAB equal to the angle DFE.

Join BC. Because the line GH touches the circle at A, by III.32 the angle
HAC is equal to the angle ABC and likewise the angle GAB is equal to the
angle ACB. Hence the angle ABC is equal to the angle DEF and the angle
ACB is equal to the angle DFE.

By I.32, the three interior angles of a triangle are equal to two right angles,
which means that the angles ABC,ACD,BAC are equal to two right angles
and the angles DEF,DFE,EDF are equal to two right angles. It follows that
the angle BAC is equal to the angle EDF , which means that the triangles ABC
and DEF are equiangular.

IV.3: “About a given circle to circumscribe a triangle equiangular with a
given triangle.”

Proof. Let ABC be the given circle and let DEF be the given triangle. Produce
the line EF in both directions to the points G,H. Let K be the centre of the
circle ABC (III.1) and construct a line KB, where B is any point on the circle.
Using I.23, on the line KB at the point K construct the angle BKA equal to
the angle DEG, and on the line KB at the point K construct the angle BKC
equal to the angle DFH.

Using III.16, construct lines LAM,MBN,NCL touching the circle respec-
tively at the points A,B,C. Join KA,KB,KC. By III.18, the angle KAM is
right and the angle KBM is right.

III.18, I.13, I.32.

IV.4: “In a given triangle to inscribe a circle.”

Proof.

IV.5: “About a given triangle to circumscribe a circle.”

Proof.

IV.6: “In a given circle to inscribe a square.”

Proof.

IV.7:

Proof.
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4 Areas and lengths of equilateral and equian-
gular polygons

Meno 82b–85b
VI.30
XII.1
XIII.1–12, XIII.18, Lemma
XIV.1, XIV.2, Lemma
Babylonian mathematics [8]
Heron, Metrica I.17–25 [1, pp. 190–]. See Heath [10, pp. 326–329]
Metrica I.17 calculates the area of an equilateral triangle ABΓ with side

length 10. Let A∆ be the perpendicular to BΓ, so ∆ is the midpoint of BΓ.
Then B∆A and Γ∆A are congruent right triangles. AB = BΓ = 2B∆, so
AB2 = BΓ2 = 4B∆2. On the other hand, by the Pythagorean theorem (I.47),
the square on B∆ and the square on A∆ are together equal to the square on
AB. This means that B∆2 + A∆2 = AB2 = 4B∆2, hence A∆2 = 3B∆2.
Furthermore, BΓ2 = 4B∆2, and thus BΓ2 : A∆2 = 4 : 3 (an “epitritic ratio”).
Then A∆2 : 100 = 3 : 4, so A∆2 = 75, and therefore A∆ =

√
75. In fact, Heron

does not calculate A∆, but from BΓ2 : A∆2 = 4 : 3 gets BΓ4 : (BΓ · A∆)2 =
4 : 3. (The fourth power of a line is called here dunamodunamis; cf. LSJ,
s.v.) The rectangle on the sides BΓ, A∆ is twice the triangle ABΓ (I.41), so
BΓ4 : (2ABΓ)2 = 4 : 3 and hence ABΓ2 : BΓ4 = 3 : 16. Then ABΓ2 = 1875,
so ABΓ =

√
1875 ∼ 43 1

3 .
Metrica I.18
Archimedes, Measurement of a Circle [12]. 96-gon.
Herz-Fischler [13].
Oenopides [9, p. 131, n. 4] pentadecagon; cf. Burkert [2, p. 453]
Pappus, Collection IV.3 [21, pp. 86–87]

5 Tiling and isoperimetry

According to Proclus, Commentary on the first book of Euclid’s Elements 304–
305 [16, p. 238], it was proved by the Pythagoreans that only triangles, squares,
hexagons can fill the space about a point.

Aristotle, De caelo III.8, 306b5–7 [11, p. 177]:

And, speaking generally, the attempt to give figures to the simple
elements is irrational, first, because it will be found that they do not
fill the whole (of a space). For, among plane figures, it is agreed that
there are only three which fill up space, the triangle, the square, and
the hexagon; while among solids there are only the pyramid and the
cube.

Potamo of Alexandria
Simplicius: On Aristotle On the Heavens 3.7–4.6
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Heath [10, pp. 206–213] on Zenodorus
Theon of Alexandria, Commentary on Ptolemy’s Syntaxis I.3 [22, pp. 386–

391]:

“In the same way, since the greatest of the various figures having
an equal perimeter is that which has most angles, the circle is the
greatest among plane figures and the sphere among solid.”

We shall give the proof of these propositions in a summary taken
from the proofs by Zenodorus in his book On Isoperimetric Figures.

Of all reailinear figures having an equal perimeter – I mean equi-
lateral and equiangular figures – the greatest is that which has most
angles.

6 Platonic solids

Timaeus 54c–d [3, p. 212]:

Now all triangles are derived from two, each having one right angle
and the other angles acute...

53d – 54b [3, pp. 213–214]: among scalene triangles, the best of them for the
construction of bodies is that a pair of which is an equilateral triangle, which has
“the greater side triple in square of the lesser”; among the isosceles triangles...

Constructs the tetrahedron, octahedron, icosahedron, and cube 54d–55c [3,
pp. 216–218].

57c–d [3, p. 235]

7 Galois theory

If Ω is a set of points in a plane, let ΛΩ be the set of lines through pairs of
distinct points of Ω and let ΓΩ be the set of circles whose center is a point of Ω
and whose radius is a distance between two distinct points of Ω. For example,
given distinct points A,B, let Ω = {A,B}. Let cA be the circle with center
A and radius AB, let cB be the circle with center B and radius BA, and let
l be the line through A and B. Then cB ∩ l = {A} and cA ∩ l = {B}, and
cA ∩ cB = {C,D}, where ABC and ABD are equilateral triangles (I.1). Let

Ω′ =
⋃

l1,l2∈ΛΩ,l1 ̸=l2

(l1 ∩ l2) ∪
⋃

l∈ΛΩ,c∈ΓΩ

(l ∩ c) ∪
⋃

c1,c2∈ΓΩ,c1 ̸=c2

(c1 ∩ c2).

It is straightforward to check that if at least two distinct points belong to Ω
then Ω ⊂ Ω′. Define Ω1 = Ω′, and by induction Ωn+1 = Ω′

n. Finally let
Ω∞ =

⋃
n≥1 Ωn. Elements of Ω∞ are said to be constructible from Ω.

Let A = 0 and let B = 1 in C and let Ω = {A,B}. For α in the algebraic
closure of Q, let m be the minimal polynomial of α over Q and let L be the

5



splitting field of m over Q. It can be proved that α ∈ Ω∞ if and only if [L : Q]
is a power of 2 [4, p. 263, Theorem 10.1.12]. One proves that a regular and
equiangular n-gon can be constructed from Ω if and only if ζn = e2πi/n belongs
to Ω∞. The minimal polynomial of ζn over Q is the cyclotomic polynomial Φn,
which has degree ϕ(n), where ϕ is the Euler phi function, and the splitting field
of Φn over Q is Q(ζn). Thus, a regular and equiangular n-gon can be constructed
from Ω if and only if [Q(ζn) : Q] = ϕ(n) is a power of 2. For n = 2apa1

1 · · · pak

k ,

ϕ(n) = ϕ(2a)ϕ(pa1
1 ) · · ·ϕ(pak

k )

= 2a−1pa1−1
1 (p1 − 1) · · · pak−1

k (pk − 1),

which is a power of 2 if and only if aj = 1, j = 1, . . . , k and pj − 1 is a power of
2, j = 1, . . . , k. For a prime p to be such that p−1 is a power of 2 it is necessary
that p = 22

m

+1 for somem ≥ 0; a prime of this form is called a Fermat prime.
Therefore, an equilateral and equiangular n-gon can be constructed from Ω if
and only if n is the product of a power of 2 and distinct Fermat primes. The
known Fermat primes are 3, 5, 17, 257, 65537. Thus

ζ3, ζ4, ζ5, ζ6, ζ8, ζ10, ζ12, ζ15, ζ16, ζ17 ∈ Ω∞

and
ζ7, ζ9, ζ11, ζ13, ζ14 ̸∈ Ω∞.

See Cox [4]

8 Nature and artifacts

Theophrastus, De Lapidibus III.19 [7, p. 63]: “Again, the stone from the neigh-
bourhood of Miletus, which is angular and contains hexagons, does not burn.”

Pliny, Natural History XXXVII.20 [6, p. 225]: “Many people consider the
nature of beryls to be similar to, if not identical with, that of emeralds. Beryls
are produced in India and are rarely found elsewhere. All of them are cut
by skilled craftsmen to a smooth hexagonal shape, since their colour, which is
deadened by the dullness of an unbroken surface, is enhanced by the reflection
from the facets.”

Pliny, Natural History XXXVII.15 [6, p. 225] describes octahedral diamonds.
Aratus, Phaenomena 541–543: inscribe a hexagon in the ecliptic circle. (By

Euclid IV.15, the side of the hexagon equals the radius of the circle.) Each
side subtends two constellations on the zodiac. cf. 184–185 on an equilateral
triangle.

Apis mellifera honeycomb, hexagonal. In De Re Rustica III.XVI.4–5 [14,
p. 501], after stating that nature has given great talent and art to bees, Varro
writes:

Bees are not of a solitary nature, as eagles are, but are like human
beings. Even if jackdaws in this respect are the same, still it is not
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the same case; for in one there is a fellowship in toil and in building
which does not obtain in the other; in the one case there is reason
and skill – it is from these that men learn to toil, to build, to store
up food. They have three tasks: food, dwelling, toil; and the food is
not the same as the wax, nor the honey, nor the dwelling. Does not
the chamber in the comb have six angles, the same number as the
bee has feet? The geometricians prove that this hexagon inscribed
in a circular figure encloses the greatest amount of space.

Pliny, Natural History XI.12 [19, p. 451]: “All the cells are hexagonal, each
side being made by one of the bee’s six feet.”

Pappus, Collection V.1–3 [10, pp. 389–390] writes about why cells of honey-
combs are hexagonal; cf. Collection VIII, Proposition 19: in a given circle, to
construct a hexagon with the same centre as the circle and six other hexagons
congruent to the central hexagon, each of which has a common side with the
central hexagon and has one side which is a chord of the circle. Thomas [22,
pp. 588–593].

16th cent BC, National Archaeological Museum, Athens, 808, 811. Wooden
hexagonal pyxis decorated with repoussé gold plates. Mycenae, Grave Circle A,
Grave V. Karo [15, p. 143].

1109 BC, Staatliche Museen zu Berlin, Vorderasiatisches Museum, VA 08255.
Achtseitiges Prisma mit Weihinschrift Tiglatpilesars I. von Assyrien

10th century BC. Kerameikos Archaeological Museum, cinerary urn amphora
1000 BC – 950 BC, BM 1978,0701.9. Pottery neck-handled amphora. Proto-

Geometric. Attic. Concentric circles.
975 BC – 950 BC, BM 1978,0701.8. Pottery neck-handled amphora. Proto-

Geometric. Attic. Concentric circles.
850 BC – 800 BC. National Archaeological Museum, Athens. A 00216.

Double-handled amphora. From Athens, Kerameikos. By the Painter of Athens
216.

Beginning of the 7th century BC. Archaeological Museum of Thera, San-
torini, Inv. no. 1783, Theran amphora with geometric decoration, Archaic
cemetery of Ancient Thera.

691 BC, BM 91032. The Taylor Prism. Neo-Assyrian. Hexagonal clay prism.
673 BC – 672 BC, BM 121005. The Esarhaddon Prism. Neo-Assyrian.

Hexagonal clay prism.
594 BC – 590 BC, BM G.4264. Athens, silver coin. Obverse: Amphora

within circle. Reverse: Incuse square divided into eight triangles.
Dewing 1255, coin
Dewing 1257, coin
Dewing 1453, coin
BM 1886,0507.1
BM 1873,0702.1
BM 1872,0709.367
BM BNK,G.151
SNG v. Aulock 1429; SNG France 2346. Pitane (BC 350) AE 17
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SNG München 295 var.; SNG Copenhagen 558 var.; SNG von Aulock 1944
var. Erythrai (BC 480-420) Drachm

MMA 2005.278, 2nd-1st century BC. Gold and cabochon garnet ring, hexag-
onal bezel.

MMA L.2015.72.45, 2nd-1st century BC. Hellenistic Garnet Ring, hexagonal
bezel, inscribed circle.

9 Mosaics

Pliny XXXVI.184 [6]
ca. 3500 BC. Staatliche Museen zu Berlin, Vorderasiatisches Museum, ZA

2.19./08686. Aufstellung des Vorderasiatischen Museums im Pergamonmuseum,
Uruk-Raum. Stiftsmosaik von einer Hoffassade im Inanna-Heiligtum.

Ovadiah [18]
Dunbabin [5]
Phrygian Gordion, pebble mosaic, ca. 800 BC. Salzmann [20], Plate 3,1.
Olynthus, Bellerophon mosaic, first half of the fourth century BC. Salzmann

[20], Plate 13.
Eretria, House of Mosaics, Arimaspi mosaic, second third of the fourth cen-

tury BC. Salzmann [20], Plate 26
Pella, House of Dionysos, antechamber with pebble mosaic, last third of the

fourth century BC. Salzmann [20], Plate 37,1.
Sicyon, pebble mosaic with centaurs, fourth century BC. Inscribed concentric

circles in square.
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