
UNCERTAINTY PRINCIPLES AND COMPRESSED SENSING

JORDAN BELL

In this paper I am careful to distinguish between the space of signals and the
space of their Fourier transforms.

Folland and Sitaram [4] give a survey of uncertainty principles in analysis.
First we will go through the talk by Emmanuel Candès and Terence Tao, “The

uniform uncertainty principle and compressed sensing”, Harmonic Analysis and
Related Topics, Seville, December 5, 2008.

Let G = Z/nZ. Let L(G) denote the set of functions from G to C. For T ⊆ G,
let L(T ) be the set of functions from G to C whose support is contained in T .

For x ∈ G, define the Dirac delta function δx : G → C centered at x by

δx(y) =

{
1, y = x

0, y 6= x.

The set {δx}x∈G is a basis for the vector space L(G). For f ∈ L(G),

f(y) =
∑
x∈G

f(x)δx(y), y ∈ G.

We define an inner product on L(G) by

〈f, g〉G =
1
|G|

∑
x∈G

f(x)g(x), f, g ∈ L(G).

The L2 norm on L(G) is given by ‖f‖L2(G) = 〈f, f〉1/2
G . That is,

‖f‖L2(G) =
1√
|G|

( ∑
x∈G

|f(x)|2
)1/2

, f ∈ L(G).

We also define the L1 norm on L(G) by

‖f‖L1(G) =
1
|G|

∑
x∈G

|f(x)|,

and define the L∞ norm on L(G) by

‖f‖L∞(G) = sup
x∈G

|f(x)|.

Let S1 be the unit circle in C. Let Ĝ be the dual group of characters ξ : G → S1;
see Rudin [10, Chapter 1] on the Pontryagin dual. Ĝ is (noncanonically) isomorphic
to G = Z/NZ. In particular, |Ĝ| = |G| = N .

For f ∈ L(G), we define its Fourier transform f̂ : Ĝ → C by

f̂(ξ) =
1
|G|

∑
x∈G

f(x)ξ(x), ξ ∈ Ĝ.
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Lemma 1 (Fourier inversion formula).

f(x) =
∑
ξ∈ bG

f̂(ξ)ξ(x), x ∈ G.

Proof. Let x ∈ G, x 6= 0. Let η ∈ Ĝ such that η(x) 6= 1. Then∑
ξ∈ bG

ξ(x) =
∑
ξ∈ bG

ξ(x)η(x)η(−x)

= η(−x)
∑
ξ∈ bG

ξ(x)η(x)

= η(−x)
∑
ξ∈ bG

ξ(x).

But η(−x) 6= 0, so it must be that
∑

ξ∈ bG ξ(x) = 0 if x 6= 0.

On the other hand,
∑

ξ∈ bG ξ(0) = |Ĝ| = |G|. Therefore, for any x ∈ G (zero or
not), ∑

ξ∈ bG
f̂(ξ)ξ(x) =

∑
ξ∈ bG

1
|G|

∑
y∈G

f(y)ξ(y)ξ(x)

=
∑
y∈G

f(y)
|G|

∑
ξ∈ bG

ξ(y)ξ(x)

=
∑
y∈G

f(y)
|G|

∑
ξ∈ bG

ξ(x− y)

= f(x).

�

For x ∈ G, define χx : Ĝ → C by χx(ξ) = ξ(x)
|G| for all ξ ∈ Ĝ. The set {χx}x∈G is

a basis for L(Ĝ). For f̂ ∈ L(Ĝ),

f̂(ξ) =
∑
x∈G

f(x)χx(ξ), ξ ∈ Ĝ.

Another basis for L(Ĝ) is {δξ}ξ∈ bG.

We define an inner product on L(Ĝ) by

〈f̂ , ĝ〉 bG =
∑
ξ∈ bG

f̂(ξ)ĝ(ξ).

The L1, L2, and L∞ norms on L(Ĝ) are defined respectively by

‖f̂‖L1( bG) =
∑
ξ∈ bG

|f̂(ξ)|,

‖f̂‖L2( bG) = 〈f̂ , f̂〉 bG =
( ∑

ξ∈ bG
|f̂(ξ)|2

)1/2

,

and
‖f̂‖L∞( bG) = sup

ξ∈ bG |f̂(ξ)|,
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for f̂ ∈ L(Ĝ).
With these definitions of ‖ · ‖L2(G) and ‖ · ‖L2( bG), the Fourier transform F :

L(G) → L(Ĝ) is an isometry.

Lemma 2 (Plancherel identity). For f ∈ L(G),

‖f‖L2(G) = ‖f̂‖L2( bG).

Proof.

‖f̂‖2
L2(G) = 〈f̂ , f̂〉 bG

=
∑
ξ∈ bG

f̂(ξ)f̂(ξ)

=
1

|G|2
∑
ξ∈ bG

( ∑
x∈G

f(x)ξ(x)
)( ∑

y∈G

f(y)ξ(y)
)

=
1

|G|2
∑
x∈G

∑
y∈G

f(x)f(y)
∑
ξ∈ bG

ξ(x)ξ(y)

=
1
|G|

∑
x∈G

|f(x)|2

= ‖f‖2
L2(G);

the second last equality is because
∑

ξ∈ bG ξ(x)ξ(y) is equal to 0 if x 6= y and |G| if
x = y. �

For H a subgroup of G, define the orthogonal complement H⊥ in Ĝ as

H⊥ = {ξ ∈ Ĝ : ξ(x) = 1 for all x ∈ H}.
Let 1H be the indicator function for H, that is, 1H(x) is equal to 1 if x ∈ H and

0 if x /∈ H.

Lemma 3. If H is a subgroup of G then

1̂H =
|H|
|G|

1H⊥ .

Proof. If ξ /∈ H⊥ then there is some x ∈ H such that ξ(x) 6= 1. Then∑
y∈H

ξ(y) = ξ(x)
∑
y∈H

ξ(y)ξ(x)

= ξ(x)
∑
y∈H

ξ(yx)

= ξ(x)
∑
y∈H

ξ(y),

for as x ∈ H and H is a subgroup of G, y 7→ yx is a bijection from H to H. But
ξ(x) 6= 1, so

∑
y∈H ξ(y) = 0 for ξ /∈ H⊥. On the other hand, if ξ ∈ H⊥ then∑

y∈H ξ(y) = |H|. Hence

1̂H(ξ) =
1
|G|

∑
y∈G

1H(y)ξ(y) =
1
|G|

∑
y∈H

ξ(y) =
|H|
|G|

1H⊥(ξ).
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�

The following proof of the Poisson summation formula is from Terras [13, p.
199].

Lemma 4 (Poisson summation formula). Let H be a subgroup of G and let f ∈
L(G). Then

1
|H|

∑
h∈H

f(g + h) =
1
|G|

∑
ξ∈H⊥

f̂(ξ)ξ(g)

for any g ∈ G.

Proof. Define f⊥ : G/H → C by

f⊥(x + H) =
∑
h∈H

f(x + h), x + H ∈ G/H.

For η ∈ Ĝ/H, let ξ ∈ H⊥ such that η(x + H) = ξ(x) for all x ∈ G (indeed, there
is certainly a one-to-one correspondence between the characters of G/H and the
characters of G that are equal to 1 on H). Then,

〈f⊥, η〉G/H =
∑

x+H∈G/H

f⊥(x + H)η(x + H)

=
∑

x+H∈G/H

∑
h∈H

f(x + h)ξ(x + h)

=
∑
x∈G

f(x)ξ(x)

= |G|f̂(ξ);

the second last equality is because G is a disjoint union of the cosets of H.
Using the Fourier inversion formula for G/H,

f⊥(g + H) =
1

|G/H|
∑

η∈Ĝ/H

〈f⊥, η〉G/Hη(g + H)

=
|H|
|G|

∑
ξ∈H⊥

|G|f̂(ξ)ξ(g),

i.e.,
1
|H|

f⊥(g + H) =
1
|G|

∑
ξ∈H⊥

f̂(ξ)ξ(g).

�

Theorem 5 (Discrete uncertainty principle). For any non-trivial f ∈ L(G),

| supp(f)|| supp(f̂)| ≥ |G|.
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Proof. First,

‖f̂‖L2( bG) =
( ∑

ξ∈supp(f̂)

|f̂(ξ)|2
)1/2

≤
( ∑

ξ∈supp(f̂)

‖f̂‖2
L∞( bG)

)1/2

= | supp(f̂)|1/2‖f̂‖L∞( bG).

It follows from the definition of the Fourier transform that ‖f̂‖L∞( bG) ≤ ‖f‖L1(G),
so

‖f̂‖L2( bG) ≤ | supp(f̂)|1/2‖f‖L1(G).

Let 1supp(f) be the indicator function for supp(f). By the Cauchy-Schwarz inequal-
ity,

‖f‖L1(G) = 〈|f |, 1supp(f)〉G ≤ ‖f‖L2(G) · ‖1supp(f)‖L2(G) = ‖f‖L2(G)
| supp(f)|1/2√

|G|
.

Thus

‖f̂‖L2( bG) ≤ | supp(f̂)|1/2| supp(f)|1/2√
|G|

‖f‖L2(G).

By the Plancherel identity this gives us

‖f̂‖L2( bG) ≤
| supp(f̂)|1/2| supp(f)|1/2√

|G|
‖f̂‖L2( bG).

If f is non-trivial then ‖f̂‖L2( bG) 6= 0 and we can divide both sides of the above
inequality by it. �

There are two other versions of the discrete uncertainty principle given by Terras
[13, Chapter 14].

Let H be a subgroup of G and let 1H be the indicator function of H. By Lemma
3, supp(1̂H) = supp(1H⊥). But |H⊥| = |G/H|, so | supp(1H)|| supp(1̂H)| = G.

Define the modulation operator Mβ : L(G) → L(G) by

Mβf(x) = β(x)f(x), β ∈ Ĝ, x ∈ G

for all f ∈ L(G). Define the translation operator Tc : L(G) → L(G) by

Tcf(a) = f(a + c), x, c ∈ G

for all f ∈ L(G).

M̂βf(ξ) =
1
|G|

∑
x∈G

Mβf(x)ξ(x)

=
1
|G|

∑
x∈G

β(x)f(x)ξ(x)

= f̂(β−1ξ).
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T̂cf(ξ) =
1
|G|

∑
x∈G

Tcf(x)ξ(x)

=
1
|G|

∑
x∈G

f(x + c)ξ(x)

=
1
|G|

∑
x∈G

f(x)ξ(x− c)

=
ξ(c)
|G|

∑
x∈G

f(x)ξ(x)

= ξ(c)f̂(ξ).

Note that supp(Mβf) = supp(f) and that supp(T̂cf) = supp(f̂).
If f ∈ L(G) is non-trivial, then for some x0 ∈ G, f(x0) 6= 0 and for some β0 ∈ Ĝ,

f̂(β0) 6= 0. Then 0 + (N) ∈ supp(Tx0Mβ−1
0

f) and 1G ∈ supp(F (Tx0Mβ−1
0

f)).
The analogue of Gaussians for G are the indicator functions of subgroups of G.

This is because of the theorem proved by Donoho and Stark [3, Theorem 13] that
equality in the discrete uncertainty principle is attained precisely for translations,
modulations and multiplication by a constant of the indicators of subgroups. Our
proof of the theorem follows [3] and [9].

Theorem 6. If f ∈ L(G) satisfies | supp(f)|| supp(f̂)| = |G|, with 0 + (N) ∈
supp(f) and 1G ∈ supp(f̂), then supp(f) is a subgroup of G and supp(f̂) is a
subgroup of Ĝ.

Proof. Let M = | supp(f)|, and take supp(f) = {r1 + (N), . . . , rM + (N)}. Define
φ : G → Ĝ by φ(k+(N))(r+(N)) = e2πikr/N for all k+(N), r+(N) ∈ G = Z/NZ.
For 0 ≤ p ≤ N −M , define w(p) ∈ CM by

w
(p)
k = f̂(φ(p + k + (N))) =

1
N

∑
r+(N)∈G

f(r + (N))φ(p + k + (N))(r + (N))

=
1
N

M∑
j=1

f(rj + (N))e−2πi(p+k)rj/N

for k = 1, . . . ,M . Define the M×M matrix Z by Zk,j = zp+k
j , 1 ≤ j, k ≤ M , where

zj = e−2πirj/N . Let u = (f(r1 +(N)), . . . , f(rM +(N))) ∈ CM . Then w(p) = 1
N Zu.

Thus w(p) = 0 if and only if u is in the kernel of Z. Certainly u 6= 0 in CM , since
r1 + (N), . . . , rM + (N) ∈ supp(f). Therefore to show that w(p) 6= 0 it suffices to
show that det Z 6= 0.

We have

Z =


zp+1
1 zp+1

2 · · · zp+1
M

zp+2
1 zp+2

2 · · · zp+2
M

...
...

. . .
...

zp+M
1 zp+M

2 · · · zp+M
M

 ,
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so

det Z = zp
1zp

2 · · · z
p
M

∣∣∣∣∣∣∣∣∣
z1 z2 · · · zM

z2
1 z2

2 · · · z2
M

...
...

. . .
...

zM
1 zM

2 · · · zM
M

∣∣∣∣∣∣∣∣∣ = zp
1zp

2 · · · z
p
M det(V ).

det V is a Vandermonde determinant and is equal to z1z2 · · · zM

∏
1≤j<k≤M (zj−zk);

see [8]. Then detZ = zp+1
1 zp+1

2 · · · zp+1
M

∏
1≤j<k≤M (zj − zk). But all the zj , 1 ≤

j ≤ M , are distinct, so detZ 6= 0 and hence for all 0 ≤ p ≤ N −M , w(p) 6= 0.
We have just shown that f̂ ◦φ does not have M consecutive zeros. By assumption

φ(0 + (N)) = 1G ∈ supp(f̂). Because | supp(f̂)| = N/M , we therefore have

supp(f̂) = φ({0 + (N),M + (N), 2M + (N), . . . , N −M + (N)}),

as if there were a gap of length < M − 1 between elements in supp(f̂) then there
would also have to be a gap of length ≥ M between elements in supp(f̂). This is a
subgroup of Ĝ. Likewise, supp(f) is a subgroup of G. �

Now we prove another uncertainty principle which we shall see implies the dis-
crete uncertainty principle.

Theorem 7 (Entropy uncertainty principle). Let f ∈ L(G) such that ‖f‖L2(G) = 1.
Then

1
2|G|

∑
x∈G

|f(x)|2 log |f(x)|+ 1
2

∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)| ≤ 0.

Proof. The Hausdorff-Young inequality [7, Theorem 2.1, Chapter IV, p. 111] is
that

‖f̂‖Lp′ ( bG) ≤ ‖f‖Lp(G), f ∈ L(G),

for all 1 ≤ p ≤ 2, where p′ = p/(p− 1) is the dual exponent to p, namely p′ satisfies
1
p + 1

p′ = 1. Let

A(p) = ‖f‖Lp(G) − ‖f̂‖Lp/(p−1)( bG).

Let’s write out what A(p) is equal to.

A(p) =
1

|G|1/p

( ∑
x∈G

|f(x)|p
)1/p

−
( ∑

ξ∈ bG
|f̂(ξ)|p/(p−1)

)(p−1)/p

= B(p)− C(p).

Then

log B(p) = −1
p

log |G|+ 1
p

log
∑
x∈G

|f(x)|p

and
B′(p)
B(p)

=
log |G|

p2
− 1

p2
log

∑
x∈G

|f(x)|p +
1
p

∑
x∈G |f(x)|p log |f(x)|∑

x∈G |f(x)|p
.

Since ‖f‖L2(G) = 1, we have B(2) = 1 and
∑

x∈G |f(x)|2 = |G|. Thus

B′(2) =
1

2|G|
∑
x∈G

|f(x)|2 log |f(x)|.
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Likewise,

log C(p) =
p− 1

p
log

∑
ξ∈ bG

|f̂ |p/(p−1),

and

C ′(p)
C(p)

=
1
p2

log
∑
ξ∈ bG

|f̂(ξ)|p/(p−1) +
−1

p(p− 1)

∑
ξ∈ bG |f̂(ξ)|p/(p−1) log |f̂(ξ)|∑

ξ∈ bG |f̂(ξ)|p/(p−1)

Because ‖f̂‖L2( bG) = 1, C(2) = 1 and

C ′(2) = −1
2

∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)|.

Therefore

A′(2) =
1

2|G|
∑
x∈G

|f(x)|2 log |f(x)|+ 1
2

∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)|.

As A(p) ≥ 0 for 1 ≤ p ≤ 2 and A(2) = 0, A′(2) ≤ 0. �

The above theorem is called the entropy uncertainty principle because it can be
formulated in terms of the entropies of |f |2 and |f̂ |2. The entropy of |f |2 is

h(|f |2) = − 1
|G|

∑
x∈G

|f(x)|2 log |f(x)|2

and the entropy of |f̂ |2 is

h(|f̂ |2) = −
∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)|2.

The discrete uncertainty principle follows from the entropy uncertainty principle.

Corollary 8 (Entropy uncertainty principle implies discrete uncertainty principle).
If f ∈ L(G) then

| supp(f)|| supp(f̂)| ≥ |G|.
Proof. Jensen’s inequality [5, Theorem 86] is that if φ is a convex function on the
interval [a, b], then for x1, . . . , xn ∈ [a, b] and any p1, . . . , pn ≥ 0,

φ

(∑n
i=1 pixi∑n
i=1 pi

)
≤

∑n
i=1 piφ(xi)∑n

i=1 pi
.

Thus we have (since φ(x) = − log x is convex)

log
( ∑

x∈G

|f(x)|2

|G|
1

|f(x)|

)
≥

∑
x∈G

|f(x)|2

|G|
log

1
|f(x)|

= −
∑
x∈G

|f(x)|2

|G|
log |f(x)|.

So

−
∑
x∈G

|f(x)|2

|G|
log |f(x)| ≤ log

( ∑
x∈G

|f(x)|
|G|

)
= log(〈|f |, 1supp(f)〉G)
≤ log(‖f‖L2(G)‖1supp(f)‖L2(G))

= log
( | supp(f)|1/2

|G|1/2

)
.
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Equivalently,

1
2|G|

∑
x∈G

|f(x)|2 log |f(x)| ≥ −1
2

log
( | supp(f)|1/2

|G|1/2

)
.

Also,

log
( ∑

ξ∈ bG
|f̂(ξ)|2 1

|f̂(ξ)|

)
≥

∑
ξ∈ bG

|f̂(ξ)|2 log
1

|f̂(ξ)|
= −

∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)|.

So

−
∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)| ≤ log
( ∑

ξ∈ bG
|f̂(ξ)|

)
= log(〈|f̂ |, 1supp(f̂)〉 bG)

≤ log(‖f̂‖L2( bG)‖1supp(f̂)‖L2( bG))

= log | supp(f̂)|1/2,

which is equivalent to
1
2

∑
ξ∈ bG

|f̂(ξ)|2 log |f̂(ξ)| ≥ −1
2

log | supp(f̂)|1/2.

Thus by Theorem 7 we get that

−1
2

log
( | supp(f)|1/2

|G|1/2

)
− 1

2
log | supp(f̂)|1/2 ≤ 0

hence

log
(
| supp(f)|1/2| supp(f̂)|1/2

|G|1/2

)
≥ 0,

which implies that
| supp(f)|1/2| supp(f̂)|1/2

|G|1/2
≥ 1.

�

We saw in Theorem 6 that the only f ∈ L(G) for which | supp(f)|| supp(f̂)| = |G|
are modifications of indicator functions of subgroups of G. But what if the only
subgroups of G are the identity and G itself? Then it becomes possible to get a
better inequality.

The following result is due to Tao [12].

Theorem 9 (Uncertainty principle for cyclic groups of prime order). Suppose that
|G| = p is prime. Then for all non-trivial f ∈ L(G),

| supp(f)|+ | supp(f̂)| ≥ p + 1.

We will prove several lemmas first and then prove the above theorem.

Lemma 10. Let p be a prime, n a positive integer, and let P (z1, . . . , zn) be a poly-
nomial with integer coefficients. If ω1, . . . , ωn are pth roots of unity (not necessarily
distinct) such that P (ω1, . . . , ωn) = 0, then P (1, . . . , 1) is a multiple of p.
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Proof. Let ω = e2πi/p. Then for each 1 ≤ j ≤ n, we can write ωj = ωkj for
some 0 ≤ kj < p. Define Q(z) ∈ Z[z] to be the remainder when P (zk1 , . . . , zkn) is
divided by zp−1. Because p is prime, the minimal polynomial of ω is the cyclotomic
polynomial Φp(z) = 1 + z + · · · + zp−1. But Q(ω) = 0 and deg Q(z) < p, so Q(z)
is an integer multiple of Φp(z). Therefore Q(1) = P (1, . . . , 1) is an integer multiple
of Φp(1) = p. �

The following important lemma is due to Chebotarev [11]. Our proof of the
lemma is from Tao [12]. I give more details than are necessary about the differen-
tiation of D(z1, . . . , zn) because this was a statement that was clearly true after a
bit of thinking, yet it was not immediately clear how to write down a formal proof
of it, since each time we apply z d

dz there is a new term that we have to differentiate
when we apply z d

dz next time. Now that I’ve written down all of this it is more
evident.

Lemma 11. Let p be a prime and let 1 ≤ n ≤ p. Let 0 ≤ x1, . . . , xn ≤ p−1 be dis-
tinct and let 0 ≤ ξ1, . . . , ξn ≤ p− 1 be distinct. Then the matrix (e2πixjξk/p)1≤j,k≤n

has nonzero determinant.

Proof. Let ωj = e2πixj/p. We have to show that det(ωξk

j )1≤j,k≤n. First, define
D(z1, . . . , zn) ∈ Z[z1, . . . , zn] by

(1) D(z1, . . . , zn) = det(zξk

j )1≤j,k≤n.

Certainly D(z1, . . . , zn) = 0 when zi = zj for any 1 ≤ i < j ≤ n. Therefore we
can write

D(z1, . . . , zn) = P (z1, . . . , zn)
∏

1≤i<j≤n

(zj − zi).

Observe that( d

dzn

)n−1 ∏
1≤i<j≤n

(zj − zi) = (n− 1)!
∏

1≤i<j≤n

(zj − zi),

and thus( d

dz2

)
· · ·

( d

dzn−1

)n−2( d

dzn

)n−1 ∏
1≤i<j≤n

(zj − zi) = (n− 1)!(n− 2)! · · · 1.

For Tx = xDx, where Dxf is the derivative of the function f with respect to x,

(2) (Tx)n =
n∑

k=1

S(n, k)xk(Dx)k,

where S(n, k) are the Stirling numbers of the second kind. S(n, k) is the number of
ways to partition a set of n objects into k groups. Equivalently, they may be defined
using the recurrence S(n, k) = kS(n− 1, k) + S(n− 1, k − 1), 1 ≤ k ≤ n, with the
initial conditions S(n, n) = S(n, 1) = 1. Using this definition it is straightfoward
to prove (2) using induction. Then(

z2
d

dz2

)
· · ·

(
zn−1

d

dzn−1

)n−2(
zn

d

dzn

)n−1

= Tz2 · · ·Tn−2
zn−1

Tn−1
zn

,
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and

Tz2 · · ·Tn−2
zn−1

Tn−1
zn

= S(1, 1)z2Dz2 · · ·
n−2∑

kn−1=1

S(n− 2, kn−1)z
kn−1
n−1 Dkn−1

zn−1

·
n−1∑
kn=1

S(n− 1, kn)zkn
n Dkn

zn
.

At the point z1 = · · · = zn = 1,

S(1, 1)Dz2 · · ·
n−2∑

kn−1=1

S(n− 2, kn−1)Dkn−1
zn−1

·
n−1∑
kn=1

S(n− 1, kn)Dkn
zn

=1 · · ·
n−2∑

kn−1=1

n−1∑
kn=1

S(1, 1) · · ·S(n− 2, kn−1)S(n− 1, kn)Dz2 · · ·Dkn−1
zn−1

Dkn
zn

.

When the above is applied to D(z1, . . . , zn) = P (z1, . . . , zn)
∏

1≤i<j≤n(zj−zi) at the
point z1 = · · · = zn = 1, only the term in which all the differentiation operators are
applied to

∏
1≤i<j≤n(zj − zi) is nonzero, as otherwise there are factors zj − zi that

are equal to 0 at z1 = · · · = zn = 0. Therefore the above applied to D(z1, . . . , zn)
at the point z1 = · · · = zn = 1 is equal to P (1, . . . , 1)(n− 1)!(n− 2)! · · · 1.

By the definition (1) of D(z1, . . . , zn),( d

dz2

)
· · ·

( d

dzn−1

)n−2( d

dzn

)n−1

D(z1, . . . , zn)

=
( d

dz2

)
· · ·

( d

dzn−1

)n−2( d

dzn

)n−1 ∑
σ∈Sn

sgn(σ)
n∏

j=1

z
ξσ(j)
j

=
∑

σ∈Sn

sgn(σ)ξn−1
σ(n)ξ

n−2
σ(n−1) · · · ξσ(2) · 1 ·

n∏
j=1

z
σ(j)
j .

Evaluated at the point z1 = · · · = zn = 1 this is equal to

∑
σ∈Sn

sgn(σ)
n∏

j=1

ξj−1
σ(j) =

∣∣∣∣∣∣∣∣∣
1 ξ1 ξ2

1 · · · ξn−1
1

1 ξ2 ξ2
2 · · · ξn−1

2
...

...
...

. . .
...

1 ξn ξ2
n · · · ξn−1

n

∣∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤n

(ξj − ξi).

Since 0 ≤ ξ1, . . . , ξn ≤ p − 1 are distinct, this product is not divisible by p. This
product is equal to P (1, . . . , 1)(n − 1)!(n − 2)! · · · 1; therefore P (1, . . . , 1) is not
divisible by p. Thus by Lemma 10, P (ω1, . . . , ωn) 6= 0. But

D(ω1, . . . , ωn) = P (ω1, . . . , ωn)
∏

1≤j<k≤n

(ωk − ωj)

and the ωj are all distinct, so D(ω1, . . . , ωn) 6= 0. �

Let p be prime and take A ⊆ G = Z/pZ and Ã ⊆ Ĝ with |A| = |Ã|, and define π :

L(Ĝ) → L(Ã) by π(f̂) = π

( ∑
ξ∈ bG f̂(ξ)δξ

)
=

∑
ξ∈Ã f̂(ξ)δξ. For F : L(G) → L(Ĝ)
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the Fourier transform and ι : L(A) → L(G) the inclusion map, let G = π ◦F ◦ ι.

L(G) F−−−−→ L(Ĝ)

ι

x yπ

L(A) G−−−−→ L(Ã)

Theorem 12. For A ⊆ G and Ã ⊆ Ĝ with |A| = |Ã|, the map G : L(A) → L(Ã)
defined above is an isomorphism.

Proof. Let A = {x1, . . . , xn} ⊆ G and Ã = {ξ1, . . . , ξn} ⊆ Ĝ.

For x ∈ G and η ∈ Ĝ, 〈δ̂x, δη〉 bG = η(x)
|G| , so

G δx =
n∑

j=1

ξj(x)
|G|

δξj
.

Therefore with the basis {δx1 , . . . , δxn
} for L(G) and the basis {δξ1 , . . . , δξn

} for
L(Ĝ), the matrix for the linear map G is

1
|G|


ξ1(x1) ξ1(x2) · · · ξ1(xn)
ξ2(x1) ξ2(x2) · · · ξ2(xn)

...
...

. . .
...

ξn(x1) ξn(x2) · · · ξn(xn)


For 0 ≤ r1, . . . , rn ≤ p − 1 such that xi = ri + (p) and for 0 ≤ h1, . . . , hn ≤ p − 1
such that ξj(xi) = e−2πihjrk for all 1 ≤ j, k ≤ n, this is equal to

1
|G|


e2πih1r1/p e2πih1r2/p · · · e2πih1rn/p

e2πih2r1/p e2πih2r2/p · · · e2πih2rn/p

...
...

. . .
...

e2πihnr1/p e2πihnr2/p · · · e2πihnrn/p


By Lemma 11 this matrix has nonzero determinant. Therefore G : L(A) → L(Ã)
is an isomorphism. �

Proof of Theorem 9. Suppose by contradiction that there were some non-trivial
f ∈ L(G) such that | supp(f)| + | supp(f̂)| ≤ p. Let A = supp(f). Then |Ĝ −
supp(f̂)| ≥ |A|, so there is a subset Ã ⊆ Ĝ− supp(f̂) with |A| = |Ã|. But G (f) = 0
yet f |A 6= 0, contradicting that G : L(A) → L(Ã) is an isomorphism. �

Most subsets of G = Z/NZ are not of the form of the supports of the functions
in Theorem 6. The number of subgroups of G = Z/NZ is d(N), where N is the
the number of positive divisors of N , e.g. d(6) = 4. If σ(N) is the sum of the
positive divisors of N , e.g. σ(6) = 12, then the number of cosets of subgroups
of G = Z/NZ is d(N)σ(N). But d(N) = O(N δ) for all δ > 0 [6, Theorem 315]
and σ(N) = O(N1+δ) for all δ > 0 [6, Theorem 322]. So the number of cosets of
subgroups of G is O(N1+δ) for all δ > 0. The number of subsets of G is 2N . Hence
the proportion of subsets of G that are cosets of subgroups is O(N1+δ2−N ) for all
δ > 0, which is minuscule.

Now we shall go through Terence Tao’s blog entry “Ostrowski lecture: The
uniform uncertainty principle and compressed sensing”, April 15, 2007.
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If f ∈ L(G) and Λ ⊆ G and we can measure f̂(ξ) for ξ ∈ Λ, can we uniquely
reconstruct f from this information? Let us put this another way. Let f ∈ L(G).
For Λ ⊆ Ĝ, is there a unique g ∈ L(G) such that ĝ|Λ = f̂ |Λ? Of course if there
is such a unique g then g = f . If Λ = Ĝ then using the Fourier inversion formula
there is a unique g satisfying

(3) ĝ|Λ = f̂ |Λ.

Now, the Fourier transform is an isomorphism of the vector spaces L(G) and L(Ĝ),
and we can define g ∈ L(G) by defining ĝ ∈ L(Ĝ). If Λ 6= G then there is some
ξ0 ∈ Ĝ−Λ. Take ĝ(ξ) to be equal to f̂(ξ) for ξ 6= ξ0 and take ĝ(ξ0) 6= f̂(ξ0). Then
(3) is satisfied but g 6= f .

We say that f ∈ L(G) is S-sparse if | supp(f)| ≤ S. If we know that f ∈ L(G)
is an S-sparse function and Λ ⊆ Ĝ and we can measure f̂(ξ) for ξ ∈ Λ, can we
uniquely reconstruct f from this information? Again, let us put this another way.
Let f ∈ L(G) be S-sparse. For Λ ⊆ Ĝ, is there a unique S-sparse g ∈ L(G) such
that ĝ|Λ = f̂ |Λ?

Having unique reconstruction of all S-sparse signals is a property of pairs of S
and Λ. We have unique reconstruction with Λ and S if and only if for each 2S-
sparse f ∈ L(G), measuring f̂ on Λ can determine whether f ∈ L(G) is the zero
function.

Lemma 13. Let Λ ⊆ Ĝ and let S be a positive integer. The following are equivalent:

(1) for all S-sparse f ∈ L(G) there is a unique S-sparse g ∈ L(G) such that
ĝ|Λ = f̂ |Λ

(2) for all non-trivial 2S-sparse f ∈ L(G) there is some ξ ∈ Λ such that f̂(ξ) 6=
0

Certainly to reconstruct all S-sparse signals by measuring them on Λ we will
need that |Λ| ≥ S. In fact, it is necessary that |Λ| ≥ 2S.

Lemma 14. A necessary condition for the statements in the previous lemma to be
true is that |Λ| ≥ 2S.

Proof. Suppose that |Λ| < 2S. Let U = {0+(N), S+(N), S+1+(N), . . . , 2S+(N)}
and let G : L(U) → L(Λ) be defined by G = π ◦F ◦ ι, where ι : L(U) → L(G) is the
inclusion map and π : L(Ĝ) → L(Λ) is the projection map. L(U) has dimension 2S
while L(Λ) has dimension |Λ| < 2S, so there is a nonzero element, say f ∈ L(G),
in the kernel of G . Write f = f1 − f2, f1, f2 ∈ L(G), where f1 is supported on
{1, . . . , S} and f2 is supported on {S+1, . . . , 2S}. Then f1, f2 are S-sparse functions
and f̂1|Λ = f̂2|Λ, contrary to the first statement in the previous lemma. �

If we can get the Fourier support of sparse signals to be big enough, then they
will have to intersect Λ. This is where uncertainty principles come into compressed
sensing.

The discrete uncertainty principle (Theorem 5) tells us that we have unique
reconstruction for Λ and S if |Λ| > N − N

2S , which hardly tells us anything.
The uncertainty principle for cyclic groups of prime order (Theorem 9) tells us

something much better. It gives us unique reconstruction for Λ and S if |Λ| ≥ 2S,
which as we saw in Lemma 14 is the best possible.
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The paper [1] of Candès, Romberg and Tao shows that most choices of frequencies
Λ ⊆ Ĝ are good choices: The uniform uncertainty principle (usually summing
|f̂(ξ)|2 over a big enough Λ will pick up its fair share of the L2 energy)

When there is noise, Dirac comb examples exist for Z/pZ using adapted bump
functions on arithmetic progressions. Reconstruction of non-sparse signals (when
there are S possibly large coefficients and then the rest of the coefficients decay
according to a power law, i.e. the nth coefficient decays as O(n−1/p) for some
p > 0) is dealt with in the other paper by Candès and Tao [2].
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